Supereulerian graphs and hamiltonian line graphs

Hong-Jian Lai, West Virginia University

April 1, 2015

The Superculerian Problem

• Boesch, Suffel and Tindel (JGT, 1977) proposed the supereulerian problem, which seeks a characterization of graphs that have spanning Eulerian subgraphs.

• A graph G containing a spanning eulerian subgraph (that is, a spanning closed trail) is a supereulerian graph.

• Theorem (Pulleyblank, JGT, 1979) proved that determining whether a graph is supereulerian, even within planar graphs, is NP-complete.

Hamiltonian Line Graphs

• Theorem (Harary and Nash-Williams, Canad. Math. Bull. 1965) For G with $|E(G)| \ge 3$, the line graph L(G) is hamiltonian iff G has an eulerian subgraph H with $E(G - V(H)) = \emptyset$, (Called dominating closed trail, DCT, of G).

• If G is superculerian, then L(G) is hamiltonian.

• Theorem (Ryjáček, JCTB, 1997) Hamiltonian claw-free graph problem can be converted into the hamiltonian line graph problem.

• Catlin (JGT 1988) wanted to determine graphs H such that for any graph G that contains H as a subgraph, G/H is supereulerian iff G is supereulerian.

• Catlin defined: A graph H is collapsible if for any subset $R \subseteq V(H)$ with |R| being even, H has a spanning, connected subgraph $\Gamma(R)$ such that the set of odd degree vertices of $\Gamma(R)$ is R.

• Theorem (Catlin, JGT 1988) If H is a collapsible subgraph of G, then G/H is supereulerian iff G is supereulerian.

• Catlin's reduction method:

Given a graph G, one can repeatedly contract nontrivial collapsible subgraphs until none left. The resulting graph G' is called the reduction of G. Catlin showed that G is supereulerian if and only if G' is supereulerian.

This method is often applied in an inductive argument to show that a graph G has an eulerian subgraph with certain given properties, such as spanning or dominating.

• Catlin defined the **kernel** of superculerian graphs as the family $\mathcal{S}^o = \{H : \forall G \supseteq H, G \text{ is superculerian iff } G/H \text{ is superculerian } \}.$

• Catlin (JGT Survey, 1992) conjecture: A graph H is collapsible if and only if G is in \mathcal{S}^{o} .

• Theorem: A graph H is collapsible if and only if for any graph G containing H as an induced subgraph, both of the following hold: (i) If G has an eulerian subgraph Γ such that $V(\Gamma) \cap V(H) \neq \emptyset$, then $(\Gamma \cup H)/H$ is an eulerian subgraph Γ' satisfying $E(\Gamma') = E(\Gamma) - E(H)$; and (ii) If Γ' is an eulerian subgraph in G/H containing v_H , the vertex in G/H onto which H is

contracted, then G has an eulerian subgraph Γ such that $V(H) \subseteq V(\Gamma)$ and $E(\Gamma') = E(\Gamma) - E(H)$.

Bauer's Problem

• D. Bauer (1985) proposed to determine the best possible constant c such that every simple, connected graph G on n vertices with $\delta(G) \geq cn$ will have a hamiltonian line graph.

• Using his reduction method, Catlin (JGT 1988) settled Bauer's problem and showed that if $\delta(G) > \frac{n}{5} - 1$, then for sufficiently large n, G is supereulerian. An infinite family of graphs contractible to $K_{2,3}$ indicates that this bound is best possible.

Bauer's Problem

• Catlin and Z. H. Chen: proved that for any real numbers a and b with 0 < a < 1, there exists a finite family \mathcal{F} of non superculerian graphs and an integer N = N(a, b) such that every simple graph on $n \geq N$ vertices with if $\delta(G) \geq an + b$ is superculerian iff G cannot be contracted to a member in the family \mathcal{F} .

Kuipers and Veldman Conjecture

• Kuipers and Veldman conjectured that any 3-connected claw-free graph with order n and minimum degree $\delta \geq \frac{n+6}{10}$ is Hamiltonian for n sufficiently large.

• Theorem (Kuipers and Veldman, 1998) If H is a 3-connected claw-free simple graph with sufficiently large order n, and if $\delta(H) \geq \frac{n+29}{8}$, then H is hamiltonian.

Kuipers and Veldman Conjecture

• Theorem (Favaron and Fraisse, JCTB 2001) If H is a 3-connected claw-free simple graph with order n, and if $\delta(H) \geq \frac{n+37}{10}$, then H is hamiltonian.

• Theorem (Y Shao, M. Zhan, HJL, JCTB 2006) If H is a 3-connected claw-free simple graph with $n \ge 196$, and if $\delta(H) \ge \frac{n+5}{10}$, then either H is hamiltonian, or $\delta(H) = \frac{n+5}{10}$ and cl(H) is the line graph of G obtained from the Petersen graph P_{10} by adding $\frac{n-15}{10}$ pendant edges at each vertex of P_{10} .

• Consider the exceptional graph is "generated by the Petersen graph P_{10} ".

Kuipers and Veldman Conjecture

• Theorem (Z.-H. Chen, L. Xiong and HJL) For any real numbers a and b with 0 < a < 1, there exist an integer N = N(a, b) and a "finitely generated" family \mathcal{F} of graphs such that every 3-connected claw-free simple graph G with $n \ge N$ vertices and with $\delta(H) \ge an+b$ is hamiltonian iff the closure cl(H) = L(G) for a graph $G \notin \mathcal{F}$.

Hamiltonian-connected line graphs and spanning trailable graphs

• For $e, e' \in E(G)$, an (e, e')-trail is a trail of G having the end-edges e and e'.

• An (e, e')-trail is dominating if each edge of G is incident with at least one internal vertex of the trail

• Theorem: L(G) is hamiltonian-connected iff for any pair of edges $e, e' \in E(G)$, G has a dominating (e, e')-trail.

Hamiltonian-connected line graphs and spanning trailable graphs

• An (e, e')-trail is spanning if it is a dominating trail and it contains all the vertices of G.

• Spanning (e, e')-trails are dominating (e, e')-trails.

• A graph G is spanning trailable if for any pair of edges $e, e' \in E(G)$, G has a spanning (e, e')-trail.

• Theorem: If G is spanning trailable, then L(G) is hamiltonian-connected.

Bauer's Problem, hamiltonian-connected version

• Theorem (Jianping Liu, Aimei Yu, Keke Wang) Let G be a connected simple graph on n vertices and let a, b be real numbers with $0 < a \le 1$. There exist an integer N = N(a, b) and a finite family $\mathcal{F} = \mathcal{F}(a, b)$ such that if $n \ge N$ and if for any $u, v \in V(G)$ with $uv \notin E(G)$, $d_G(u) + d_G(v) \ge a|V(G)| + b$ then exactly one of the following must hold: (i) L(G) is hamiltonian-connected;

(ii)
$$\kappa(L(G)) \leq 2;$$

(iii) G can be contracted to a member in \mathcal{F} .

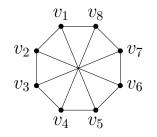
Bauer's Problem, hamiltonian-connected version

• Theorem (Jianping Liu, Aimei Yu, Keke Wang) Let G be a connected simple graph on n vertices. If for any $u, v \in V(G)$ with $uv \notin E(G)$, $d_G(u) + d_G(v) \geq \frac{n}{4} - 2$, then for sufficiently large n, exactly one of the following must hold:

(i) L(G) is hamiltonian-connected;

(ii) $\kappa(L(G)) \leq 2;$

(iii) G can be contracted to W_8 .



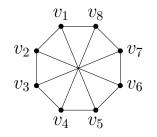
Bauer's Problem, hamiltonian-connected version

• Theorem (Jianping Liu, Aimei Yu, Keke Wang) Let G be a connected simple triangle free graph on n vertices. If for any $u, v \in V(G)$ with $uv \notin E(G), d_G(u) + d_G(v) \geq \frac{n}{8}$, then for sufficiently large n, exactly one of the following must hold:

(i) L(G) is hamiltonian-connected;

(ii)
$$\kappa(L(G)) \leq 2;$$

(iii) G can be contracted to W_8 .



Kuipers and Veldman Conjecture: Hamiltonian connected version

• The closures allow us to focus on line graphs.

• Theorem (M. Zhan and HJL) Let H = L(G) be a 3-connected line graph on n vertices. For sufficiently large n, if $\delta(H) \geq \frac{n+4}{8}$, then either H is hamiltonian-connected or equality holds and G is obtained from W_8 by attaching exactly (n - 12)/8 pendant edges to every vertex of W_8 ("generated by W_8 ").

• Theorem (M. Zhan and HJL) For any real numbers a and b with 0 < a < 1, there exist an integer N = N(a, b) and a "finitely generated" family $\mathcal{F} = \mathcal{F}(a, b)$ such that if H = L(G) be a 3-connected line graph on $n \ge N$ vertices and if $\delta(H) \ge an+b$, then either H is hamiltonianconnected or equality holds and $G \in \mathcal{F}$.

Supereulerian width and spanning connectivity of line graphs

• For an integer s > 0 and for $u, v \in V(G)$ with $u \neq v$, an (s; u, v)-trail-system of G is a subgraph H consisting of s edge-disjoint (u, v)trails.

• G is superculerian iff for $u, v \in V(G)$, G contains a spanning (2; u, v)-trail-system.

Supereulerian width and spanning connectivity of line graphs

• Recall: G is collapsible iff for any even subset $R \subseteq V(G)$, G has a spanning connected subgraph $\Gamma(R)$ such that the odd degree vertices of $\Gamma(R)$ is R.

• $R = \{u, v\}, \Gamma(R)$ is a spanning (1; u, v)-trail-system.

• $R = \emptyset$, $\Gamma(R)$ is a spanning (2; u, v)-trail-system.

• The supereulerian width $\mu'(G)$ of a graph G is the largest integer s such that for every integer k with $0 \le k \le s$, and for every pair of vertices $u, v \in V(G)$, G has a spanning (k; u, v)-trail-system.

Supereulerian width and spanning connectivity of line graphs

• For an integer s > 0 and for $u, v \in V(G)$ with $u \neq v$, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u, v)-paths.

• G is hamiltonian iff for $u, v \in V(G)$, G contains a spanning (2; u, v)-path-system.

• G is hamiltonian-connected iff for $u, v \in V(G)$, G contains a spanning (1; u, v)-path-system.

• The spanning connectivity $\kappa^*(G)$ of a graph G is the largest integer s such that for every integer k with $0 \le k \le s$, and for every pair of vertices $u, v \in V(G)$, G has a spanning (k; u, v)-path-system.

Superculerian width and spanning connectivity of line graphs

• A dominating (k; e', e'')-trail systems in Gis a subgraph H consisting of k edge-disjoint (e', e'')-trail (T_1, T_2, \dots, T_k) such that every edge of G is incident with an internal vertex of T_i for some $i, (1 \le i \le k)$.

• Theorem (Y. Chen et al, GC 2013) Let $s \ge 1$ be an integer, and G a graph with $|E(G)| \ge 3$. The following are equivalent. (i) $\kappa^*(L(G)) \ge s$;

(ii) For any edge $e', e'' \in E(G)$, G has a dominating (k; e', e'')-trail-system, for all $1 \le k \le s$.

Leading Conjectures

• Conjecture (Thomassen) Every 4-connected line graph is hamiltonian.

• Conjecture (Matthews and Sumner) Every 4-connected claw-free graph is hamiltonian.

• Conjecture (Kučzel and Xiong) Every 4connected line graph is hamiltonian-connected.

• Conjecture (Ryjáček and Vrána) Every 4connected claw-free graph is hamiltonian-connected.

Leading Conjectures

• Conjecture (Saito) Every 3-connected line graph of diameter at most 3 is hamiltonian unless it is the line graph of a graph obtained from the Petersen graph by adding at least one pendant edge to each of its vertices.

• Conjecture (Hamiltonian-connected version) There exists a "finitely generated" family \mathcal{F} of graphs such that every 3-connected line graph L(G) of diameter at most 3 is hamiltonianconnected unless $G \in \mathcal{F}$. • Conjecture For any integers r, s > 0, there exists an integer k(r, s) such that every k(r, s)-connected $K_{1,r}$ -free graph has spanning connectivity at least s.

• Leading Conjectures: k(3,2) = 4.