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1. Basic Concepts
A graph G is called claw-free if it has no

induced subgraph isomorphic to Kj 3.
A line graph L(G) of a graph G is a graph
in which V(L(G)) = E(G) and where two

vertices are adjacent if and only if they are

adjacent as edges of G.

A graph is hamiltonian if there exists a

cycle containing every vertex of G.

A graph is Hamilton-connected if any pair

of vertices is joined by a hamiltonian path.
For convenience, let H,, = G[N(u)]. A

vertex u of G is said to be locally connected

it H,, is connected.



2. Hamiltonicity

Conjecture 2.1(Matthews & Sumner,
JGT, 1983). Every 4-connected claw-free

oraph is hamiltonian.

Since every line graph is claw-free, the
following conjecture proposed in 1986 by

Thomassen is a special case of Conjecture
2.1.

Conjecture 2.2 (Thomassen,). Every 4-

connected line graph is hamiltonian.

An important progress on Conjecture 2.2
is due to Zhan(Dis. Math., 91) and inde-
pendently to Jackson.

Theorem 2.3 (Zhan; Jackson). Every 7-

connected line graph is hamiltonian.



Some important progresses

The Ryjacek’s closure of a claw-free graph
G, denoted by clp(G), is obtained from

G by successively adding all missing edges

to the neighborhood of a locally connected

vertex.

Theorem 2.4 (Ryjacek). Let G be a
claw-free graph. Then there is a triangle-
free graph H such that clp(G) = L(H)
and c(clp(G)) = c¢(G).

It follows from Theorem 2.3 and Theorem
2.4 that every 7-connected claw-free graph

1s hamiltonian.



Theorem 2.5 (Li). Every 6-connected
claw-free graph with at most 33 vertices of

degree 6 is hamiltonian.

Theorem 2.6 (Fan). Every 6-connected
claw-free graph with all vertices of degree 6
independent is hamiltonian.

Hu, Tian and Wei got the following two

theorems.

Theorem 2.7. Let G be a 6-connected
claw-free graph and let V; = {v € V(G) :
da(v) =6}. If |Vp| < 44 or G[Vp] contains
at most 8 vertex disjoint K4’s, then G is

hamiltonian.

Clearly, Theorem 2.7 is a generalization
of Theorems 2.3, 2.5 and 2.6.



3. Hamiltonian Connectivity

For Hamilton-connectedness of claw-iree
oraphs, no constant connectivity bound for
it was known, until Brandt got the following

striking result:

Theorem 3.1 (Brandt, JCTB, 99). FEv-
ery 9-connected claw-free graph is Hamilton-
connected.

By considering the line graph, Hu, Tian
and Weil obtained:
Theorem 3.2. Let GG be a 6-connected
line graph and let Vj = {v € V(G) :
da(v) =6} If [V| < 29 or G[V] con-
tains at most 5 vertex disjoint Ky4’s, then

(7 1s Hamilton-connected.



By using the closure idea of Brandt and
Theorem 3.2, Hu, Tian and Wei got follow-

ing result.

Theorem 3.3. Let G be a 7-connected
claw-free graph and let @ and b be any two
distinct vertices of G. If {a, b} is not con-

tained in any vertex cut of order 7 of G,
then G has a hamiltonian (a, b)-path.

Theorem 3.3 has the following corollary.

Corollary 3.4. Every 8-connected claw-

free graph is Hamilton-connected.



4. Ideas of the proof of Th. 3.2

More notations and definitions

If A and B are subgraphs of G or sub-
sets of V(G), we define M(A) = {e €
E(G) : e has only one end vertex in A}
and M(;<A, B) = Mg(A) M MGv(B). The
cardinalities of My(A) and Mz (A, B) are
denoted by ma(A) and mg(A, B), respec-
tively. In particular, when A = {z} and
B = {y}, we set Mg(x) = Mo({x}) and
define mg(x), Ma(z,y) and mg(x, y) sim-
ilarly.

Notice that me(x,y) is the number of

multiple edges between x and y.



For ) # S C V(G), let G[S] denote the
subgraph of G induced by .S and define G —
S=G\V(G) -S|

If Ey is a subset of the edge set E(G),
then we use G — Ej to denote the span-
ning subgraph with V(G — Ey) = V(G),
E(G — Ey) = E(G) — Ey. For a vertex
r € V(G), define No(z) = {y € V(G) :
ry € BE(G) }.

[f X is a subset of Vj such that G| X| =
Ky, then we call G|X] a bad K4 of G. A
vertex v is called a bad vertex if it is a vertex
of a bad K4 of G. Let b(G) be the number
of bad vertices of G. Define

u(G) =

max{h : G[Vy| has h vertex disjoint Ky's }.



Aset D C V(G) is called a dominating set

of G if every edge of G has at least one end
vertex in D (i.e., E(G— D) =10).

A graph G is essentially k-edge-connected
if |E(G)| > k+1and G — Ej has exactly
one component H with E(H) # () for all
Ey C E(G), |Eo| < k.

A trail in (G is a finite sequence of vertices

and distinct edges

1 = v1,€1,02,€2, ..., UL, €L, UL 11

such that e;, 1 < ¢ < k, is an edge in G
with end vertices v; and v;. 1. If; in addi-

tion, v1 = vi1, T 1s called a closed trail.

The internal vertices of T" are v; for 2 <

i < k when v1 # v, and every vertex of

T is an internal vertex for a closed trail 7'

10



A trail in GG is a dominating trail if each

edge of G is incident with at least one in-
ternal vertex of the trail.

A trail in G is a spanning trail if for each

vertex v of G there exists an internal vertex
v; of the trail such that v; = v.

A graph G is dominating trailable if for

each pair e; and es of edges of GG there is a
dominating trail e1T eo with end edges e
and es.

A graph G is spanning trailable if for each

pair e1 and e of edges of GG there is a span-
ning trail e;Tses with end edges ey and es.
A graph H is called a multi-star if it is ob-

tained from some star K s by adding some

multiple edges incident with the center.
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Assume that H is not a multi-star.

Lemma 4.1. Let H be a graph such
that L(H) is k-connected. Then

() mp(x,y) < maz{5(dg () +dg(y)—
k), 0}, forall z,y € V(H) with x # y and
dg(x) +dy(y) < k+2.

(i) D' = {v e V(H): dg(v) > 12}
is a dominating set of H.

(iii) If there exists a pair (A, B) with A C
{ve V(H): dyglv) =5} and B C
{v e V(H) : dg(v) = 3} such that
(A, B) > 3 Al+min{2b(L(H)), 2u(L(H))}.
then k(L(H)) < 6.
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Two operations

R1: delete a vertex u, which has degree
at most 2 but is adjacent to at most one
vertex, and delete its incident edges;

Ro: delete a vertex u with degree 2 and
its incident edges uv and uww, where v # w,

and add a new edge vw.

Use the above two operations we can sim-
plity the graph.

Lemma 4.2. Let H be a graph, which
is not a multi-star of edge multiplicity at
most 5 and, let its line graph L(H) be 6-
connected. Then, there is a unique graph
(up to isomorphism) H*, called the reduced
oraph of H, obtained from H by applying

a sequence of operations R and Ry such
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that:

(1) 0(H™) = 3;

(i) K(L(H*)) = K(L(H)) > 6;

(iii) Mp«(x) = My (x), foranyx € V(H™)
with dg+(z) < 6;

(iv) V(H*) = D(H*) = D(H) is a dom-
inating set of H;

(v) myg«(A,B) = my(A, B) < 3|A| +
min{b(L(H)), 2u(L(H))} for each pair (A, B)
with A C {v € V(H") : dg+(v) =5}
and BC {veV(H"): dyg«(v)=3}.

Lemma 4.3. Let H be a graph, which
is not a multi-star of edge multiplicity at
most 5, and let its line graph L(H) be 6-
connected. Then, H is dominating trailable
if its reduced graph H™ is spanning trail-
able.
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Lemma 4.4. If H is a graph with at
least 4 vertices, then its line graph L(H)
is Hamilton-connected if and only if H is
dominating trailable or H is isomorphic to

a multi-star.

Lemma 4.4 can be proved by a slight mod-
ification of the proof of the following theo-

remnl.

Theorem 4.5(Harary & Nash-Williams).
If H is a graph with at least 4 vertices, then
its line graph L(H) is hamiltonian if and
only if A has a dominating closed trail or

H is isomorphic to K g, for some integer
s > 3.
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Theorem 4.6(Nash-Williams; Tutte). A
oraph GG has k edge-disjoint spanning trees
if and only if

[Eo| = k(w(G — Ep) — 1)
for each subset Fy of the edge set E(G).

Theorem 4.7. Let GG be a graph such
that
[Eo| = 2w(G — Ep) — 1
for all By C E(G), Ey # (0. Then G is

spanning trailable.

16



Ideas of the proof of Th. 4.7

Let e; and e9 be any two edges of G, We
show

1. G —{ey} two edge-disjoint spanning
trees, say 17 and Th.(By Theorem 4.7).

2. Assume that eg € E(T7) U E(T5), say
eo € F(T7) and let X be the set of vertices
with odd degrees in T7. Then | X | must be
even. Set X = {1, 91,29, 49, ..., Tk, Y}
For 1 <1 < k, let P; be the path joining
x; and y; in Tp. Define ] = E(P)) and
for2<j<klet ;= (E(P;)—Ej_1)U
(Ej—1 — E(Pj)). Then E; C E(T) for
any 1 < 7 < k. It is easily seen that
the set of vertices with odd degrees in the
graph G|E;| is { 1,91, -+, 2;,y; }. Since
E(T) N E, =0, GIE(T)) U EL] must be
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eulerian. Regarded as a trail, E(T}) U E}
is a spanning closed trail of G, containing
eo but not containing ey. Denote this trail
by Ts = v9,e9,v3,€3, ..., 0 €, V9.

3. Add ey to T to find a spanning trail
of GG with end edges es and e;y.

18



Lemma 4.8. Let H be a graph which is
not a multi-star of edge multiplicity at most
5. If Eyis a subset of E(H™) with Ey # 0,
then

|Eo| > 2w(H*—FEy)—1,if w(H*— Ep) <
2;
| Eo| = 2w(H™ — Ep)

— min{ :b(L(H)), 2u(L(H))}, otherwise.

Ideas of the proof

Let w = w(H* — Ep). It is easy to ver-
ity that Lemma 4.8 is true it w < 2 by
Lemma 4.2. So we assume that w > 3.
Let Hy, Ho, ..., H, be all the components
of H* — Ey. It follows from Lemma 4.2
that H™ is essentially 6-edge-connected and

0(H™) > 3. Define
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S@Z{i : lgiéw, mH*(HZ) 26}
Let s; = ]S;], 3 < j < 6. Then we have
w(H* — Ey) = s3+ s4+ s5+ sg and

1
|Eg| > 2(353 + 4s4 + 5s5 + 6sg). (1)

Furthermore, we have |V (H;)| = 1 for
all 2 € S3U S, USs. For 3 < 45 <6,
let Xj = vjes; V(H;). Then, |X;| = s;,
3 < j < 5. By Lemma 1(i), we have
E(H*[X3]) = 0 and Mg«(X3, Xy) = 0.
Thus, 2| E(H* | X4UX5])| < 4| X4|+5|X5|—
m (X5, X3). Counting the edges of Ej
that have at least one end in X5U X4U X5,

we have
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| Eo| >
3| X3| + 4| Xy| + 5] X5| — mp=(X3, Xy) —
|E(H*[ X4 U X5])| — mp+(X5, X3)
> 3| X 3| +4] Xy | +5] X5| — 5(4] Xy | +5| Xs5] -
mH*(X57X3>> m (X5, X3)
= 353+ 5(4sy + 5s5) — sm (X5, X3).(3)

By (2) and (3), we get

3|Eg| > 6(s3+ s4 + s5+ sg) + %(385 —
m (X5, X3)).

This together with | X5| = s5 and Lemma
4.2(v) implies

3| Ep| >

6w(H*—Ey)—ymin {zb(L(H))), 2u(L(H)}.

Therefore,

| Eo| >

2w(H*—Ey)—min {{5b(L(H))), 5p(L(H))}.
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5. One possible approach

To attack the conjecture 1.2 for a 6-connected
line graph GG, we first investigate the follow-
ng:

Problem: If H is essentially 6-edge-connected
with A(H) < 5, does G have a dominating

closed trail?

If the answer for the above problem is
posithenive, the we can do some operstions
for graphs with maximum degree at least
6 to keep the new graph being still essen-
tially 6-edge-connected and study the rela-

tionship between these two graph.
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