Cyclability in graphs

Hao LI

CNRS - Université de Paris-sud XI

 Let S be a subset of vertices. If the graph has a cycle C containing all vertices of S, we say that S is cyclable.

- The *cyclability* of a graph is the maximum number cyc(G) such that every subset of cyc(G) vertices is cyclable.
- V. Chvátal, New directions in hamiltonian graph theory, New Directions in the Theory of Graphs, Ed.: F. Harary, Academic Press, New York, 1973, 65-95.

Theorem: (Bollobás and Brightwell) Let G be a graph of order n and let $S \subseteq V(G)$, s=|S|, such that the degree of every vertex in S is at least d. then there is a cycle throught at least $\lfloor s/(n/d - 1) \rfloor$ vertices of S.

Cyclability, cubic graphs

Theorem:

cyc(G) ≥9 for every 3-connected cubic graph G. This bound is sharp (The Petersen graph).

D.A. Holton, B.D. McKay, M.D. Plummer and C. Thomassen, A nine-point theorem for 3-connected graphs, Combinatorica, 2, 1982, 53-62.

Theorem:

If G is 3-connected and planar, $cyc(G) \ge 23$.

This bound is sharp.

R.E.L. Aldred, S. Bau, D.A. Holton and B. McKay, Cycles through 23 vertices in 3-connected cubic planar graphs, Graphs Combin., 15, 1999, 373-376.

Theorem:

If G is 3-connected and claw-free, then $cyc(G) \ge 6$.

L.R. **Markus**, Degree, neighbourhood and claw conditions versus traversability in graphs, Ph.D. Thesis, Department of Mathematics, Vanderbilt University, 1992.

Theorem: Let G be a 3-connected claw-free graph and let $U = \{u_1, ..., u_k\}, k \le 9$, be an arbitrary set of at most nine vertices in G. Then G contains a cycle C which contains U.

A NINE VERTEX THEOREM FOR 3-CONNECTED CLAW-FREE GRAPHS,

Ervin Gyori and Michael D. Plummer

Independently by Jackson and Favaron ??

Example: Sharpness.

3-connected claw-free,

Example: Sharpness.

3-connected claw-free, cyc(G) ≤ 9 Theorem (Flandrin, Gyori, Li, Shu,): Let G be a $K_{1,4}$ -free graph and S a kconnected subset of vertices in G. Then if $|S| \le 2k$, there exists a cycle containing S.

Corollary. If G is $K_{1,4}$ -free k-connected, then the cyclability cyc(G) is at least 2k.

Theorem (Zhang, Li):

Let G be a 3-edge-connected graph and S a weak-k-edge connected vertex subset of vertices in G with $1 \le |S| \le 2k$. Then G admits an eulerian subgraph containing all vertices of S

A vertex set $S \subseteq V(G)$ is weak-k-edge-connected if for every subset C of S and $x \in S-C$, there are min{k,|C|} edge-disjoint (x,C)-paths in G.

The condition " 3-edge-connected" is necessary:

G=K_{2,2m+1}and S is the (2m+1)- part.

Lemma: Let G be graph, $M \subseteq V(G)$ with $|M| \ge k, v \notin M$ such that $M \cup \{v\}$ is k-connected. Suppose that there are two internal disjoint paths $Q_j[v,x_j]$, $1 \le j \le 2$ from v to x_1 and x_2 such that all inner vertices of these paths are in V(G)-M. Then there are k paths $P_i[v,u_i]$, $1 \le i \le k$ from v to $\{u_i: 1 \le i \le k\} \subseteq M \cup \{x_1,x_2\}$, with $u_{k-1}=x_1$ and $u_k=x_2$ such that

1) all inner vertices of these paths are in V(G)-M,

2) $P_1[v,u_1],P_2[v,u_2],P_3[v,u_3],...,P_{k-2}[v,u_{k-2}],P_{k-1}[v,u_{k-1}]$ and $P_1[v,u_1],P_2[v,u_2],P_3[v,u_3],...,P_{k-2}[v,u_{k-2}],P_k[v,u_k]$ are pairwise internal disjoint respectively.

$$\mathbf{P}_{1} \mathbf{P}_{2} \dots \mathbf{P}_{k-2} \mathbf{P}_{k-1} \mathbf{P}_{k}$$

Let $y = S \cap C(x_1, x_2)$. If x_i is the end of a path $P_{j,} 3 \le i \le k, 1 \le j \le k-2$, it follows that the 4 red vertices are independent and together with x_i they make a $K_{1,4}$!

Let y' =S \cap C(x₁,x₂) and y"=S \cap C(x_j,x_{j+1}). If x_i is the end of both paths P'[y', x_i] and P"[y", x_i], it follows again that the 4 red vertices are independent and together with x_i they make a K_{1,4} !

There is at least one S vertex in every segment cut by the vertices of $\{x_1, x_2, ..., x_k\} \cup (\cup_y N^*(y))$ since otherwise there is a cycle contains at least one more S vertex than C.

There is at least one S vertex in every segment cut by a vertex of N*(y') and a vertex in $\{X_1, X_2, \dots, X_k\}$ since otherwise there is a cycle contains at least one more S vertex than C.

There is at least one S vertex in every segment cut by a vertex of N*(y') and a vertex in {X₁,X₂..., X_k}

since otherwise there is a cycle contains at least one more S vertex than C.

There is at least one S vertex in every segment cut by a vertex in N*(y') and a vertex in N*(y'')

since otherwise there is a cycle contains at least one more S vertex than C.

There is at least one S vertex in every segment cut by a vertex in N*(y') and a vertex in N*(y'')

since otherwise there is a cycle contains at least one more S vertex than C.

There is at least one S vertex in every segment cut by two vertices of N*(y) since otherwise there is a cycle contains at least one more S vertex than C. So we have |S ∩ C| ≥k+|Y|(k-2). And if |Y|>1, we are done

Suppose |Y|=1 and y =S $\cap C(x_1,x_2)$.

• Every other segment has exactly two S vertices.

• WLOG,

$$\exists y^* \in C(x_2, x_3).$$

•By using the lemma, get paths • The end vertices of the **Q**_i 's are distinct to $\{x_1, x_2, \dots, x_k\} \cup N^*(y)$ • There is at least one S vertex in every segment cut by the vertices of{ $x_1, x_2, ..., x_k$ } \cup N*(y) \cup N*(y*)

Conclusion:

 $|S \cap C| \ge k+2(k-2) \ge 2k.$

谢谢=THANKS!

Thanks