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Hamiltonian cycle

■ Hamiltonian cycle is a cycle in a graph which visits every vertex of the graph.

■ Decide whether a graph is hamiltonian is well known NP-Complete problem.
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Hamiltonian cycle

■ Hamiltonian cycle is a cycle in a graph which visits every vertex of the graph.

■ Decide whether a graph is hamiltonian is well known NP-Complete problem.

■ If a graph G is hamiltonian then G is 2-connected.
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Toughness

■ The toughness of a non-complete graph is t(G) = min( |S|
c(G−S) ), where the

minimum is to be taken over all nonempty vertex sets S, for which
c(G − S) ≥ 2.
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Toughness

■ If a graph G is t-tough then G is d2te-connected.

Opposite implication is not true. There exist graphs with arbitrary large
connectivity and arbitrary small toughness.

Km,n for m ≥ n is n-connected but toughness t(Km,n) = n
m
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Necessary conditions

■ If a graph G is Hamiltonian then G is 1-tough
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Necessary conditions

■ If a graph G is Hamiltonian then G is 1-tough

■ If toughness t(G) < 1 then G has no Hamiltonian cycle
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Sufficient conditions

Chvátal’s Conjecture : There exists a finite constant t0 such that every t0-tough
graph is hamiltonian.

For many years the focus was on determining whether all 2-tough graphs are
hamiltonian. But in 2000 Bauer, Broersma and Veldman proved the following
theorem.
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Sufficient conditions

Chvátal’s Conjecture : There exists a finite constant t0 such that every t0-tough
graph is hamiltonian.

For many years the focus was on determining whether all 2-tough graphs are
hamiltonian. But in 2000 Bauer, Broersma and Veldman proved the following
theorem.

■ For every ε > 0, there exists a ( 9
4 − ε)-tough graph without a Hamiltonian

cycle.

To prove similar theorem to the Chvátal’s Conjecture we have to restrict our
focus on some special classes of graphs.
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Chordal graphs

■ Graph is chordal if every cycle of length greater then three has a chord.
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Chordal graphs

■ Graph is chordal if every cycle of length greater then three has a chord.

■ Vertex x is simplicial vertex in G if 〈NG(x)〉G is complete graph.

■ Assume that graph G is chordal. Then G has a simplicial vertex v and G − v
is chordal graph.

Every chordal graph can be constructed from K3 just by recursive adding of
new simplicial vertices.
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Chordal graphs

■ Every 18-tough chordal graph is Hamiltonian. (Chen et. al. 1997)

■ For every ε > 0, there exists a ( 7
4 − ε)-tough chordal graph without a

Hamiltonian cycle.(Bauer, Broersma and Veldman, 2000)
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Chordal graphs

■ Every 18-tough chordal graph is Hamiltonian. (Chen et. al. 1997)

■ For every ε > 0, there exists a ( 7
4 − ε)-tough chordal graph without a

Hamiltonian cycle.(Bauer, Broersma and Veldman, 2000)

■ Every chordal planar graph with t(G) > 1 is hamiltonian. (Bőhme et. al.
1999)

■ There exists a sequence G1, G2, ... of 1-tough chordal planar graphs with
c(Gi)

|V (Gi)|
→ 0 as i → ∞.
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Sketch of the proof

■ If t(G) > 1 then G is 3-connected. Then degree of every vertex is at least
three.

■ If G is chordal planar graph, then G does not contain K5 as a subgraph and
therefor degree of every simplicial vertex is at most three.

G can be constructed from K3 just by recursive adding of new simplicial
vertices, but we can do it as follows: In every step we add set S of all
simplicial vertices into the neighborhood of a simplicial vertex.
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Sketch of the proof

■ |S| < 3
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Sketch of the proof

■ |S| < 3

Suppose that from graph Gi we get graph Gi+1 by adding set S of all
simplicial vertices into the neibourhood of a simplicial vertex.

■ If Gi is hamiltonian then Gi+1 is hamiltonian.
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k-walks

■ A k-walk in a graph G is a spanning closed walk which visits every vertex of
G at most k-times.

This generalizes the notion of a Hamiltonian cycle because 1-walk in G is
exactly a Hamiltonian cycle in G.
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k-walks

■ Every graph containing a k-walk is 1
k

-tough.
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k-walks

■ Every graph containing a k-walk is 1
k

-tough.

If t(G) < 1
k

then G does not contain a k-walk.

http://center.uvt.nl/phd_stud/adriaens


Jakub Teska, October 2, 2006 Generalized Hamiltonian Cycles - p. 13/27

2-walks

■ Every 4-tough graph has a 2-walk. (Ellingham, Zha 2000)

This is similar theorem to the Chvátal’s Conjecture for 2-walks
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2-walks

■ Every 4-tough graph has a 2-walk. (Ellingham, Zha 2000)

This is similar theorem to the Chvátal’s Conjecture for 2-walks

■ For every ε > 0 and every k ≥ 1, there exists a ( 8k+1
4k(2k−1) − ε)-tough graph

with no k-walk.

For k = 2 we get that there exists ( 17
24 − ε)-tough graph with no 2-walk.
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Idea of the proof

■ Every 4-tough graph has a 2-walk. (Ellingham, Zha 2000)

■ If G is 2-tough then G has a 2-factor.
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Idea of the proof

■ Every 4-tough graph has a 2-walk. (Ellingham, Zha 2000)

■ If G is 2-tough then G has a 2-factor.

Then Eulerian cycle in this graph coresponds to a 2-walk in the original
graph.
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New result

■ Theorem : Every chordal planar graph with t(G) > 3
4 has a 2-walk.
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New result

■ Theorem : Every chordal planar graph with t(G) > 3
4 has a 2-walk.

Every simplicial vertex has degree 2 or 3.
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New result

■ Theorem : Every chordal planar graph with t(G) > 3
4 has a 2-walk.

Every simplicial vertex has degree 2 or 3.

G can be constructed from K3 just by recursive adding of new simplicial
vertices.

From graph Gi we get graph Gi+1 by adding set S of all simplicial vertices
into the neibourhood of a simplicial vertex.
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New result

■ Theorem : Every chordal planar graph with t(G) > 3
4 has a 2-walk.

Every simplicial vertex has degree 2 or 3.

G can be constructed from K3 just by recursive adding of new simplicial
vertices.

From graph Gi we get graph Gi+1 by adding set S of all simplicial vertices
into the neibourhood of a simplicial vertex.

Now we have the following cases:

I) Degree of x in Gi is two
II) Degree of x in Gi is three

A) T visits two edges incident with x in Gi

B) T visits one edge incident with x in Gi

http://center.uvt.nl/phd_stud/adriaens


Jakub Teska, October 2, 2006 Generalized Hamiltonian Cycles - p. 16/27

Case I

■ If degree of x in Gi is two then |S| ≤ 2.
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Case I

■ If degree of x in Gi is two then |S| ≤ 2.

Case I A
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Case I

■ If degree of x in Gi is two then |S| ≤ 2.

Case I A
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Case I

■ If degree of x in Gi is two then |S| ≤ 2.

Case I A

Case IB
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Case I

■ If degree of x in Gi is two then |S| ≤ 2.

Case I A

Case IB
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Case I

■ If degree of x in Gi is two then |S| ≤ 2.

Case I A

Case IB
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Case II

■ If degree of x in Gi is three then |S| ≤ 4.
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Case II

■ If degree of x in Gi is three then |S| ≤ 4.

Case II A; |S| = 3

http://center.uvt.nl/phd_stud/adriaens


Jakub Teska, October 2, 2006 Generalized Hamiltonian Cycles - p. 17/27

Case II

■ If degree of x in Gi is three then |S| ≤ 4.

Case II A; |S| = 3

http://center.uvt.nl/phd_stud/adriaens


Jakub Teska, October 2, 2006 Generalized Hamiltonian Cycles - p. 17/27

Case II

■ If degree of x in Gi is three then |S| ≤ 4.

Case II A; |S| = 3

http://center.uvt.nl/phd_stud/adriaens


Jakub Teska, October 2, 2006 Generalized Hamiltonian Cycles - p. 17/27

Case II
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Case II

■ If degree of x in Gi is three then |S| ≤ 4.

Case II A; |S| = 3

Case IB; |S| = 3
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Case II

■ If degree of x in Gi is three then |S| ≤ 4.

Case II A; |S| = 3

Case IB; |S| = 3
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Case II

Case II A; |S| = 4
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Case II

Case II A; |S| = 4
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Case II

Case II A; |S| = 4

Bad cases
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Lower bound

Theorem : There exists an infinite class of 2-connected chordal planar graphs
with toughness t(G) = 1

2 without a 2-walk.

x

y

v



u

u

u

u
1

2

3

4
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Open problems

Conjectures:

■ There exists a finite constant t0 such that every t0-tough graph is hamiltonian.
■ Every 2-tough chordal graph is hamiltonian.

■ Every 1
k−1 -tough graph has a k-walk.

■ Every 2-tough graph has a 2-walk.
■ Every 1-tough chordal graph has a 2-walk.
■ Every more then 1

2 -tough chordal planar graph has a 2-walk.
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Trestles

■ For any integer r > 1, an r-trestle is a 2-connected graph F with maximum
degree ∆(F ) ≤ r.

■ We say that a graph G has an r-trestle if G contains a spanning subgraph
which is an r-trestle.

■ A graph G is called K1,r-free if G has no K1,r as an induced subgraph.

1,3K
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Trestles

Ryjáček and Tkáč (2004) proved that

■ every 2-connected K1,3-free graph has a 3-trestle

They also conjectured that

■ every 2-connected K1,r-free graph has an r-trestle for every r ≥ 4.
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Trestles

Ryjáček and Tkáč (2004) proved that

■ every 2-connected K1,3-free graph has a 3-trestle

They also conjectured that

■ every 2-connected K1,r-free graph has an r-trestle for every r ≥ 4.

Theorem. Every 2-connected K1,r-free graph has an r-trestle for every r ≥ 2.
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Proof - the main trick = good choice

1. |V (T )| is maximal,

T

Y

X
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.

T

Y

X
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1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
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Proof - the main trick = good choice
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3. dT (X) + dT (Y ) is
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4. dT (X) ≥ dT (Y ).

T

Y

X
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1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is
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T

1S

Y

A

X

X
1
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
4. dT (X) ≥ dT (Y ).

dT (X) = r

Where is the vertex Y ?

T

1S

Y

A

X

X
1
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
4. dT (X) ≥ dT (Y ).

dT (X) = r

Y /∈ S1 or Y = A

T

1S

Y

A

X
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
4. dT (X) ≥ dT (Y ).

dT (X) = r

Y /∈ S1 or Y = A

dT (X1) = r

T

1S

Y

A

X

X
1
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Proof - the main trick = good choice
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T
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
4. dT (X) ≥ dT (Y ).

dT (X) = r

Y /∈ S1 or Y = A

S1 ) S2 ) . . . ) Si.

T

S

S
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2
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S

Y
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Proof - the main trick = good choice

1. |V (T )| is maximal,
2. |E(T )| is minimal.
3. dT (X) + dT (Y ) is

minimal
4. dT (X) ≥ dT (Y ).

dT (X) = r

Y /∈ S1 or Y = A

S1 ) S2 ) . . . ) Si.

T ′ remains 2-connected

dT ′(X) = r − 1 - contradic-
tion
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Sharpness of the result

1 2 r−2 1 2 r−2 1 2 r−2

■ The example shows a K1,r-free graph having an r-trestle but no
(r − 1)-trestle for r ≥ 3.

■ The result of Theorem cannot be improved.
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More results on trestles...

■ A minimum-degree condition for the existence of an r-trestle was recently
proved by Jendrol’, Ryjáček and Schiermeyer.

■ There is a polynomial algorithm for finding r-trestle in a given K1,r-free graph.
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More results on trestles...

■ A minimum-degree condition for the existence of an r-trestle was recently
proved by Jendrol’, Ryjáček and Schiermeyer.

■ There is a polynomial algorithm for finding r-trestle in a given K1,r-free graph.

■ Every 2-edge-connected graph with maximum degree ∆ has a d∆+1
2 e-walk

(Kaiser, Kužel, Li, Wang; 2006)

■ Every r-trestle has an d r+1
2 e-walk for any integer r ≥ 2. (R. K., J. T. ’05)
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The End

Thank You
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