On edge colourings avoiding colour sets inclusions

Jakub Przybyło
(joint work with Jakub Kwaśny)

Let $\chi_{\subset}^{\prime}(G)$ be the least number of colours necessary to properly colour the edges of a graph G with minimum degree $\delta \geq 2$ so that the set of colours incident with every vertex is not contained in a set of colours incident to any its neighbour. We investigate the conjecture that $\chi_{\subset}^{\prime}(G) \leq\left\lceil\left(1+\frac{1}{\delta-1}\right) \Delta\right\rceil$ for each connected graph G with $\delta \geq 2$ which is not isomorphic to C_{5}. If proven, this could not be improved. Using a probabilistic argument we support this conjecture by showing that for any fixed $\delta \geq 2, \chi_{\subset}^{\prime}(G) \leq\left(1+\frac{4}{\delta}\right) \Delta(1+o(1))$ (for $\Delta \rightarrow \infty$), what implies that $\chi_{\subset}^{\prime}(G) \leq\left(1+\frac{4}{\delta-1}\right) \Delta$ for Δ large enough. The problem remains open though in general and in many intriguing special cases, including e.g. bipartite graphs and subcubic graphs.

