Polynomial χ -binding functions for P_5 -free graphs

Ingo Schiermeyer

A graph G with clique number $\omega(G)$ and chromatic number $\chi(G)$ is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph H of G. A family \mathcal{G} of graphs is called χ -bounded with binding function f if $\chi(G') \leq f(\omega(G'))$ holds whenever $G \in \mathcal{G}$ and G' is an induced subgraph of G. In this talk we will present a survey on polynomial χ -binding functions for (P_5, H) -free graphs.

Moreover, we are interested in the following two problems:

- 1. Which classes of (P_5, H) -free graphs admit a binding function $f(\omega(G)) = \omega(G) + const.$?
- 2. It is known that $\chi(G) \leq \omega(G) + 1$ for every $(P_5, diamond)$ -free graph and that $\chi(G) \leq \omega(G) + 3$ for every $(P_6, diamond)$ -free graph. Is it true that $\chi(G) \leq \omega(G) + const.$ for every $(P_7, diamond)$ -free graph?