Polynomial χ-binding functions for P_{5}-free graphs

Ingo Schiermeyer

A graph G with clique number $\omega(G)$ and chromatic number $\chi(G)$ is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. A family \mathcal{G} of graphs is called χ-bounded with binding function f if $\chi\left(G^{\prime}\right) \leq f\left(\omega\left(G^{\prime}\right)\right)$ holds whenever $G \in \mathcal{G}$ and G^{\prime} is an induced subgraph of G. In this talk we will present a survey on polynomial χ-binding functions for $\left(P_{5}, H\right)$-free graphs.
Moreover, we are interested in the following two problems:

1. Which classes of $\left(P_{5}, H\right)$-free graphs admit a binding function $f(\omega(G))=$ $\omega(G)+$ const.?
2. It is known that $\chi(G) \leq \omega(G)+1$ for every (P_{5}, diamond)-free graph and that $\chi(G) \leq \omega(G)+3$ for every (P_{6}, diamond)-free graph. Is it true that $\chi(G) \leq \omega(G)+$ const. for every (P_{7}, diamond)-free graph?
