October 2008, Domazlice, Czech

On 2-Factors of Claw-free Graphs

Kiyoshi Yoshimoto

Department of Mathematics Nihon University Tokyo, Japan

n:=|V(G)|

δ : the minimum degree of G

Conjecture 1 (Fujisawa, Xiong, Y, Zhang 2007). If G is a graph with $\delta \ge 3$, \implies its line graph has a 2-factor with at most $\frac{(2\delta - 3)n}{2(\delta^2 - \delta - 1)}$ ($< \frac{n}{\delta}$) cycles.

Def 1.

- Line graph L(G) : the vertex set is E(G) and two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent.
- 2. F is a 2-factor of $G \iff F$ is a spanning 2-regular graph of G.

A hamilton cycle is a **connected** 2-factor.

Conjecture 2 (Thomassen 1984).A 4-connected line graph is hamiltonian.

Conjecture 3 (Matthews and Sumner 1986).

A 4-connected claw-free graph is hamiltonian.

- A graph is called **claw-free** if G has no induced K_{1,3}.
- A line graph is a claw-free graph.

Thm 1 (Ryjecek 1997).

Conjecture 2 and Conjecture 3 are equivalent.

Thm 2 (Zhan + Thm 1).

A 7-connected claw-free graph is hamiltonian.

Our question is that

What will happen if the connectivity of a claw-free graph is smaller than 4?

Of course, it is false that

Every 3-connected claw-free graph is hamiltonian.

However, the following statement holds.

Thm 3 (Egawa and Ota 1991, Choudum and Paulraj 1991).

Let G be a claw-free graph and l be any positive integer at most $\delta/2$.

If ln is even $\implies G \supset l$ -factor.

Cor 4. If G is a claw-free graph with $\delta \ge 4$, then G has a 2-factor.

How many cycles does a 2-factor of a claw-free graph have?

Thm 5 (Faudree et al. 1999). Every claw-free graph G with $\delta \ge 4$ has a 2-factor with at most

$$\frac{6n}{(\delta+2)} - 1 \text{ cycles.}$$

Thm 6 (Gould and Jacobson 2001). Every claw-free graph G with $\delta \ge (4n)^{\frac{2}{3}}$ has a 2-factor with at most

$$\frac{n}{\delta}$$
 cycles.

Fact 7 (Y 2007).

There exists an infinite family of line graphs G with $\delta \geq 4$ in which every 2-factor contains more than

$$\frac{n}{\delta}$$
 cycles.

Figure 1: $H_{m,d}^*$

Any 2-factor of the line graph $L(H_{m,\delta}^*)$ contains

$$\frac{(\delta^2 - 2\delta + 1)n - (\delta^2 + 1)}{\delta^3 - 2\delta^2 + \delta - 1} \ (> \frac{n}{\delta}) \text{ cycles}.$$

Fact 8 (Y 2007).

There exists a family $\{G_i\}$ of line graphs with $\delta \geq 3$ such that

$$\frac{f_2(G_i)}{|G_i|} \to \frac{5}{18} \quad (|G_i| \to \infty),$$

where $f_2(G)$ is the minimum number of components in a 2-factor of G.

Figure 2: $B_{m,2k}$

Problem 4 (Y 2007).

- 1. Does every claw-free graph with $\delta=4$ have
 - a 2-factor with at most

$$\frac{5n}{18}$$
 cycles?

- 2. Does every claw-free graph with $\delta \geq 5$ have
 - a 2-factor with less than

$$\frac{n}{\delta-1}$$
 cycles?

Thm 9 (Broersma, Paulusma and Y).

1. A claw-free graph with $\delta = 4$ has a 2-factor with at most

$$\frac{5n-14}{18} \text{ cycles.}$$

2. A claw-free graph with $\delta \geq 5$ has a 2-factor with at most

$$\frac{n-3}{\delta-1}$$
 cycles.

Def 2. Let G be a claw-free graph.

If, for a vertex $x \in G$

- $\bullet \ G[N(x)]$ is connected and
- \bullet there are non-adjacent vertices in $G[N(\boldsymbol{x})]$,

then we add edges joining all pairs of non-adjacent vertices in N(x).

The **Ryjacek closure** cl(G) of G is a graph obtained by recursively repeating this operation, as long as this is possible. Thm 10 (Ryjácěk 1997).

- The closure of a claw-free graph G is uniquely determined.
- There exists a triangle-free graph H such that L(H) = cl(G).

Thm 11 (Ryjácěk 1997). A claw-free graph G is hamiltonian $\iff cl(G)$ is hamiltonian.

Thm 12 (Ryjácěk, Saito and Shelp 1999).

If G is a claw-free graph, then

$$f_2(G) = f_2(cl(G)),$$

where $f_2(G)$ is the minimum number of components in a 2-factor of G.

Theorem A (Harary and Nash-Williams 1965). The line graph L(G) has a Hamilton cycle $\iff G$ has a dominating circuit.

 $H \subset G$ is dominating if G - H is edgeless.

Def 3. A set \mathcal{S} of

circuits and stars with at least 3 edges is called *k*-system if

every edge $e \in E(G) - \bigcup_{C \in S} E(C)$ is incident to a circuit in S.

Prop 13 (Gould and Hynds 1999). A graph H has a k-system $\iff L(H)$ has a 2-factor with k components.

Cor 14.

A claw-free graph G has a 2-factor with k cycles \iff the preimage graph H of G has a k-system.

Thm 15 (Y 2007). A 2-connected claw-free graph with $\delta \geq 3$ has a 2-factor.

Lem 16.

An essentially 2-edge-connected graph with minimum edge-degree $\delta_E \geq 3$ has a k-system.

Thm 17 (Petersen 1891).

A bridge-less cubic multigraph has a 1-factor.

Cor 18.

A bridge-less cubic multigraph has a 2-factor.

Thm 19 (Fleischner 1992).

A bridge-less multigraph with $\delta \geq 3$ has an even-factor.

An **even-factor** F of G is a spanning subgraph of G such that $d_F(v) \equiv 0 \pmod{2}$.

Let H be an essentially 2-edge-connected graph with $\delta_E \geq 3$.

 $\implies V_{\leq 2}(H)$ is an independent set.

— Suppose $V_1 = \emptyset$.

We suppress all vertices of degree 2.

 \implies The minimum degree of the remaining graph R is at least 3.

 \implies By Fleischner's theorem,

R has an even-factor F.

The subgraph in G corresponding to F is k-system of G, which is constructed by circuits.

Conjecture 5 (Y 2007).

If G is a bridge-less claw-free graph,

 \implies G has a 2-factor with at most

 $\frac{n-1}{\delta}$ cycles.

Figure 3: $H_{2m,d}$

Thm 20 (Jackson and Y 2007).

1. A 2-connected claw-free graph has a 2-factor with at most

$$\frac{n+1}{4}$$
 cycles.

2. A 3-connected claw-free graph has a 2-factor with at most

$$\frac{2n}{15}$$
 cycles.

Lem 21.

1. An essentially 2-edge-connected graph has a k-system such that

$$k \le \frac{n+1}{4}$$

2. An essentially 3-edge-connected graph has a k-system such that

$$k \le \frac{2n}{15}$$

For proving these theorems,

we modify Fleischner's theorem.

Thm 22 (Jackson and Y 2007).

- A bridge-less graph with δ ≥ 3 has an evenfactor in which each component contains at least 4 vertices.
- 2. A 3-edge-connected multigraph with $\delta \geq 3$ has an even-factor in which each component contains at least 5 vertices.

Figure 4:

We prove at first

Cubic graphs has the required property.

And next,

We use the vertex splitting operation to reduce to the cubic case.

Thm 23 (Jackson and Y 2007).

If G is a graph with $\delta \geq 3$,

 \implies its line graph has a 2-factor with at most

$$\frac{3n}{10}$$
 cycles.

Thm 24.

There exists an infinite family of essentially 4edge-connected cubic graphs in which every 2factor has a 5-cycle.

Figure 5:

Thm 25 (Kochol 2002).

There exists an infinite family of cyclically 6edge-connected cubic graphs in which, for any 2-factor X has at least

 $\frac{n}{118}$ components.

Problem 6 (Jackson and Y).

Is there a value of k for which there exist an unbounded function $g : \mathbb{N} \to \mathbb{N}$ such that every cyclically k-edge-connected cubic graph G has a 2-factor X in which every cycle has at least g(n)vertices? By the way, can we find a **property** of a graph with $\delta \geq 3$ such that

for cubic graphs, the property hold trivially?

For instance,

Conjecture 7.

Every essentially 4-edge-connected graph has circuit passing through all vertices of degree at least 4.