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Context: A conjecture of Thomassen

Conjecture (Thomassen, 1986)

Every 4-connected line graph is hamiltonian.

many equivalent forms, e.g.: All 4-connected claw-free graphs
are Hamilton-connected

Theorem (K, Vrána 2012)

All 5-connected line graphs with minimum degree ≥ 6 are
hamiltonian.
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Essential connectivity

a vertex cut C in G is essential if at most one component of
G − C has edges
essentially k-connected = no essential vertex cuts of size < k

Yang, Lai, Li and Guo 2012: All 3-connected, essentially
11-connected line graphs are hamiltonian

Li and Yang 2012: improvement to essentially 10-connected

Theorem (K, Vrána)

All 3-connected, essentially 9-connected line graphs are
hamiltonian.
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Lower bounds

non-hamiltonian, 3-connected essentially 4-connected graphs are
known, e.g., the line graph of
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The preimage

let H be a 3-connected, essentially 9-connected line graph, G its
preimage: H = L(G )

all edge-cuts of size 1 or 2 in G separate a vertex

all edge-cuts of size 3 to 8 separate a vertex or an edge

we are looking for a connected eulerian subgraph of H dominating
each edge (Harary–Nash-Williams)
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Black and white vertices

we choose a maximal independent set W of 3-vertices
W are white vertices, rest are black

a connected subgraph G ′ ⊆ G is admissible if it covers all black
vertices and each white vertex has degree 0 or 2 in G ′

ideal situation: an admissible tree with connected complement
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Skeletal Lemma

Lemma

Given G and W , there exists an admissible forest T and a partition
P of V (G ) with the following properties:

1 for P ∈ P, T [P] is connected except for single white vertices,

2 T [P] is (‘almost’) connected for P ∈ P,

3 T/P is acyclic.
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Skeletal partition: example
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Counting

so both T/P and T/P are acyclic

suppose |P| > 1

white vertices not covered by T : leftover vertices
n0 = number of leftover vertices
m(T ), m(T ) = number of edges of T or T , respectively

m(T ) ≤ n − n0 − 1

m(T ) ≤ n − 1

Summing we obtain:∑
(deg(v)− 4) + 2n0 ≤ −4
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Tomáš Kaiser Hamilton cycles in essentially 9-connected line graphs



Counting

so both T/P and T/P are acyclic

suppose |P| > 1

white vertices not covered by T : leftover vertices
n0 = number of leftover vertices
m(T ), m(T ) = number of edges of T or T , respectively

m(T ) ≤ n − n0 − 1

m(T ) ≤ n − 1

Summing we obtain:∑
(deg(v)− 4) + 2n0 ≤ −4

Tomáš Kaiser Hamilton cycles in essentially 9-connected line graphs



Counting

so both T/P and T/P are acyclic

suppose |P| > 1

white vertices not covered by T : leftover vertices
n0 = number of leftover vertices
m(T ), m(T ) = number of edges of T or T , respectively

m(T ) ≤ n − n0 − 1

m(T ) ≤ n − 1

Summing we obtain:∑
(deg(v)− 4) + 2n0 ≤ −4
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Charges

we assign the following charges to vertices:

leftover vertices +1
other vertices deg(v)− 4

total charge is negative

Tomáš Kaiser Hamilton cycles in essentially 9-connected line graphs



Rules
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Resulting charge

after redistribution, all vertices have nonnegative charge

proof based on forbidden configurations such as

here I am cheating a bit, we actually need to strengthen the
Skeletal Lemma to avoid
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Contradiction

the contradiction shows that |P| = 1 so T is a tree and T is
‘almost’ connected

we augment T to a connected eulerian subgraph F using
edge-disjoint paths from T

F covers all except possibly some of W → dominates each edge as
W is independent

thus L(G ) is hamiltonian
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Extensions

The result can be extended to:

claw-free graphs (by a closure technique due to Ryjáček and
Vrána)

Hamilton-connectedness
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Thank you for your attention.
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