Some Results on Paths and Cycles in Claw-Free Graphs

BING WEI

Department of Mathematics University of Mississippi

1. Basic Concepts

A graph G is called <u>claw-free</u> if it has no induced subgraph isomorphic to $K_{1,3}$.

<u>A line graph</u> L(G) of a graph G is a graph in which V(L(G)) = E(G) and where two vertices are adjacent if and only if they are adjacent as edges of G.

A graph is <u>hamiltonian</u> if there exists a cycle containing every vertex of G.

A graph is <u>Hamilton-connected</u> if any pair of vertices is joined by a hamiltonian path.

For convenience, let $H_u = G[N(u)]$. A vertex u of G is said to be <u>locally connected</u> if H_u is connected.

2. Hamiltonicity

Conjecture 2.1(Matthews & Sumner, JGT, 1983). Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free, the following conjecture proposed in 1986 by Thomassen is a special case of Conjecture 2.1.

Conjecture 2.2 (Thomassen,). Every 4connected line graph is hamiltonian.

An important progress on Conjecture 2.2 is due to Zhan(Dis. Math., 91) and independently to Jackson.

Theorem 2.3 (Zhan; Jackson). Every 7connected line graph is hamiltonian.

Some important progresses

The Ryjáček's closure of a claw-free graph G, denoted by $cl_R(G)$, is obtained from G by successively adding all missing edges to the neighborhood of a locally connected vertex.

Theorem 2.4 (Ryjáček). Let G be a claw-free graph. Then there is a triangle-free graph H such that $cl_R(G) = L(H)$ and $c(cl_R(G)) = c(G)$.

It follows from Theorem 2.3 and Theorem 2.4 that every 7-connected claw-free graph is hamiltonian.

Theorem 2.5 (Li). Every 6-connected claw-free graph with at most 33 vertices of degree 6 is hamiltonian.

Theorem 2.6 (Fan). Every 6-connected claw-free graph with all vertices of degree 6 independent is hamiltonian.

Hu, Tian and Wei got the following two theorems.

Theorem 2.7. Let G be a 6-connected claw-free graph and let $V_0 = \{ v \in V(G) :$ $d_G(v) = 6 \}$. If $|V_0| \le 44$ or $G[V_0]$ contains at most 8 vertex disjoint K_4 's, then G is hamiltonian.

Clearly, Theorem 2.7 is a generalization of Theorems 2.3, 2.5 and 2.6.

3. Hamiltonian Connectivity

For Hamilton-connectedness of claw-free graphs, no constant connectivity bound for it was known, until Brandt got the following striking result:

Theorem 3.1 (Brandt, JCTB, 99). Every 9-connected claw-free graph is Hamiltonconnected.

By considering the line graph, Hu, Tian and Wei obtained:

Theorem 3.2. Let G be a 6-connected line graph and let $V_0 = \{v \in V(G) : d_G(v) = 6\}$. If $|V_0| \leq 29$ or $G[V_0]$ contains at most 5 vertex disjoint K_4 's, then G is Hamilton-connected. By using the closure idea of Brandt and Theorem 3.2, Hu, Tian and Wei got following result.

Theorem 3.3. Let G be a 7-connected claw-free graph and let a and b be any two distinct vertices of G. If $\{a, b\}$ is not contained in any vertex cut of order 7 of G, then G has a hamiltonian (a, b)-path.

Theorem 3.3 has the following corollary.

Corollary 3.4. Every 8-connected claw-free graph is Hamilton-connected.

4. Ideas of the proof of Th. 3.2 More notations and definitions

If A and B are subgraphs of G or subsets of V(G), we define $M_G(A) = \{e \in E(G) : e \text{ has only one end vertex in } A\}$ and $M_G(A, B) = M_G(A) \cap M_G(B)$. The cardinalities of $M_G(A)$ and $M_G(A, B)$ are denoted by $m_G(A)$ and $m_G(A, B)$, respectively. In particular, when $A = \{x\}$ and $B = \{y\}$, we set $M_G(x) = M_G(\{x\})$ and define $m_G(x), M_G(x, y)$ and $m_G(x, y)$ similarly.

Notice that $m_G(x, y)$ is the number of multiple edges between x and y. For $\emptyset \neq S \subset V(G)$, let G[S] denote the subgraph of G induced by S and define G - S = G[V(G) - S].

If E_0 is a subset of the edge set E(G), then we use $G - E_0$ to denote the spanning subgraph with $V(G - E_0) = V(G)$, $E(G - E_0) = E(G) - E_0$. For a vertex $x \in V(G)$, define $N_G(x) = \{ y \in V(G) :$ $xy \in E(G) \}.$

If X is a subset of V_0 such that $G[X] \cong K_4$, then we call G[X] a bad K_4 of G. A vertex v is called a bad vertex if it is a vertex of a bad K_4 of G. Let b(G) be the number of bad vertices of G. Define

 $\mu(G) =$

 $\max\{h: G[V_0] \text{ has } h \text{ vertex disjoint } K_4$'s $\}$.

A set $D \subseteq V(G)$ is called a <u>dominating set</u> of G if every edge of G has at least one end vertex in D (i.e., $E(G - D) = \emptyset$).

A graph G is essentially k-edge-connected if $|E(G)| \ge k + 1$ and $G - E_0$ has exactly one component H with $E(H) \ne \emptyset$ for all $E_0 \subseteq E(G), |E_0| < k.$

A <u>trail</u> in G is a finite sequence of vertices and distinct edges

 $T = v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_{k+1}$

such that e_i , $1 \leq i \leq k$, is an edge in Gwith end vertices v_i and v_{i+1} . If, in addition, $v_1 = v_{k+1}$, T is called a <u>closed trail</u>.

The internal vertices of T are v_i for $2 \leq i \leq k$ when $v_1 \neq v_{k+1}$ and every vertex of T is an internal vertex for a closed trail T.

A trail in G is a <u>dominating trail</u> if each edge of G is incident with at least one internal vertex of the trail.

A trail in G is a spanning trail if for each vertex v of G there exists an internal vertex v_i of the trail such that $v_i = v$.

A graph G is <u>dominating trailable</u> if for each pair e_1 and e_2 of edges of G there is a dominating trail $e_1T_de_2$ with end edges e_1 and e_2 .

A graph G is spanning trailable if for each pair e_1 and e_2 of edges of G there is a spanning trail $e_1T_se_2$ with end edges e_1 and e_2 .

A graph H is called a <u>multi-star</u> if it is obtained from some star $K_{1,s}$ by adding some multiple edges incident with the center. Assume that H is not a multi-star.

Lemma 4.1. Let H be a graph such that L(H) is k-connected. Then

(i) $m_H(x, y) \le \max\{\frac{1}{2}(d_H(x) + d_H(y) - k), 0\}$, for all $x, y \in V(H)$ with $x \ne y$ and $d_H(x) + d_H(y) \le k + 2$.

(ii) $D' = \{ v \in V(H) : d_H(v) \ge \frac{k+2}{2} \}$ is a dominating set of H.

(iii) If there exists a pair (A, B) with $A \subseteq$ { $v \in V(H) : d_H(v) = 5$ } and $B \subseteq$ { $v \in V(H) : d_H(v) = 3$ } such that $m_H(A, B) > 3|A| + \min\{\frac{2}{5}b(L(H)), 2\mu(L(H))\},$ then $\kappa(L(H)) < 6.$

Two operations

 R_1 : delete a vertex u, which has degree at most 2 but is adjacent to at most one vertex, and delete its incident edges;

 R_2 : delete a vertex u with degree 2 and its incident edges uv and uw, where $v \neq w$, and add a new edge vw.

Use the above two operations we can simplify the graph.

Lemma 4.2. Let H be a graph, which is not a multi-star of edge multiplicity at most 5 and, let its line graph L(H) be 6connected. Then, there is a unique graph (up to isomorphism) H^* , called the reduced graph of H, obtained from H by applying a sequence of operations R_1 and R_2 such that:

(i) $\delta(H^*) \ge 3;$ (ii) $\kappa(L(H^*)) = \kappa(L(H)) \ge 6;$

(iii) $M_{H^*}(x) = M_H(x)$, for any $x \in V(H^*)$ with $d_{H^*}(x) < 6$;

(iv) $V(H^*) = D(H^*) = D(H)$ is a dominating set of H;

(v) $m_{H^*}(A, B) = m_H(A, B) \leq 3|A| + \min\{\frac{2}{5}b(L(H)), 2\mu(L(H))\}\$ for each pair (A, B)with $A \subseteq \{v \in V(H^*) : d_{H^*}(v) = 5\}$ and $B \subseteq \{v \in V(H^*) : d_{H^*}(v) = 3\}.$

Lemma 4.3. Let H be a graph, which is not a multi-star of edge multiplicity at most 5, and let its line graph L(H) be 6connected. Then, H is dominating trailable if its reduced graph H^* is spanning trailable. **Lemma 4.4.** If H is a graph with at least 4 vertices, then its line graph L(H)is Hamilton-connected if and only if H is dominating trailable or H is isomorphic to a multi-star.

Lemma 4.4 can be proved by a slight modification of the proof of the following theorem.

Theorem 4.5 (Harary & Nash-Williams). If H is a graph with at least 4 vertices, then its line graph L(H) is hamiltonian if and only if H has a dominating closed trail or H is isomorphic to $K_{1,s}$, for some integer $s \geq 3$. **Theorem 4.6**(Nash-Williams; Tutte). A graph G has k edge-disjoint spanning trees if and only if

 $|E_0| \ge k(\omega(G - E_0) - 1)$

for each subset E_0 of the edge set E(G).

Theorem 4.7. Let G be a graph such that

 $|E_0| \ge 2\omega(G - E_0) - 1$ for all $E_0 \subseteq E(G), E_0 \neq \emptyset$. Then G is spanning trailable.

Ideas of the proof of Th. 4.7

Let e_1 and e_2 be any two edges of G, We show

1. $G - \{e_1\}$ two edge-disjoint spanning trees, say T_1 and T_2 .(By Theorem 4.?).

2. Assume that $e_2 \in E(T_1) \cup E(T_2)$, say $e_2 \in E(T_1)$ and let X be the set of vertices with odd degrees in T_1 . Then |X| must be even. Set $X = \{x_1, y_1, x_2, y_2, \dots, x_k, y_k\}.$ For $1 \leq i \leq k$, let P_i be the path joining x_i and y_i in T_2 . Define $E_1 = E(P_1)$ and for $2 \leq j \leq k$ let $E_j = (E(P_j) - E_{j-1}) \cup$ $(E_{j-1} - E(P_j))$. Then $E_j \subseteq E(T_2)$ for any $1 \leq j \leq k$. It is easily seen that the set of vertices with odd degrees in the graph $G[E_j]$ is $\{x_1, y_1, \cdots, x_j, y_j\}$. Since $E(T_1) \cap E_k = \emptyset, \ G[E(T_1) \cup E_k]$ must be eulerian. Regarded as a trail, $E(T_1) \cup E_k$ is a spanning closed trail of G, containing e_2 but not containing e_1 . Denote this trail by $T_s = v_2, e_2, v_3, e_3, \ldots, v_t, e_t, v_2$.

3. Add e_1 to T_s to find a spanning trail of G with end edges e_2 and e_1 . **Lemma 4.8.** Let H be a graph which is not a multi-star of edge multiplicity at most 5. If E_0 is a subset of $E(H^*)$ with $E_0 \neq \emptyset$, then

 $|E_0| \ge 2\omega(H^* - E_0) - 1$, if $\omega(H^* - E_0) \le 2;$ $|E_0| \ge 2\omega(H^* - E_0)$

 $-\min\{\frac{1}{15}b(L(H)), \frac{1}{3}\mu(L(H))\}, \text{ otherwise.}$

Ideas of the proof

Let $\omega = \omega(H^* - E_0)$. It is easy to verify that Lemma 4.8 is true if $\omega \leq 2$ by Lemma 4.2. So we assume that $\omega \geq 3$. Let $H_1, H_2, \ldots, H_\omega$ be all the components of $H^* - E_0$. It follows from Lemma 4.2 that H^* is essentially 6-edge-connected and $\delta(H^*) \geq 3$. Define

$$S_j = \{i : 1 \le i \le \omega, m_{H^*}(H_i) = j\}, 3 \le j \le 5$$

and

 $S_{6} = \{ i : 1 \leq i \leq \omega, m_{H^{*}}(H_{i}) \geq 6 \}.$ Let $s_{j} = |S_{j}|, 3 \leq j \leq 6$. Then we have $\omega(H^{*} - E_{0}) = s_{3} + s_{4} + s_{5} + s_{6}$ and $|E_{0}| \geq \frac{1}{2}(3s_{3} + 4s_{4} + 5s_{5} + 6s_{6}).$ (1)

Furthermore, we have $|V(H_i)| = 1$ for all $i \in S_3 \cup S_4 \cup S_5$. For $3 \leq j \leq 6$, let $X_j = \cup_{i \in S_j} V(H_i)$. Then, $|X_j| = s_j$, $3 \leq j \leq 5$. By Lemma 1(i), we have $E(H^*[X_3]) = \emptyset$ and $M_{H^*}(X_3, X_4) = \emptyset$. Thus, $2|E(H^*[X_4 \cup X_5])| \leq 4|X_4| + 5|X_5| - m_{H^*}(X_5, X_3)$. Counting the edges of E_0 that have at least one end in $X_3 \cup X_4 \cup X_5$, we have

$$\begin{split} |E_0| \geq \\ 3|X_3| + 4|X_4| + 5|X_5| - m_{H^*}(X_3, X_4) - \\ |E(H^*[X_4 \cup X_5])| - m_{H^*}(X_5, X_3) \\ \geq 3|X_3| + 4|X_4| + 5|X_5| - \frac{1}{2}(4|X_4| + 5|X_5| - \\ m_{H^*}(X_5, X_3)) - m_{H^*}(X_5, X_3) \\ = 3s_3 + \frac{1}{2}(4s_4 + 5s_5) - \frac{1}{2}m_{H^*}(X_5, X_3).(3) \\ \text{By (2) and (3), we get} \\ 3|E_0| \geq 6(s_3 + s_4 + s_5 + s_6) + \frac{1}{2}(3s_5 - \\ m_{H^*}(X_5, X_3)). \end{split}$$

This together with $|X_5| = s_5$ and Lemma 4.2(v) implies

 $3|E_0| \geq$

 $6\omega(H^*-E_0)-\frac{1}{2}\min\{\frac{2}{5}b(L(H))), 2\mu(L(H))\}.$ Therefore,

$$|E_0| \ge$$

 $2\omega(H^*-E_0)-\min\{\frac{1}{15}b(L(H))), \frac{1}{3}\mu(L(H))\}.$

5. One possible approach

To attack the conjecture 1.2 for a 6-connected line graph G, we first investigate the follow-ing:

Problem: If *H* is essentially 6-edge-connected with $\Delta(H) \leq 5$, does *G* have a dominating closed trail?

If the answer for the above problem is posithenive, the we can do some operations for graphs with maximum degree at least 6 to keep the new graph being still essentially 6-edge-connected and study the relationship between these two graph.