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1. Basic Concepts

A graph G is called claw-free if it has no

induced subgraph isomorphic to K1,3.

A line graph L(G) of a graphG is a graph

in which V (L(G)) = E(G) and where two

vertices are adjacent if and only if they are

adjacent as edges of G.

A graph is hamiltonian if there exists a

cycle containing every vertex of G.

A graph is Hamilton-connected if any pair

of vertices is joined by a hamiltonian path.

For convenience, let Hu = G[N(u)]. A

vertex u of G is said to be locally connected

if Hu is connected.
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2. Hamiltonicity

Conjecture 2.1(Matthews & Sumner,

JGT, 1983). Every 4-connected claw-free

graph is hamiltonian.

Since every line graph is claw-free, the

following conjecture proposed in 1986 by

Thomassen is a special case of Conjecture

2.1.

Conjecture 2.2 (Thomassen,). Every 4-

connected line graph is hamiltonian.

An important progress on Conjecture 2.2

is due to Zhan(Dis. Math., 91) and inde-

pendently to Jackson.

Theorem 2.3 (Zhan; Jackson). Every 7-

connected line graph is hamiltonian.
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Some important progresses

The Ryjác̆ek’s closure of a claw-free graph

G, denoted by clR(G), is obtained from

G by successively adding all missing edges

to the neighborhood of a locally connected

vertex.

Theorem 2.4 (Ryjác̆ek). Let G be a

claw-free graph. Then there is a triangle-

free graph H such that clR(G) = L(H)

and c(clR(G)) = c(G).

It follows from Theorem 2.3 and Theorem

2.4 that every 7-connected claw-free graph

is hamiltonian.
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Theorem 2.5 (Li). Every 6-connected

claw-free graph with at most 33 vertices of

degree 6 is hamiltonian.

Theorem 2.6 (Fan). Every 6-connected

claw-free graph with all vertices of degree 6

independent is hamiltonian.

Hu, Tian and Wei got the following two

theorems.

Theorem 2.7. Let G be a 6-connected

claw-free graph and let V0 = { v ∈ V (G) :

dG(v) = 6 }. If |V0| ≤ 44 or G[V0] contains

at most 8 vertex disjoint K4’s, then G is

hamiltonian.

Clearly, Theorem 2.7 is a generalization

of Theorems 2.3, 2.5 and 2.6.
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3. Hamiltonian Connectivity

For Hamilton-connectedness of claw-free

graphs, no constant connectivity bound for

it was known, until Brandt got the following

striking result:

Theorem 3.1 (Brandt, JCTB, 99). Ev-

ery 9-connected claw-free graph is Hamilton-

connected.

By considering the line graph, Hu, Tian

and Wei obtained:

Theorem 3.2. Let G be a 6-connected

line graph and let V0 = { v ∈ V (G) :

dG(v) = 6 }. If |V0| ≤ 29 or G[V0] con-

tains at most 5 vertex disjoint K4’s, then

G is Hamilton-connected.
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By using the closure idea of Brandt and

Theorem 3.2, Hu, Tian and Wei got follow-

ing result.

Theorem 3.3. Let G be a 7-connected

claw-free graph and let a and b be any two

distinct vertices of G. If {a, b} is not con-

tained in any vertex cut of order 7 of G,

then G has a hamiltonian (a, b)-path.

Theorem 3.3 has the following corollary.

Corollary 3.4. Every 8-connected claw-

free graph is Hamilton-connected.
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4. Ideas of the proof of Th. 3.2

More notations and definitions

If A and B are subgraphs of G or sub-

sets of V (G), we define MG(A) = { e ∈
E(G) : e has only one end vertex in A}
and MG(A,B) = MG(A) ∩MG(B). The

cardinalities of MG(A) and MG(A,B) are

denoted by mG(A) and mG(A,B), respec-

tively. In particular, when A = {x} and

B = {y}, we set MG(x) = MG({x}) and

definemG(x), MG(x, y) andmG(x, y) sim-

ilarly.

Notice that mG(x, y) is the number of

multiple edges between x and y.
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For ∅ 6= S ⊂ V (G), let G[S] denote the

subgraph of G induced by S and define G−
S = G[V (G)− S].

If E0 is a subset of the edge set E(G),

then we use G − E0 to denote the span-

ning subgraph with V (G − E0) = V (G),

E(G − E0) = E(G) − E0. For a vertex

x ∈ V (G), define NG(x) = { y ∈ V (G) :

xy ∈ E(G) }.
If X is a subset of V0 such that G[X ] ∼=

K4, then we call G[X ] a bad K4 of G. A

vertex v is called a bad vertex if it is a vertex

of a bad K4 of G. Let b(G) be the number

of bad vertices of G. Define

µ(G) =

max{h : G[V0] has h vertex disjoint K4’s }.
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A setD ⊆ V (G) is called a dominating set

of G if every edge of G has at least one end

vertex in D (i.e., E(G−D) = ∅).
A graphG is essentially k-edge-connected

if |E(G)| ≥ k + 1 and G− E0 has exactly

one component H with E(H) 6= ∅ for all

E0 ⊆ E(G), |E0| < k.

A trail in G is a finite sequence of vertices

and distinct edges

T = v1, e1, v2, e2, . . . , vk, ek, vk+1

such that ei, 1 ≤ i ≤ k, is an edge in G

with end vertices vi and vi+1. If, in addi-

tion, v1 = vk+1, T is called a closed trail.

The internal vertices of T are vi for 2 ≤
i ≤ k when v1 6= vk+1 and every vertex of

T is an internal vertex for a closed trail T .
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A trail in G is a dominating trail if each

edge of G is incident with at least one in-

ternal vertex of the trail.

A trail in G is a spanning trail if for each

vertex v of G there exists an internal vertex

vi of the trail such that vi = v.

A graph G is dominating trailable if for

each pair e1 and e2 of edges of G there is a

dominating trail e1Tde2 with end edges e1

and e2.

A graphG is spanning trailable if for each

pair e1 and e2 of edges of G there is a span-

ning trail e1Tse2 with end edges e1 and e2.

A graph H is called a multi-star if it is ob-

tained from some star K1,s by adding some

multiple edges incident with the center.
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Assume that H is not a multi-star.

Lemma 4.1. Let H be a graph such

that L(H) is k-connected. Then

(i) mH(x, y) ≤ max{1
2(dH(x)+dH(y)−

k), 0 }, for all x, y ∈ V (H) with x 6= y and

dH(x) + dH(y) ≤ k + 2.

(ii) D′ = { v ∈ V (H) : dH(v) ≥ k+2
2 }

is a dominating set of H .

(iii) If there exists a pair (A,B) with A ⊆
{ v ∈ V (H) : dH(v) = 5 } and B ⊆
{ v ∈ V (H) : dH(v) = 3 } such that

mH(A,B) > 3|A|+min{2
5b(L(H)), 2µ(L(H))},

then κ(L(H)) < 6.
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Two operations

R1: delete a vertex u, which has degree

at most 2 but is adjacent to at most one

vertex, and delete its incident edges;

R2: delete a vertex u with degree 2 and

its incident edges uv and uw, where v 6= w,

and add a new edge vw.

Use the above two operations we can sim-

plify the graph.

Lemma 4.2. Let H be a graph, which

is not a multi-star of edge multiplicity at

most 5 and, let its line graph L(H) be 6-

connected. Then, there is a unique graph

(up to isomorphism)H∗, called the reduced

graph of H , obtained from H by applying

a sequence of operations R1 and R2 such
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that:

(i) δ(H∗) ≥ 3;

(ii) κ(L(H∗)) = κ(L(H)) ≥ 6;

(iii)MH∗(x) = MH(x), for any x ∈ V (H∗)

with dH∗(x) < 6;

(iv) V (H∗) = D(H∗) = D(H) is a dom-

inating set of H ;

(v) mH∗(A,B) = mH(A,B) ≤ 3|A| +
min{2

5b(L(H)), 2µ(L(H))} for each pair (A,B)

with A ⊆ { v ∈ V (H∗) : dH∗(v) = 5 }
and B ⊆ { v ∈ V (H∗) : dH∗(v) = 3 }.

Lemma 4.3. Let H be a graph, which

is not a multi-star of edge multiplicity at

most 5, and let its line graph L(H) be 6-

connected. Then, H is dominating trailable

if its reduced graph H∗ is spanning trail-

able.
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Lemma 4.4. If H is a graph with at

least 4 vertices, then its line graph L(H)

is Hamilton-connected if and only if H is

dominating trailable or H is isomorphic to

a multi-star.

Lemma 4.4 can be proved by a slight mod-

ification of the proof of the following theo-

rem.

Theorem 4.5(Harary & Nash-Williams).

If H is a graph with at least 4 vertices, then

its line graph L(H) is hamiltonian if and

only if H has a dominating closed trail or

H is isomorphic to K1,s, for some integer

s ≥ 3.

15



Theorem 4.6(Nash-Williams; Tutte). A

graph G has k edge-disjoint spanning trees

if and only if

|E0| ≥ k(ω(G− E0)− 1)

for each subset E0 of the edge set E(G).

Theorem 4.7. Let G be a graph such

that

|E0| ≥ 2ω(G− E0)− 1

for all E0 ⊆ E(G), E0 6= ∅. Then G is

spanning trailable.

16



Ideas of the proof of Th. 4.7

Let e1 and e2 be any two edges of G, We

show

1. G − {e1} two edge-disjoint spanning

trees, say T1 and T2.(By Theorem 4.?).

2. Assume that e2 ∈ E(T1) ∪ E(T2), say

e2 ∈ E(T1) and let X be the set of vertices

with odd degrees in T1. Then |X| must be

even. Set X = {x1, y1, x2, y2, . . . , xk, yk}.
For 1 ≤ i ≤ k, let Pi be the path joining

xi and yi in T2. Define E1 = E(P1) and

for 2 ≤ j ≤ k let Ej = (E(Pj)− Ej−1) ∪
(Ej−1 − E(Pj)). Then Ej ⊆ E(T2) for

any 1 ≤ j ≤ k. It is easily seen that

the set of vertices with odd degrees in the

graph G[Ej] is {x1, y1, · · · , xj, yj }. Since

E(T1) ∩ Ek = ∅, G[E(T1) ∪ Ek] must be
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eulerian. Regarded as a trail, E(T1) ∪ Ek
is a spanning closed trail of G, containing

e2 but not containing e1. Denote this trail

by Ts = v2, e2, v3, e3, . . . , vt, et, v2.

3. Add e1 to Ts to find a spanning trail

of G with end edges e2 and e1.
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Lemma 4.8. Let H be a graph which is

not a multi-star of edge multiplicity at most

5. If E0 is a subset of E(H∗) with E0 6= ∅,
then

|E0| ≥ 2ω(H∗−E0)−1, if ω(H∗−E0) ≤
2;

|E0| ≥ 2ω(H∗ − E0)

−min{ 1
15b(L(H)), 1

3µ(L(H))}, otherwise.

Ideas of the proof

Let ω = ω(H∗ − E0). It is easy to ver-

ify that Lemma 4.8 is true if ω ≤ 2 by

Lemma 4.2. So we assume that ω ≥ 3.

Let H1, H2, . . . , Hω be all the components

of H∗ − E0. It follows from Lemma 4.2

that H∗ is essentially 6-edge-connected and

δ(H∗) ≥ 3. Define
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Sj = { i : 1 ≤ i ≤ ω, mH∗(Hi) =

j }, 3 ≤ j ≤ 5

and

S6 = { i : 1 ≤ i ≤ ω, mH∗(Hi) ≥ 6 }.
Let sj = |Sj|, 3 ≤ j ≤ 6. Then we have

ω(H∗ − E0) = s3 + s4 + s5 + s6 and

|E0| ≥
1

2
(3s3 + 4s4 + 5s5 + 6s6). (1)

Furthermore, we have |V (Hi)| = 1 for

all i ∈ S3 ∪ S4 ∪ S5. For 3 ≤ j ≤ 6,

let Xj = ⋃
i∈Sj V (Hi). Then, |Xj| = sj,

3 ≤ j ≤ 5. By Lemma 1(i), we have

E(H∗[X3]) = ∅ and MH∗(X3, X4) = ∅.
Thus, 2|E(H∗[X4∪X5])| ≤ 4|X4|+5|X5|−
mH∗(X5, X3). Counting the edges of E0

that have at least one end in X3∪X4∪X5,

we have
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|E0| ≥
3|X3| + 4|X4| + 5|X5| − mH∗(X3, X4) −
|E(H∗[X4 ∪X5])| −mH∗(X5, X3)

≥ 3|X3|+4|X4|+5|X5|−1
2(4|X4|+5|X5|−

mH∗(X5, X3))−mH∗(X5, X3)

= 3s3 + 1
2(4s4 + 5s5)− 1

2mH∗(X5, X3).(3)

By (2) and (3), we get

3|E0| ≥ 6(s3 + s4 + s5 + s6) + 1
2(3s5 −

mH∗(X5, X3)).

This together with |X5| = s5 and Lemma

4.2(v) implies

3|E0| ≥
6ω(H∗−E0)−1

2 min {2
5b(L(H))), 2µ(L(H)}.

Therefore,

|E0| ≥
2ω(H∗−E0)−min { 1

15b(L(H))), 1
3µ(L(H))}.
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5. One possible approach

To attack the conjecture 1.2 for a 6-connected

line graph G, we first investigate the follow-

ing:

Problem: IfH is essentially 6-edge-connected

with ∆(H) ≤ 5, does G have a dominating

closed trail?

If the answer for the above problem is

posithenive, the we can do some operstions

for graphs with maximum degree at least

6 to keep the new graph being still essen-

tially 6-edge-connected and study the rela-

tionship between these two graph.
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