Conflict-free colorings

Michał Dȩbski

A partial vertex coloring of a hypergraph is conflict-free if for every hyperedge e there is a color c such that e contains exactly one vertex colored with c. By a conflict-free coloring of a graph G we mean a conflict-free coloring of the closed neighborhood hypergraph of G (i.e. it is a partial coloring of vertices of G such that for every vertex v there is a colors that appears exactly once in a closed neighborhood of v). The minimum number of colors in such a coloring is called the conflict-free chromatic number.
Problem 1 ([2]) What is the maximum conflict-free chromatic number of a graph with maximum degree Δ ?
The answer in Problem 1 is at most $O\left(\log ^{2+\epsilon} \Delta\right)$ [2, Theorem 1.8]. The problem can be considered in restricted variants: when the graph is Δ-regular and has girth at least g for some constant g.
Problem 2 ([1]) For which pairs (r, Δ) the maximum conflict-free chromatic number of an r-uniform hypergraph with maximum degree Δ is at most Δ ?
The answer for problem 2 is positive in the case when r is large enough and Δ is large enough compared to r, and for $r=4$ [1, Theorem 4]. The question remains open for any $r \geq 5, \Delta \geq 3$.

References

[1] M. Axenovich and J. Rollin. Brooks Type Results for Conflict-Free Colorings and $\{a, b\}$-factors in graphs. Dicrete Math. 338: 2295-2301, 2015.
[2] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combinatorics, Probability and Computing, 18(5):819-834, 2009.

