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Definitions
Graph – loopless (with one exception), multiple edges are allowed, 
vertex set V, edge set E. 

Connected will allways mean edge-connected.

Vk(G)={x∈V(G)|d
G
(x) = k}

Cubic graph – every vertex has degree 3, no multiple edges, the graph 
has at least 5 vertices.

A graph G  is essentially k-connected if G contains no edge  cut R 
such that |R| < k and at least two components of G – R contain at least 
one edge.

Snark – an essentially 4-connected cubic graph,the length of a shortest 
cycle is 5.

Dominating cycle (DC) – every edge has at least one vertex on cycle.



Equivalent conjectures

 
DCC [P.Ash, B. Jackson (1984)] Every essentially 4-connected cubic 
graph has a DC.
 

DCC for snarks 
[H. Broersma, G. Fijavž, T. Kaiser, R. Kužel, Z. Ryjáček, P.V (2008)] 
Every snark has a DC.

Further versions of these equivalent conjectures by Fleischner (1984), 
Matthews, Sumner (1984), Thomassen (1985), Kochol and others.



Contractible techniques
A-contractibility [Ryjáček, Schelp]
no condition on the rest of graph
small class of subgraphs

Weakly A-contractibility
every vertex in subgraph have at most one edge connecting the 
subgraph with the rest of a graph, one exceptional case
larger class of subgraphs

Compatible mapping
on cubic graphs only, the rest of graph is not edgeless
on cubic graphs most powerful
 
Cubic fragment – a connected graph without multiple edges with 
maximum degree 3 and with at least 2 vertices of degree at least 2.

Further extensions need more conditions on the rest of graph or 
leave connectivity of subgraph. 



Compatible mapping
Let F be cubic fragment and let B be a graph with V(B)⊂V

1
(F)∪V

2
(F), 

E(B)∩E(F) = ∅ and with components B
1
,...,B

k
. 

We say that B is an F-linkage, if E(B) contains at least one open 
edge (not loop) and, for any i = 1,...,k,
   (i) every B

i
 is a path (of length at least one) or a loop,

  (ii) if B
i
 is a path, then all interior vertices of B

i
 are in V

1
(F),

 (iii) if  B
i
 is a loop at a vertex x, then x∈V

2
(F).

F B denotes the graph with vertex set V(F B ) = V(F) and edge set    
E(F B ) = E(F) ∪ E(F B ) .

Let  F
1
, F

2
 be cubic fragments with |V

1
(F

1
)∪V

2
(F

1
)| = |V

1
(F

2
)∪V

2
(F

2
)| 

and let ϕ :V
1
(F

1
)∪V

2
(F

1
) → V

1
(F

2
)∪V

2
(F

2
) be a bijection. We say that ϕ 

is a compatible mapping if
 (i) ϕ (V

i
(F

1
)) = V

i
(F

2
) ,i = 1,2,

(ii) if B is an F
1
-linkage such that F

1
B has a DC containing all open 

edges of B, then  F
2

ϕ (B) has a DC containing all open edges of ϕ (B).



1 2

34

1 3

24

Example of a compatible mapping

 



Theorems for compatible mapping

Theorem Let G be a cubic graph and let C be a DC in G. Let F⊂ G 
be a cubic fragment such that G – F is not edgeless, and let F ' be 
a cubic fragment such that V(F) ∩V(G) = ∅ and there is a 
compatible mapping ϕ :F→F '. 
Then the graph G' = G [ F ϕ→ F ' ] is a cubic graph having DC C' 
such that E(C) \ E(F) = E(C' ) \ E(F ' ). 

Proposition Let X, F be cubic fragments such that there is  a 
compatible mapping ψ :X→F. Let  F

1
⊂ F be a cubic fragment, and 

let  F
2 
be a cubic fragment such that V(F) ∩V(F

2
) = ∅ and there is a 

compatible mapping ϕ :F
1
→F

2
. Let F' = F [ F

1
 ϕ→ F

2
  ]. Then there 

is a compatible mapping ψ ' :X→F'. 



Equivalence of the DCC and DCC for snarks
2-3 graph : every vertex has degree 2 or 3.

Let F be a connected 2-3 graph such that
  (i) F contains no cycle of length 4,
 (ii) V

2
(F) = 4,

(iii) F is a subgraph of some essentially 4-connected cubic graph.

Main idea of proof

1. Replacing all C
4
 by copies of F, F→C

4
 is a compatible mapping.

2. 3-edge-colorable graph →not 3-edge colorable graph
M.Kochol 

Equivalence of Fleischner's and Thomassen's conjecture

Does there exist an F such that there is a compatible mapping 
F→C

4
?



Reformulating the question
Claim If G is a counterexample of DCC then there is an F which is 2-3 
graph, V

2
(F) = 4 and F is connected subgraph of G such that there is 

no compatible mapping C
4 
→F. 

Claim If there is an F for which vertices of V
2
(F) are independent and 

there is no compatible mapping C
4 
→F then there is F' for which there 

is a compatible mapping F'→C
4
.

If DCC doesn't hold,
does there exist an F such that vertices of V

2
(F) are independent 

and there is a compatible mapping C
4
→F?

F F



Proposition Let F be a connected 2-3 graph such that
  (i) V

2
(F) = 4,

 (ii) F is subgraph of some essentially 4-connected cubic graph,
(iii) there is no compatible mapping C

4
 →F,

(iv) subject to (i), (ii) and (iii), |V(F)| is minimum.
Then F is essentially 3-connected and contains no cycle of length 4.

Proof.
1.F is essentially 3-connected
Otherwise, any  maximal subgraph H for which there is a compatible 
mapping C

4
 →H, can be replaced by a  C

4
 .

Equivalence of the DCC and DCC for snarksEquivalence of the DCC and DCC for snarks



“Removing” a C
4

2. F contains no 2-3 subgraph such that |V(F)|>4, |V
2
(F)|=4.

3. F contains no cycle of length 4.
we replace C

4
 -> edge (the replacement is possible since F 

contains no triangle) and we still have a graph which fulfils 
the conditions.

Counterexample to the conjecture 3  -> there is an F (by the 
claim) -> counterexample to the DCC for snarks (by the 
Kochol's construction (edge coloring))



Equivalent conjectures

 
DCC [P.Ash, B. Jackson (1984)] Every essentially 4-connected cubic 
graph has a DC.
 

DCC for snarks 
[H. Broersma, G. Fijavž, T. Kaiser, R. Kužel, Z. Ryjáček, P.V (2008)] 
Every snark has a DC.

Further versions of these equivalent conjectures by Fleischner (1984), 
Matthews, Sumner (1984), Thomassen (1985), Kochol and others.



Thank you for your attention

Questions ?
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