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Every 4-connected line graph is hamiltonian.
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Every 4-connected line graph is hamiltonian

m many equivalent forms, e.g.: All 4-connected claw-free graphs
are Hamilton-connected

All 5-connected line graphs with minimum degree > 6 are
hamiltonian.
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Essential connectivity

a vertex cut C in G is essential if at most one component of
G — C has edges
essentially k-connected = no essential vertex cuts of size < k

m Yang, Lai, Li and Guo 2012: All 3-connected, essentially
11-connected line graphs are hamiltonian

m Li and Yang 2012: improvement to essentially 10-connected
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Theorem (K, Vréna)

All 3-connected, essentially 9-connected line graphs are
hamiltonian.
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known, e.g., the line graph of

non-hamiltonian, 3-connected essentially 4-connected graphs are
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The preimage

let H be a 3-connected, essentially 9-connected line graph, G its
preimage: H = L(G)

m all edge-cuts of size 1 or 2 in G separate a vertex

m all edge-cuts of size 3 to 8 separate a vertex or an edge

we are looking for a connected eulerian subgraph of H dominating
each edge (Harary—Nash-Williams)
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Black and white vertices

we choose a maximal independent set W of 3-vertices
W are white vertices, rest are black

a connected subgraph G’ C G is admissible if it covers all black
vertices and each white vertex has degree 0 or 2 in G’

ideal situation: an admissible tree with connected complement
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Given G and W, there exists an admissible forest T and a partition
P of V(G) with the following properties:

for P € P, T[P] is connected except for single white vertices,
TI[P] is (‘almost’) connected for P € P,
T /P is acyclic.
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so both T/P and T /P are acyclic

suppose |P| > 1
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suppose |P| >1

so both T/P and T /P are acyclic

white vertices not covered by T: leftover vertices
ng = number of leftover vertices

m(T), m(T) = number of edges of T or T, respectively
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so both T/P and T /P are acyclic
suppose |P| >1

white vertices not covered by T: leftover vertices
ng = number of leftover vertices

m(T), m(T) = number of edges of T or T, respectively

m(T)<n—ng—1
m(T)S -1
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so both T/P and T /P are acyclic
suppose |P| >1

white vertices not covered by T: leftover vertices

ng = number of leftover vertices

m(T), m(T) = number of edges of T or T, respectively

m(T)<n—ng—1
m(T)S -1

Summing we obtain:

Z(deg(v) —4)+2np < —4
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we assign the following charges to vertices:

leftover vertices

+1
other vertices

deg(v) — 4

total charge is negative
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after redistribution, all vertices have nonnegative charge

proof based on forbidden configurations such as

P
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Resulting charge

after redistribution, all vertices have nonnegative charge

proof based on forbidden configurations such as

X

here | am cheating a bit, we actually need to strengthen the

Skeletal Lemma to avoid
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the contradiction shows that |[P| =1so T is a tree and T is
‘almost’ connected
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Contradiction

the contradiction shows that |[P| = 1so T is a tree and T is
‘almost’ connected

we augment T to a connected eulerian subgraph F using
edge-disjoint paths from T

F covers all except possibly some of W — dominates each edge as
W is independent

thus L(G) is hamiltonian
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The result can be extended to:

Vrana)

m Hamilton-connectedness
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m claw-free graphs (by a closure technique due to Ryjatek and
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Thank you for your attention.
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