Tutte trail on plane graph

Adthasit Sinna Bill Jackson

School of Mathematical Science Queen Mary, University of London

6 February 2015

Adthasit Sinna, Bill Jackson (QMUL)

1 Introduction

- Definition
- Hamiltonian Problem

2 Main Result

- Main Theorem
- Sketch of Proof

• Hamiltonian Problem

- Main Theorem
- Sketch of Proof

- A graph G = (V(G), E(G)) where V(G) is vertex set and E(G) is an edge set.
- A trail (closed trail) is a walk in which all the edges are distinct.
- A path (cycle) is a walk in which all the vertices are distinct.
- A **Hamilton path(cycle)** is a path(cycle) which uses all vertices exactly once.
- A graph that contains a Hamilton cycle is a Hamiltonian graph.

- A graph is **k**-connected if any subgraph formed by removing any k 1 vertices is still connected.
- A graph is k-edge-connected if any subgraph formed by removing any k − 1 edges is still connected.
- A **component** is a maximal connected subgraph.
- A **block** is either a maximal 2-connected subgraph, or an isolated vertex.
- A edge-block is either a maximal 2-edge-connected subgraph, or an isolated vertices.

Let H be a subgraph of G, the H-bridges are defined as follow.

(i) A trivial *H*-bridge in *G* is an edge in $E(G) \setminus E(H)$ with both ends in V(H).

(ii) A non-trivial *H*-bridge in *G* is a component *K* of $G \setminus H$ together with all vertices of *H* adjacent to vertices of *K* and all edges with one end in *H* and the other in *K*.

Moreover, the vertices of attachment of a *H*-bridge *B* in G are $V(B) \cap V(H)$.

- Definition
- Hamiltonian Problem

- Main Theorem
- Sketch of Proof

Let G be a graph and F be a subgraph of G. An F-Tutte path(cycle) of G is a path(cycle) P of G such that (i) Each P-bridge of G has at most three vertices of attachment and (ii) Each P-bridge of G containing an edge of F has at most two vertices of attachment.

• Tutte (1956) show that "2-connected plane graph has a *F_G*-Tutte cycle."

where F_G is an outer walk of G.

Let G be a graph and F be a subgraph of G. An F-Tutte path(cycle) of G is a path(cycle) P of G such that (i) Each P-bridge of G has at most three vertices of attachment and (ii) Each P-bridge of G containing an edge of F has at most two vertices of attachment.

- Tutte (1956) show that "2-connected plane graph has a *F*_G-Tutte cycle." where *F*_G is an outer walk of *G*.
- Implies "4-connected plane graph has Hamilton cycle"

Let G be a graph and F be a subgraph of G. An F-Tutte path(cycle) of G is a path(cycle) P of G such that (i) Each P-bridge of G has at most three vertices of attachment and (ii) Each P-bridge of G containing an edge of F has at most two vertices of attachment.

- Tutte (1956) show that "2-connected plane graph has a *F*_G-Tutte cycle." where *F*_G is an outer walk of *G*.
- Implies "4-connected plane graph has Hamilton cycle"
- Tutte graph, 3-connected 3-regular plane graph, is non-hamiltonian.

Thomassen (1983) and Sander (1997) show that
 "2-connected plane graph has a F_G-Tutte path from u to v containing e for any u, v ∈ V(G) and e ∈ E(F_G)"

- Thomassen (1983) and Sander (1997) show that "2-connected plane graph has a F_G -Tutte path from u to vcontaining e for any $u, v \in V(G)$ and $e \in E(F_G)$ "
- Implies Plummer's Conjecture :
 - "4-connected plane graph is Hamiltonian-connected"
 - (a Hamiltonian path connecting any two prescribed vertices.)

• Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)

э

- Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)
- Every 4-connected line graph is hamiltonian.(Thomassen, 1986)

- Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)
- Every 4-connected line graph is hamiltonian.(Thomassen, 1986)
- Every essentially 4-edge-connected graph contains a dominating closed trail.

- Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)
- Every 4-connected line graph is hamiltonian.(Thomassen, 1986)
- Every essentially 4-edge-connected graph contains a dominating closed trail.
- Every essentially 4-edge-connected 3-regular graph has a dominating cycle. (Ash and Jackson)

- Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)
- Every 4-connected line graph is hamiltonian.(Thomassen, 1986)
- Every essentially 4-edge-connected graph contains a dominating closed trail.
- Every essentially 4-edge-connected 3-regular graph has a dominating cycle. (Ash and Jackson)
- Every essentially 4-edge-connected 3-regular graph that is not 3-edge-colorable has a dominating cycle. (Fleischner)

- Every 4-connected claw-free graph is hamiltonian. (Mathews-Summer, 1984)
- Every 4-connected line graph is hamiltonian.(Thomassen, 1986)
- Every essentially 4-edge-connected graph contains a dominating closed trail.
- Every essentially 4-edge-connected 3-regular graph has a dominating cycle. (Ash and Jackson)
- Every essentially 4-edge-connected 3-regular graph that is not 3-edge-colorable has a dominating cycle. (Fleischner)
- are all equivalent.

Introduction

- Definition
- Hamiltonian Problem

- Main Theorem
- Sketch of Proof

Let G be a graph and F be a subgraph of G. An F-Tutte trail(closed trail) of G is a trail(closed trail) H of G such that

(i) Each component of $G \setminus V(H)$ has at most three edges connecting it to H.

(ii) Each component of $G \setminus V(H)$ containing a vertex of F has at most two edges connecting it to H.

• For any plane graph G, the outer walk of G is denoted by F_G .

Let G be a graph and F be a subgraph of G. An F-Tutte trail(closed trail) of G is a trail(closed trail) H of G such that

(i) Each component of $G \setminus V(H)$ has at most three edges connecting it to H.

(ii) Each component of $G \setminus V(H)$ containing a vertex of F has at most two edges connecting it to H.

- For any plane graph G, the outer walk of G is denoted by F_G .
- A seperation (G_1, G_2) of G is a *k*-seperation if $|V(K_1)|, |V(K_2)| \ge k + 1$ and $|V(G_1) \cap V(G_2)| = k$.

Theorem

Let G be a 2-edge-connected plane graph. (a) If $u, v \in V(G)$ and $e \in E(F_G)$, then there is an F_G -Tutte trail in G from u to v containing e. (b) If $E(F_G) \ge 3$ and $e_1, e_2, e_3 \in E(F_G)$, then there is an F_G -Tutte closed trail in G containing e_1, e_2 and e_3 . (c) If $E(F_G) = \{e_1, e_2\}$, then there is an F_G -Tutte closed trail in G containing e_1 and e_2 .

Introduction

- Definition
- Hamiltonian Problem

Sketch of Proof

э

We proceed by contradiction. Suppose the theorem is false and choose a counterexample G such that |V(G)| is small as possible and, subject to this condition, |E(G)| is as small as possible. It can checked that the theorem is true when |V(G)| ≤ 3. So we have |V(G)|| ≥ 4.

- We proceed by contradiction. Suppose the theorem is false and choose a counterexample G such that |V(G)| is small as possible and, subject to this condition, |E(G)| is as small as possible. It can checked that the theorem is true when |V(G)| ≤ 3. So we have |V(G)|| ≥ 4.
- Case 1: G has a 1-seperation.
- Case 2: $v \in V(F_G)$ and G has a 2-separation which separate v and e.
- Case 3: $v \in V(F_G)$ and G has no 2-seperation in Case 2.
- Case 4: $u, v \notin V(F_G)$ and G has no 2-seperation in Case 2.

Case 1: G has 1-seperation.

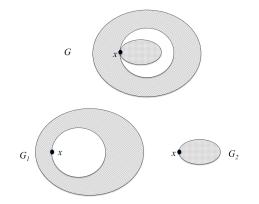


Figure: the graphs G, G_1 and G_2 when $x \notin V(F_G)$.

Case 1: G has 1-seperation.

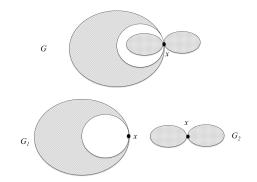


Figure: the graphs G, G_1 and G_2 when $x \in V(F_G)$.

Case 2: $v \in V(F_G)$ and G has 2-seperation.

• $v \in V(G_1)$, $e \in E(G_2)$ and $V(G_1) \setminus \{v, x, y\} \neq \emptyset$

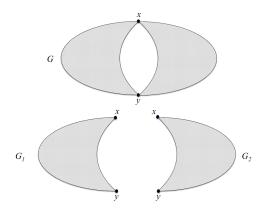


Figure: the graphs G, G_1, G_2 .

Case 2: $v \in V(F_G)$ and G has 2-seperation.

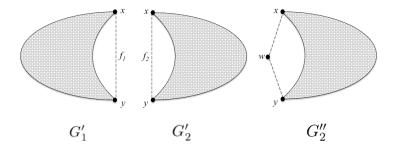


Figure: the graphs G'_1 , G'_2 and G''_2 .

- Let $F \subseteq F_G$ and $H \subseteq G \setminus V(F)$.
- An (F ∪ H)-bridge group A is the union of a maximal (F ∪ H)-bridge X together with all (F ∪ H)-bridges Y such that |V(Q_Y)| ≥ 2 and Q_Y ⊂ Q_X. We put Q_A = Q_X, p_A = p_X and q_A = q_X where X is the maximal (F ∪ H)-bridge in A.
- An (*F*, *H*)-connector in *G* is a bridge of *F* ∪ *H* in *G* with its vertices of attachment in both *F* and *H*.
- An (*F*, *H*)-connector group *L* is an (*F* ∪ *H*)-bridge group which contains an (*F*, *H*)-connector in *G*.

- Let P_1 be a segment of F_G from v to an end vertex of e such that $e \notin E(P_1)$ and $u \notin P_1 \setminus \{v\}$ $(P_1 = v \text{ if } v \text{ is an end vertex of } e)$.
- w be the adjacent vertex of v on F_G which is not in P_1 .
- v_1 be the end of e which is not on P_1
- $P_2 = F_G \setminus V(P_1)$
- $H = G \setminus V(P_1)$

Case 3: $v \in V(F_G)$ and G has no 2-separation in Case 2

• There is a unique block B of H containing P_2 .

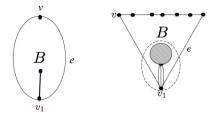


Figure: The block *B* in the case v_1 has one neighbor in *H*.

Case 3: $v \in V(F_G)$ and G has no 2-separation in Case 2

 we define B' as the edge-block of H containing B when B ≠ K₂ (possibly B' = B). If B = K₂, we define B' = {v₁}.

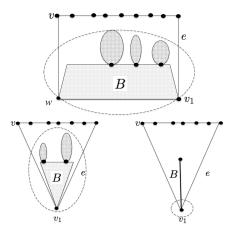


Figure: The structure of B'_{\cdot} .

- Choose an $F_{B'}$ -Tutte trail T' from v_1 to u' containing an edge of $F_{B'}$ incident to w in B'
- Let T = P₁ ∪ T' ∪ {e} is a vu'-trail.
 We will modify T by diverting it into each (P₁ ∪ T')-bridge group J

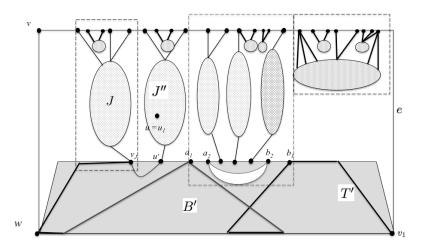


Figure: $(P_1 \cup T')$ -bridge groups of G.

Adthasit Sinna, Bill Jackson (QMUL)

Tutte trail on plane graph

6 February 2015 25 / 35

 Subcase 3.1: J has no edge of attachment on T'. Then, by induction on (a), J ∪ Q_J has a p_Jq_J-Tutte trail T_J from p_J to q_J. In T, we replace Q_J by T_J for each such J.

Subcase 3.2: J has one edge of attachment on T'. Let v_J be the vertex of attachment of J in T' and J* be the union of J, Q_J and the new edge e_J = p_Jv_J(See Fig. 8). Then J* is 2-edge-connected and by induction on (a), has an F_{J*}-Tutte trail T_J from q_J to v_J containing e_J. In T, we replace Q_J by T_J - v_J for each such J.



Figure: The structure of $J^*_{...}$ \rightarrow $\langle B \rangle$

Subcase 3.3: J has two edges of attachment on T'. Let $J_1 = (J \cup Q_J) \setminus \{a_1, b_1\}$ and J_2 be the edge-block of J_1 containing Q_J .

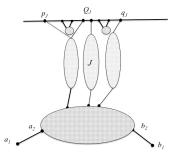


Figure: The structure of J in Subcase 3.3.

Adthasit Sinna, Bill Jackson (QMUL)

Tutte trail on plane graph

6 February 2015 28 / 35

Subcase 3.3.1: $J_1 = J_2$.

Then, by induction on (a), J_2 has an F_{J_2} -Tutte trail T_1 from p_J to q_J containing an edge of F_{J_2} incident to a_2 . In T, we replace Q_J by T_1 . Note that if $b_2 \notin T_1$, the component S of $J_1 - T_1$ containing b_2 has exactly two edges connecting it to T_1 and then has exactly three edges connecting it to T.

Subcase 3.3.2: $J_1 \neq J_2$.

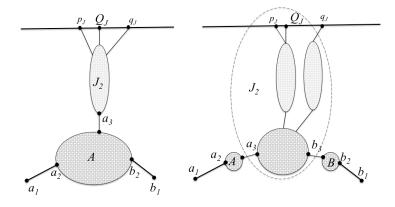


Figure: The structure of *J* when $J_1 \neq J_2$.

Adthasit Sinna, Bill Jackson (QMUL)

- If $u' = u_1 = u$, then T is the desired Tutte trail in G.
- If $u = v(u' = u_1 = w)$, then $T \cup \{vw\}$ is the desired Tutte trail.
- If u ≠ u', then u ∈ V(J"). Let K be the graph obtained from the union of J", Q_{J"} and the new edge e_K = q_Ju'. Then K is 2-edge-connected and, by induction on (a), has F_K-Tutte trail T_K from p_J to u containing e_K. Hence (T − Q_{J"}) ∪ (T_K − e_K) is a desired F_G-Tutte trail from u to v containing e.

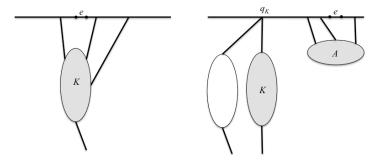


Figure: The structure of K.

Adthasit Sinna, Bill Jackson (QMUL)



Figure: The structure of K and L when $p_K = q_L$.

Adthasit Sinna, Bill Jackson (QMUL)

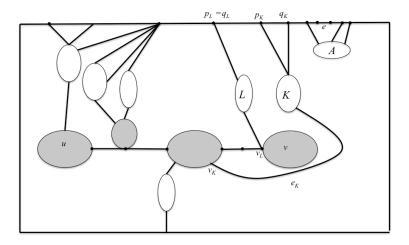


Figure: The structure of K and L when $p_K \neq q_{L_{int}}$

Adthasit Sinna, Bill Jackson (QMUL)

Tutte trail on plane graph

6 February 2015 34 / 35

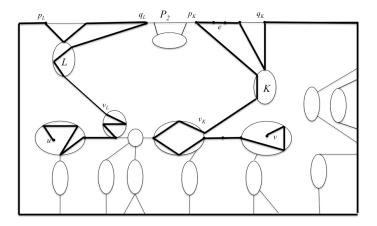


Figure: The structure of T.

Adthasit Sinna, Bill Jackson (QMUL)