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Why we are here – apart from having fun

I The overall motivation is to continue the workshops of
1996–2013 in Enschede, Nečtiny (twice), Hannover, Hájek
and Domažlice (3 times) in order to discuss (and possibly
make) progress on several intriguing conjectures.

I These highly interrelated conjectures involve line graphs,
claw-free graphs, cubic graphs, snarks, and concepts like
hamiltonian cycles, Hamilton-connectedness, dominating
closed trails (circuits), and dominating cycles.

I Perhaps there is a link to double cycle covers and nowhere
zero flows, or other conjectures; there is a link to the P vs NP
millennium problem.

I More details can be found in the survey paper published in
Graphs and Combinatorics in 2012.
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The first two conjectures

Matthews & Sumner, 1984:

Conjecture (MS-Conjecture)

Every 4-connected claw-free graph is hamiltonian.

Thomassen, 1986:

Conjecture (T-Conjecture)

Every 4-connected line graph is hamiltonian.

We start with some terminology needed to understand the above
statements and their relationship.

.
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The basic terminology

I All graphs talk are finite, undirected, loopless and simple. If
we allow multiple edges, we always speak about multigraphs.

I A graph is hamiltonian if it contains a cycle through all its
vertices, i.e., a connected spanning 2-regular subgraph.

I If H is a graph, then the line graph of H, denoted by L(H),
is the graph on vertex set E (H) in which two distinct vertices
in L(H) are adjacent if and only if their corresponding edges
in H share an end vertex (with a straightforward extension in
case of multigraphs).

I A graph is a line graph if it is isomorphic to L(H) for some
graph H.

I Which graphs are line graphs and which are not?

.
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A forbidden subgraph characterization of line graphs

Theorem (Beineke, 1969)

A graph is a line graph if and only if it does not contain a copy of
any of the following nine graphs as an induced subgraph.

• •
•

•
............................................................

..............................................................
............
............
............
............

•
•
•
•

•.........
.........
.........
.........
.........
.........
.........
..................................................................................................................................................

.................
.................

.................
.................

.................
......................................................

........................................

•
•
•
•
•......................................................................

.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
.......................................................................................................................................................

......................................................................................

................................
.............
..........
........
.......
.......
.......
.......
.......
........
..........

.............
.........................

.........

•

•
•

•
•

•...............................................................
.............
.............
..........................................................................
.............

.............
...........

...............................................................
.............

.............
...........

..................................................

• •
•

•
•
•......................................................................

.........
.........

.........
......................................................................................................
.........
.........
.........
.........
.........
.....................................

.......
.......
.......
.......
.......
.......................................................................................................................................
.......
.......
.......
.......
.......
......

• •
•

•
• •.........................................................................................

...........
...........

...........
...........

............
...........
...........
...........
...........
...........
....................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............................................................................................
...........

...........
...........

...........
...........

.....................................................
...........
...........
...........
...........
........... •

•
•

•
•

•
.......
.......
.......
.......
.......
.......
.......
......................................................................................................................................................

.............
.............

......................................................................................................................
.......
.......
.......
.......
.......
.......
.

.............
.............
.............
...........

•
•

• •

•
•

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

............................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............................................................................................................................

•
•

•
•
•

•......................................................................................................................................................................
.......
.......
.......
..........
..........

..........
..........

..........
................................................................

...........................................................................
............

.........
.........
.........
.........
......................................................

.



A forbidden subgraph characterization of line graphs

Theorem (Beineke, 1969)

A graph is a line graph if and only if it does not contain a copy of
any of the following nine graphs as an induced subgraph.

• •
•

•
............................................................

..............................................................
............
............
............
............

•
•
•
•

•.........
.........
.........
.........
.........
.........
.........
..................................................................................................................................................

.................
.................

.................
.................

.................
......................................................

........................................

•
•
•
•
•......................................................................

.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
.......................................................................................................................................................

......................................................................................

................................
.............
..........
........
.......
.......
.......
.......
.......
........
..........

.............
.........................

.........

•

•
•

•
•

•...............................................................
.............
.............
..........................................................................
.............

.............
...........

...............................................................
.............

.............
...........

..................................................

• •
•

•
•
•......................................................................

.........
.........

.........
......................................................................................................
.........
.........
.........
.........
.........
.....................................

.......
.......
.......
.......
.......
.......................................................................................................................................
.......
.......
.......
.......
.......
......

• •
•

•
• •.........................................................................................

...........
...........

...........
...........

............
...........
...........
...........
...........
...........
....................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............................................................................................
...........

...........
...........

...........
...........

.....................................................
...........
...........
...........
...........
........... •

•
•

•
•

•
.......
.......
.......
.......
.......
.......
.......
......................................................................................................................................................

.............
.............

......................................................................................................................
.......
.......
.......
.......
.......
.......
.

.............
.............
.............
...........

•
•

• •

•
•

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

............................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............................................................................................................................

•
•

•
•
•

•......................................................................................................................................................................
.......
.......
.......
..........
..........

..........
..........

..........
................................................................

...........................................................................
............

.........
.........
.........
.........
......................................................

.



A forbidden subgraph characterization of line graphs

Theorem (Beineke, 1969)

A graph is a line graph if and only if it does not contain a copy of
any of the following nine graphs as an induced subgraph.

• •
•

•
............................................................

..............................................................
............
............
............
............

•
•
•
•

•.........
.........
.........
.........
.........
.........
.........
..................................................................................................................................................

.................
.................

.................
.................

.................
......................................................

........................................

•
•
•
•
•......................................................................

.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
.......................................................................................................................................................

......................................................................................

................................
.............
..........
........
.......
.......
.......
.......
.......
........
..........

.............
.........................

.........

•

•
•

•
•

•...............................................................
.............
.............
..........................................................................
.............

.............
...........

...............................................................
.............

.............
...........

..................................................

• •
•

•
•
•......................................................................

.........
.........

.........
......................................................................................................
.........
.........
.........
.........
.........
.....................................

.......
.......
.......
.......
.......
.......................................................................................................................................
.......
.......
.......
.......
.......
......

• •
•

•
• •.........................................................................................

...........
...........

...........
...........

............
...........
...........
...........
...........
...........
....................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............................................................................................
...........

...........
...........

...........
...........

.....................................................
...........
...........
...........
...........
........... •

•
•

•
•

•
.......
.......
.......
.......
.......
.......
.......
......................................................................................................................................................

.............
.............

......................................................................................................................
.......
.......
.......
.......
.......
.......
.

.............
.............
.............
...........

•
•

• •

•
•

.................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

............................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............................................................................................................................

•
•

•
•
•

•......................................................................................................................................................................
.......
.......
.......
..........
..........

..........
..........

..........
................................................................

...........................................................................
............

.........
.........
.........
.........
......................................................

.



Forbidden induced subgraphs – claw-free graphs

I Let G be a graph and let S be a nonempty subset of V (G ).
Then the subgraph of G induced by S , denoted by G [S ], is
the graph with vertex set S , and all edges of G with both
endvertices in S .

I H is an induced subgraph of G if it is induced in G by some
subset of V (G ).

I G is H-free if G does not contain a copy of H an induced
subgraph.

I In particular, a graph G is claw-free if G does not contain a
copy of the claw K1,3 as an induced subgraph.

I Direct inspection of Beineke’s result shows:

every line graph is claw-free

.
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The two earlier conjectures revisited

Conjecture (MS)

Every 4-connected claw-free graph is hamiltonian.

Conjecture (T)

Every 4-connected line graph is hamiltonian.

I Since line graphs are claw-free, the first conjecture is stronger
than the second one.

I Or are they equivalent? (A question Herbert Fleischner
posed during the EIDMA workshop on Hamiltonicity of
2-tough graphs, Hölterhof, Enschede, November 19-24, 1996.)

.



The two earlier conjectures revisited

Conjecture (MS)

Every 4-connected claw-free graph is hamiltonian.

Conjecture (T)

Every 4-connected line graph is hamiltonian.

I Since line graphs are claw-free, the first conjecture is stronger
than the second one.

I Or are they equivalent? (A question Herbert Fleischner
posed during the EIDMA workshop on Hamiltonicity of
2-tough graphs, Hölterhof, Enschede, November 19-24, 1996.)

.



The two earlier conjectures revisited

Conjecture (MS)

Every 4-connected claw-free graph is hamiltonian.

Conjecture (T)

Every 4-connected line graph is hamiltonian.

I Since line graphs are claw-free, the first conjecture is stronger
than the second one.

I Or are they equivalent? (A question Herbert Fleischner
posed during the EIDMA workshop on Hamiltonicity of
2-tough graphs, Hölterhof, Enschede, November 19-24, 1996.)

.



The two earlier conjectures revisited

Conjecture (MS)

Every 4-connected claw-free graph is hamiltonian.

Conjecture (T)

Every 4-connected line graph is hamiltonian.

I Since line graphs are claw-free, the first conjecture is stronger
than the second one.

I Or are they equivalent? (A question Herbert Fleischner
posed during the EIDMA workshop on Hamiltonicity of
2-tough graphs, Hölterhof, Enschede, November 19-24, 1996.)

.



A useful tool: the closure

I Tool: the closure concept for claw-free graphs
(ZR, at the same workshop).

I Based on adding edges to a graph G without destroying the
(non)hamiltonicity (similar to the Bondy-Chvátal closure).

I The edges are added by looking at a vertex v and the
subgraph of G induced by N(v): the set of neighbors of v .

I If G [N(v)] is connected and not a complete graph, all edges
are added to turn G [N(v)] into a complete graph.

I This procedure is repeated in the new graph, etc., until it is
impossible to add any more edges.
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The two conjectures are equivalent

Theorem (ZR, 1997)

Let G be a claw-free graph. Then
(i) the closure cl(G ) is uniquely determined,
(ii) cl(G ) is hamiltonian if and only if G is hamiltonian,
(iii) cl(G ) is the line graph of a triangle-free graph.

Corollary (using a result of Zhan, 1991)

Every 7-connected claw-free graph is hamiltonian.

The conjectures are false for 3-connected graphs. The best positive
result to date is by Tomáš Kaiser and Petr Vrána (2012).

Theorem (Kaiser and Vrána, 2012)

Every 5-connected claw-free graph with minimum degree at
least 6 is hamiltonian.

.
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Theorem (Kaiser and Vrána, 2012)

Every 5-connected claw-free graph with minimum degree at
least 6 is hamiltonian.

.



From a line graph to its preimage (“root graph”)

I Whenever we consider a line graph G , we can identify a
graph H such that G = L(H) (in polynomial time).

I If G is connected, then H is unique, except for G = K3 (then
H can be K3 or K1,3).
(This is different for multigraphs.)

I If we take K1,3 in this exceptional case, we can talk of a
unique H as the preimage of the connected line graph G .

I What is the counterpart in H of a hamiltonian cycle in G?

I A closed trail (circuit) is a connected eulerian subgraph, i.e., a
connected subgraph in which all degrees are even.

I A dominating closed trail (DCT or D-circuit) is a closed
trail T such that every edge has at least one endvertex on T .
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Hamiltonian cycles and dominating closed trails

A relationship between DCTs in H and hamiltonian cycles in L(H):

Theorem (Harary and Nash-Williams, 1965)

Let H be a graph with at least three edges. Then L(H) is
hamiltonian if and only if H contains a DCT.
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Connectivity and essential edge-connectivity

I What is the counterpart in H of 4-connectivity in L(H)?
(Note that 4-edge-connectivity is not the right answer!)

I A graph H is essentially 4-edge-connected if it contains no
edge-cut R such that |R| < 4 and at least two components of
H − R contain an edge.

I L(H) is 4-connected if and only if H is essentially
4-edge-connected.

.



Connectivity and essential edge-connectivity

I What is the counterpart in H of 4-connectivity in L(H)?

(Note that 4-edge-connectivity is not the right answer!)

I A graph H is essentially 4-edge-connected if it contains no
edge-cut R such that |R| < 4 and at least two components of
H − R contain an edge.

I L(H) is 4-connected if and only if H is essentially
4-edge-connected.

.



Connectivity and essential edge-connectivity

I What is the counterpart in H of 4-connectivity in L(H)?
(Note that 4-edge-connectivity is not the right answer!)

I A graph H is essentially 4-edge-connected if it contains no
edge-cut R such that |R| < 4 and at least two components of
H − R contain an edge.

I L(H) is 4-connected if and only if H is essentially
4-edge-connected.

.



Connectivity and essential edge-connectivity

I What is the counterpart in H of 4-connectivity in L(H)?
(Note that 4-edge-connectivity is not the right answer!)

I A graph H is essentially 4-edge-connected if it contains no
edge-cut R such that |R| < 4 and at least two components of
H − R contain an edge.

I L(H) is 4-connected if and only if H is essentially
4-edge-connected.

.



Connectivity and essential edge-connectivity

I What is the counterpart in H of 4-connectivity in L(H)?
(Note that 4-edge-connectivity is not the right answer!)

I A graph H is essentially 4-edge-connected if it contains no
edge-cut R such that |R| < 4 and at least two components of
H − R contain an edge.

I L(H) is 4-connected if and only if H is essentially
4-edge-connected.

.



Another equivalent conjecture

The previous results and observations imply that the following
conjecture is equivalent to the two we have seen before.

Conjecture (DCT-conjecture)

Every essentially 4-edge-connected graph has a DCT.

I Note that 4-edge-connected graphs contain two edge-disjoint
spanning trees.

I Hence 4-edge-connected graphs contain a spanning closed
trail, in particular a DCT.

I So line graphs of 4-edge-connected graphs are hamiltonian
(and Hamilton-connected).

.
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Towards cubic graphs

I If H is cubic, i.e., 3-regular, then a DCT becomes a
dominating cycle (abbreviated DC).

I A cubic graph is essentially 4-edge-connected if and only if it
is cyclically 4-edge-connected.

I H is cyclically 4-edge-connected if H contains no edge-cut R
such that |R| < 4 and at least two components of H − R
contain a cycle.

Conjecture (Ash & Jackson, 1984)

Every cyclically 4-edge-connected cubic graph has a DC.

Fleischner and Jackson (1989) proved that this conjecture is
equivalent to the others.

.
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Towards cubic graphs

Main ingredient: cubic inflation
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Fleischner, Jackson (1989):
Let H be an essentially 4-edge-connected graph of minimum
degree δ(G ) ≥ 3 and let v ∈ V (H) be of degree d(v) ≥ 4. Then
some cubic inflation of H at v is essentially 4-edge-connected.
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Two weaker (?) conjectures from the same paper

Stated in the paper of Fleischner and Jackson (1989).

Conjecture (Jaeger, ?)

Every cyclically 4-edge-connected cubic graph G has a cycle C
such that G − V (C ) is acyclic.

Conjecture (Bondy, ?)

Every cyclically 4-edge-connected cubic graph G on n vertices has
a cycle C of length at least c · n, for some constant c with
0 < c < 1.

It is obvious that the conjecture of Ash-Jackson implies the
conjecture of Jaeger, and one can show that the conjecture of
Jaeger implies the conjecture of Bondy.
Are they equivalent?

.



A partial relation to Bondy’s conjecture

K. Ozeki, Domažlice 2013:

(a) Bondy’s conjecture implies the following statement:
Every 4-connected line graph G has a cycle C of length at
least c · |V (G )|, for some constant c with 0 < c < 1.

(b) The following statements are equivalent:
(i) Every 4-connected line graph G with δ(G ) ≥ 5 is

hamiltonian.
(ii) Every 4-connected line graph G with δ(G ) ≥ 5 has a

cycle C of length at least c · |V (G )|, for some constant
c with 0 < c < 1.

.
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From cubic graphs to non-3-edge colorable cubic graphs

For non-3-edge colorable cubic graphs we have the following
conjecture of Herbert Fleischner.

Conjecture (F-Conjecture)

Every cyclically 4-edge-connected cubic graph that is not
3-edge-colorable has a DC.

Kochol (2000) proved that it is equivalent to the others.
One direction is obvious. For the other direction, he was assuming
a counterexample to the previous conjecture and used it as a black
box building block. In combination with an auxiliary gadget that is
almost cubic and not 3-edge-colorable he constructed a
counterexample to the F-Conjecture.

.
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From non-3-edge colorable cubic graphs to snarks

A snark is a cyclically 4-edge-connected cubic graph of girth at
least 5 that is not 3-edge-colorable.

Conjecture (Snark-Conjecture)

Every snark has a DC.

The above conjecture is also equivalent to the others, as shown
by Broersma, Fijavž, Kaiser, Kužel, ZR & Vrána (2008).
To date this is the seemingly weakest conjecture equivalent to
the others.
Is there a link to the Double Cycle Conjecture?
Is there a link to Nowhere Zero Flows?

Let us turn to some seemingly stronger conjectures.
.



From non-3-edge colorable cubic graphs to snarks

A snark is a cyclically 4-edge-connected cubic graph of girth at
least 5 that is not 3-edge-colorable.

Conjecture (Snark-Conjecture)

Every snark has a DC.

The above conjecture is also equivalent to the others, as shown
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To date this is the seemingly weakest conjecture equivalent to
the others.
Is there a link to the Double Cycle Conjecture?
Is there a link to Nowhere Zero Flows?

Let us turn to some seemingly stronger conjectures.
.



From non-3-edge colorable cubic graphs to snarks

A snark is a cyclically 4-edge-connected cubic graph of girth at
least 5 that is not 3-edge-colorable.

Conjecture (Snark-Conjecture)

Every snark has a DC.

The above conjecture is also equivalent to the others, as shown
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Is there a link to Nowhere Zero Flows?

Let us turn to some seemingly stronger conjectures.
.
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To date this is the seemingly weakest conjecture equivalent to
the others.
Is there a link to the Double Cycle Conjecture?
Is there a link to Nowhere Zero Flows?

Let us turn to some seemingly stronger conjectures.
.



From non-3-edge colorable cubic graphs to snarks

A snark is a cyclically 4-edge-connected cubic graph of girth at
least 5 that is not 3-edge-colorable.

Conjecture (Snark-Conjecture)

Every snark has a DC.

The above conjecture is also equivalent to the others, as shown
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Seemingly stronger versions for cubic graphs

Fouquet & Thuillier (1990) established a seemingly stronger
version than the Ash-Jackson-Conjecture.
It is stronger in the sense that they require a DC that contains two
given disjoint edges, as follows.

Conjecture

In a cyclically 4-edge-connected cubic graph, any two disjoint
edges are on a DC.

The equivalence was extended by Fleischner & Kochol (2002) by
requiring a DC through any two given edges.

Conjecture

In a cyclically 4-edge-connected cubic graph, any two edges are
on a DC.

.
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Technique: A-contractible graphs

Let F be a graph and A ⊂ V (F ). Then F is A-contractible, if for
every even subset X ⊂ A and for every partition A of X into
two-element subsets, the graph FA has a DCT containing all
vertices of A and all edges of E (A).

(Note that X = ∅ means F has a DCT containing all vertices of A.)

Weakly A-contractible: not required for X = ∅.

ZR, Schelp 2003
(i) A connected graph F is A-contractible if and only if, for any

H such that F ⊂ H and AH(F ) = A, H has a DCT if and
only if H|F has a DCT.

(ii) If F is collapsible, then F is A-contractible for any A ⊂ F (F ).
(iii) Every collapsible graph F is V (F )-contractible.

.
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Variations involving subgraphs

There are several further equivalent versions involving subgraphs
of cubic graphs.

Conjecture (Broersma, Fijavž, Kaiser, Kužel, ZR &
Vrána, 2008)

Every cyclically 4-edge-connected cubic graph contains a weakly
A-contractible subgraph F with δ(F ) = 2.

Conjecture (Kužel, 2008)

Any subgraph H of an essentially 4-edge-connected cubic graph
with δ(H) = 2 and |V2(H)| = 4 is V2(H)-dominated.

Conjecture (Kužel, Ryjáček & Vrána, 2012)

Any subgraph H of an essentially 4-edge-connected cubic graph
with δ(H) = 2 and |V2(H)| = 4 is strongly V2(H)-dominated.

.
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Relation to the Nash-Williams conjecture

Conjecture (Nash-Williams)

Every 4-regular 4-connected graph is hamiltonian.

Disproved by Merehith (1973).

H - 4-regular:
Transition system in H: a partition T of the 4 edges at every
vertex into 2 sets of size 2.
H is T -hamiltonian if H contains a spanning closed trail which
follows T at every vertex visited twice.

Conjecture (NWC*)

Let H be a 4-regular 4-connected graph with a transition system
T . Then H is T-hamiltonian.

A. Hoffmann-Ostenhof 2013(?):
The DCC is equivalent to the NWC*.

.
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Back to line graphs – seemingly stronger versions

A graph is Hamilton-connected if there is a hamiltonian path
between any two vertices.
Kužel & Xiong (2004) established equivalence with the following
conjecture.

Conjecture

Every 4-connected line graph of a multigraph is
Hamilton-connected.

ZR & Vrána (2011) extended the equivalence to claw-free graphs.

Conjecture

Every 4-connected claw-free graph is Hamilton-connected.

.
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Back to line graphs – seemingly stronger versions

At present, the seemingly strongest equivalent version of the
conjectures is by Kužel, ZR & Vrána (2012).

A graph G is 1-Hamilton-connected if, for any vertex x of G ,
G − x is Hamilton-connected.

Conjecture

Every 4-connected line graph of a multigraph is
1-Hamilton-connected.

Extended to claw-free graphs (ZR, Vrána, 2014)

Conjecture

Every 4-connected claw-free graph is 1-Hamilton-connected.
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A graph G is 1-Hamilton-connected if, for any vertex x of G ,
G − x is Hamilton-connected.

Conjecture

Every 4-connected line graph of a multigraph is
1-Hamilton-connected.

Extended to claw-free graphs (ZR, Vrána, 2014)
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A link to the P versus NP problem

If the above conjecture is true, it implies that a line graph is
1-Hamilton-connected if and only if it is 4-connected.

Connectivity is polynomial.

Hamiltonicity is NP-complete in line graphs (Bertossi, 1981).
Not difficult: 1-Hamilton-connectedness is NP-complete in graphs.

Does 1-Hamilton-connectedness remain NP-complete when
restricted to line graphs?

If yes, it implies that
Thomassen’s Conjecture cannot be true, unless P=NP.

.
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2-factors

If we drop the connectivity condition of the 2-regular spanning
subgraph, we move from a hamiltonian cycle to a 2-factor.

Enomoto, Jackson, Katerinis & Saito (1985): every 2-tough graph
has a 2-factor.

This implies:

Theorem
Every 4-connected claw-free graph has a 2-factor.

It does not seem easy to use this as a starting point to show that
there is a 2-factor with only one component, although there are
some results that give upper bounds on the number of
components. These results are beyond the scope of this talk.
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Relaxing the 4-connectedness and adding something else

We restrict to connectivity-only results.

If we add an ‘essential connectivity’ condition, there is a result by
Lai, Shao, Wu & Zhou (2006).

Theorem
Every 3-connected, essentially 11-connected claw-free (line)
graph is hamiltonian.

Recently improved by Kaiser and Vrána:

Theorem
Every 3-connected, essentially 9-connected claw-free (line) graph
is hamiltonian.

Best possible: 5 (by the line graph of the Petersen graph in which
the edges of a perfect matching are subdivided exactly once).
Question: how far can we decrease the 9 by raising the 3 to 4 in
the theorem?

.
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Restrictions on the class of graphs

Lai (1994) proved the following partial affirmative answer to
Thomassen’s Conjecture.

Theorem
Every 4-connected line graph of a planar graph is hamiltonian.

Kriesell (2001) proved a similar result on line graphs of claw-free
(multi)graphs with the stronger conclusion of
Hamilton-connectedness. In fact, he proved the following more
general result.

Theorem
Let G be a graph such that L(G ) is 4-connected and every vertex
of degree 3 in G is on an edge of multiplicity at least 2 or on a
triangle of G . Then L(G ) is Hamilton-connected.

.
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Restrictions on the class of graphs

For quasi claw-free graphs, i.e., in which all vertices u, v at
distance 2 have a common neighbor w with N(w) ⊆ N[u] ∪ N[v ],
we have:

Theorem (Lai, Shao & Zhan, 2004)

Every 4-connected line graph of a quasi claw-free graph is
Hamilton-connected.

There are many results along these lines.

A common approach is the following.
Take the preimage, delete degree 1 vertices and suppress degree 2
vertices, then try to show that the resulting graph (called the core
of G ) has a suitable spanning (closed) trail. Tools: two
edge-disjoint spanning trees, or collapsibility, or advanced closure
concepts.

.



Restrictions on the class of graphs

For quasi claw-free graphs, i.e., in which all vertices u, v at
distance 2 have a common neighbor w with N(w) ⊆ N[u] ∪ N[v ],
we have:

Theorem (Lai, Shao & Zhan, 2004)

Every 4-connected line graph of a quasi claw-free graph is
Hamilton-connected.

There are many results along these lines.

A common approach is the following.
Take the preimage, delete degree 1 vertices and suppress degree 2
vertices, then try to show that the resulting graph (called the core
of G ) has a suitable spanning (closed) trail. Tools: two
edge-disjoint spanning trees, or collapsibility, or advanced closure
concepts.

.



Restrictions on the class of graphs

For quasi claw-free graphs, i.e., in which all vertices u, v at
distance 2 have a common neighbor w with N(w) ⊆ N[u] ∪ N[v ],
we have:

Theorem (Lai, Shao & Zhan, 2004)

Every 4-connected line graph of a quasi claw-free graph is
Hamilton-connected.

There are many results along these lines.

A common approach is the following.
Take the preimage, delete degree 1 vertices and suppress degree 2
vertices, then try to show that the resulting graph (called the core
of G ) has a suitable spanning (closed) trail. Tools: two
edge-disjoint spanning trees, or collapsibility, or advanced closure
concepts.

.
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Restrictions on the class of graphs

The hourglass: the unique graph Γ with degree sequence
4, 2, 2, 2, 2.

Γ is a line graph and, in multigraphs, it has three nonisomorphic
preimages:
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Theorem (Folklore, 90’s)

Every 4-connected (claw, hourglass)-free graph is hamiltonian.
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Restrictions on the class of graphs

Theorem (Kaiser, ZR, Vrána, 2014)

Every 4-connected (claw, hourglass)-free graph is
1-Hamilton-connected.

Recall: G is 1-Hamilton-connected ⇒ G is 4-connected.

Thus, if G is claw-free and hourglass-free, then
G is 1-Hamilton-connected ⇐⇒ G is 4-connected

Corollary

1-Hamilton-connectedness is polynomial-time decidable in the class
of claw-free hourglass-free graphs.

Note than an analogous result is known to be true in planar graphs
(a consequence of a 1997 result by Sanders).

.
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Thank you
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