On edge colourings avoiding colour sets inclusions

Jakub Przybyło

(joint work with Jakub Kwaśny)

Let $\chi'_{\subset}(G)$ be the least number of colours necessary to properly colour the edges of a graph G with minimum degree $\delta \geq 2$ so that the set of colours incident with every vertex is not contained in a set of colours incident to any its neighbour. We investigate the conjecture that $\chi'_{\subset}(G) \leq \left[(1 + \frac{1}{\delta-1})\Delta\right]$ for each connected graph G with $\delta \geq 2$ which is not isomorphic to C_5 . If proven, this could not be improved. Using a probabilistic argument we support this conjecture by showing that for any fixed $\delta \geq 2$, $\chi'_{\subset}(G) \leq (1 + \frac{4}{\delta})\Delta(1 + o(1))$ (for $\Delta \to \infty$), what implies that $\chi'_{\subset}(G) \leq (1 + \frac{4}{\delta-1})\Delta$ for Δ large enough. The problem remains open though in general and in many intriguing special cases, including e.g. bipartite graphs and subcubic graphs.