Hamilton cycles in essentially 9-connected line graphs

Tomáš Kaiser

Department of Mathematics and Institute for Theoretical Computer Science University of West Bohemia Pilsen, Czech Republic

(joint work with Petr Vrána)

8th Workshop on the Matthews-Sumner Conjecture, Plzeň, March 30, 2015

イロト イポト イヨト イヨト

DQ P

Conjecture (Thomassen, 1986)

Every 4-connected line graph is hamiltonian.

 many equivalent forms, e.g.: All 4-connected claw-free graphs are Hamilton-connected

Theorem (K, Vrána 2012)

All 5-connected line graphs with minimum degree \geq 6 are hamiltonian.

- 4 同 ト 4 ヨ ト 4 ヨ

Conjecture (Thomassen, 1986)

Every 4-connected line graph is hamiltonian.

 many equivalent forms, e.g.: All 4-connected claw-free graphs are Hamilton-connected

Theorem (K, Vrána 2012)

All 5-connected line graphs with minimum degree \geq 6 are hamiltonian.

(日) (同) (三) (三) (三)

a vertex cut C in G is essential if at most one component of G - C has edges

essentially k-connected = no essential vertex cuts of size < k

- Yang, Lai, Li and Guo 2012: All 3-connected, essentially 11-connected line graphs are hamiltonian
- Li and Yang 2012: improvement to essentially 10-connected

Theorem (K, Vrána)

All 3-connected, essentially 9-connected line graphs are hamiltonian.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

a vertex cut C in G is essential if at most one component of G - C has edges

essentially k-connected = no essential vertex cuts of size < k

- Yang, Lai, Li and Guo 2012: All 3-connected, essentially 11-connected line graphs are hamiltonian
- Li and Yang 2012: improvement to essentially 10-connected

Theorem (K, Vrána)

All 3-connected, essentially 9-connected line graphs are hamiltonian.

イロト 人間ト イヨト イヨト

SOR

non-hamiltonian, 3-connected essentially 4-connected graphs are known, e.g., the line graph of

→ □ → → 三 → → 三 →

SQC

let H be a 3-connected, essentially 9-connected line graph, G its preimage: H = L(G)

- all edge-cuts of size 1 or 2 in *G* separate a vertex
- all edge-cuts of size 3 to 8 separate a vertex or an edge

we are looking for a connected eulerian subgraph of H dominating each edge (Harary-Nash-Williams)

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

~ ~ ~ ~

we choose a maximal independent set W of 3-vertices W are white vertices, rest are black

a connected subgraph $G' \subseteq G$ is admissible if it covers all black vertices and each white vertex has degree 0 or 2 in G'

ideal situation: an admissible tree with connected complement

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

Given G and W, there exists an admissible forest T and a partition \mathcal{P} of V(G) with the following properties:

- **1** for $P \in \mathcal{P}$, T[P] is connected except for single white vertices,
- **2** $\overline{T}[P]$ is ('almost') connected for $P \in \mathcal{P}$,
- $\overline{\mathbf{J}}/\mathcal{P}$ is acyclic.

(4 同) (4 日) (4 日)

SOR

Skeletal partition: example

・ロト ・回ト ・モト ・モト

E

so both T/\mathcal{P} and \overline{T}/\mathcal{P} are acyclic suppose $|\mathcal{P}| > 1$

white vertices not covered by T: leftover vertices $n_0 =$ number of leftover vertices m(T), $m(\overline{T}) =$ number of edges of T or \overline{T} , respectively

$$m(T) \le n - n_0 - 1$$
$$m(\overline{T}) \le n - 1$$

Summing we obtain:

$$\sum (deg(v) - 4) + 2n_0 \le -4$$

イロト イポト イヨト イヨト

so both T/\mathcal{P} and \overline{T}/\mathcal{P} are acyclic suppose $|\mathcal{P}| > 1$

white vertices not covered by T: leftover vertices $n_0 =$ number of leftover vertices m(T), $m(\overline{T}) =$ number of edges of T or \overline{T} , respectively

 $m(T) \le n - n_0 - 1$ $m(\overline{T}) \le n - 1$

Summing we obtain:

$$\sum (deg(v) - 4) + 2n_0 \le -4$$

イロト 不得 とうせい かほとう ほ

SOR

so both T/\mathcal{P} and \overline{T}/\mathcal{P} are acyclic suppose $|\mathcal{P}| > 1$

white vertices not covered by T: leftover vertices $n_0 =$ number of leftover vertices m(T), $m(\overline{T}) =$ number of edges of T or \overline{T} , respectively

$$m(T) \le n - n_0 - 1$$

 $m(\overline{T}) \le n - 1$

Summing we obtain:

$$\sum (deg(v) - 4) + 2n_0 \le -4$$

イロト イボト イヨト

-

SOR

so both T/\mathcal{P} and \overline{T}/\mathcal{P} are acyclic suppose $|\mathcal{P}| > 1$

white vertices not covered by T: leftover vertices $n_0 =$ number of leftover vertices m(T), $m(\overline{T}) =$ number of edges of T or \overline{T} , respectively

$$m(T) \le n - n_0 - 1$$

 $m(\overline{T}) \le n - 1$

Summing we obtain:

$$\sum (deg(v) - 4) + 2n_0 \le -4$$

Tomáš Kaiser Hamilton cycles in essentially 9-connected line graphs

イロト 不得 とうせい かほとう ほ

we assign the following charges to vertices:

leftover vertices +1other vertices deg(v) - 4

total charge is negative

・ 同 ト ・ ヨ ト ・ ヨ ト

= nar

・ロト ・回ト ・モト ・モト

E

after redistribution, all vertices have nonnegative charge proof based on forbidden configurations such as

here I am cheating a bit, we actually need to strengthen the Skeletal Lemma to avoid

MQ (P

after redistribution, all vertices have nonnegative charge proof based on forbidden configurations such as

here I am cheating a bit, we actually need to strengthen the Skeletal Lemma to avoid

< 同 > < 回 > < 回 >

the contradiction shows that $|\mathcal{P}|=1$ so T is a tree and \overline{T} is 'almost' connected

we augment T to a connected eulerian subgraph F using edge-disjoint paths from \overline{T}

F covers all except possibly some of $W \to \operatorname{dominates}$ each edge as W is independent

thus *L*(*G*) is hamiltonian

・ロト ・ 雪 ト ・ ヨ ト

the contradiction shows that $|\mathcal{P}|=1$ so T is a tree and \overline{T} is 'almost' connected

we augment T to a connected eulerian subgraph F using edge-disjoint paths from \overline{T}

 ${\it F}$ covers all except possibly some of $W \rightarrow$ dominates each edge as W is independent

thus L(G) is hamiltonian

- 4 目 1 4 日 1 4 日 1 9 9 9 9 9

The result can be extended to:

- claw-free graphs (by a closure technique due to Ryjáček and Vrána)
- Hamilton-connectedness

・ロト ・回ト ・ヨト ・ヨト

I na ∩

Thank you for your attention.

Tomáš Kaiser Hamilton cycles in essentially 9-connected line graphs

(4 同) (4 日) (4 日)

Sac

э