Conflict-free colorings

Michał Dębski

A partial vertex coloring of a hypergraph is *conflict-free* if for every hyperedge e there is a color c such that e contains exactly one vertex colored with c. By a *conflict-free coloring* of a graph G we mean a conflict-free coloring of the closed neighborhood hypergraph of G (i.e. it is a partial coloring of vertices of G such that for every vertex v there is a colors that appears exactly once in a closed neighborhood of v). The minimum number of colors in such a coloring is called the *conflict-free chromatic number*.

Problem 1 ([2]) What is the maximum conflict-free chromatic number of a graph with maximum degree Δ ?

The answer in Problem 1 is at most $O\left(\log^{2+\epsilon}\Delta\right)$ [2, Theorem 1.8]. The problem can be considered in restricted variants: when the graph is Δ -regular and has girth at least g for some constant g.

Problem 2 ([1]) For which pairs (r, Δ) the maximum conflict-free chromatic number of an r-uniform hypergraph with maximum degree Δ is at most Δ ?

The answer for problem 2 is positive in the case when r is large enough and Δ is large enough compared to r, and for r = 4 [1, Theorem 4]. The question remains open for any $r \ge 5$, $\Delta \ge 3$.

References

- [1] M. Axenovich and J. Rollin. Brooks Type Results for Conflict-Free Colorings and $\{a, b\}$ -factors in graphs. Dicrete Math. 338: 2295–2301, 2015.
- [2] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combinatorics, Probability and Computing, 18(5):819 – 834, 2009.