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We recall that a graph is a cactus if every edge is in at most one cycle. For a
graph H, we say an H∗-graph is either the graph H or a graph obtained from an
H∗-graph by choosing its arbitrary vertex and by adding a false twin of this vertex
(that is, the two vertices have the same neighbourhood in the resulting graph; in
particular, they are not adjacent).

We show that if H is either a bipartite cactus or an odd cycle and G is an
H∗-graph (on at least 3 vertices), then G is Hamiltonian if and only if G is 1-tough.

We use the classical Max-Flow Min-Cut Theorem [5] as the main tool, and we
either find a Hamilton cycle in G or a separating set of k vertices whose removal
disconnects G into more than k components.

We are interested in what happens if we consider adding true twins (true twins are
adjacent) along with adding false twins (the resulting class of graphs is a superclass
of P4-free graphs by [2]). The present result is motivated by a similar result on
C∗

5 -graphs [4], and the question is motivated by the results of [1], [6] and [3].
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