Singular edges and hamiltonicity in claw-free graphs with locally disconnected vertices

Liming Xiong Beijing Institute of Technology

(An joint work with Zdeněk Ryjáček and Petr Vrána)

Pilsen, March 29- April 3. 2015

・ 同 ト ・ ヨ ト ・ ヨ ト …

2 Further extension of the result above

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

2 Further extension of the result above

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

イロン イロン イヨン イヨン

Definition 1.1 • A Hamiltonian cycle

A cycle is called a Hamiltonian cycle of a graph G if it has all vertex of G.

Definition 1.2 • A Hamiltonian graph

A graph is called Hamiltonian if it has a spanning cycle.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition 1.1 • A Hamiltonian cycle

A cycle is called a Hamiltonian cycle of a graph G if it has all vertex of G.

Definition 1.2 • A Hamiltonian graph

A graph is called Hamiltonian if it has a spanning cycle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 1.1 • A Hamiltonian cycle

A cycle is called a Hamiltonian cycle of a graph G if it has all vertex of G.

Definition 1.2 • A Hamiltonian graph

A graph is called Hamiltonian if it has a spanning cycle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 1.3 • Claw-free graph

A graph is called claw-free if it has no induced subgraph isomorphic to $K_{1,3}. \label{eq:k1}$

HAMILTON

Instance: Graph G.

Question: Does G have a hamiltonian cycle?

Fact:

HAMILTON is NP-complete; even for the class of claw-free graphs.

3

Definition 1.3 • Claw-free graph

A graph is called claw-free if it has no induced subgraph isomorphic to $K_{1,3}. \label{eq:k1}$

HAMILTON

Instance: Graph G.

Question: Does G have a hamiltonian cycle?

Fact:

HAMILTON is NP-complete; even for the class of claw-free graphs.

イロト 不得 トイヨト イヨト 二日

Definition 1.3 • Claw-free graph

A graph is called claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

HAMILTON

Instance: Graph G.

Question: Does G have a hamiltonian cycle?

Fact:

HAMILTON is NP-complete; even for the class of claw-free graphs.

ヘロン 人間 とくほ とくほ とう

3

Definition 1.4 • Locally connected

A vertex v of a graph G is *locally connected* if $G[N_G(v)]$ is connected; otherwise, it is *locally disconnected*.

Definition 1.5 • N_2 -locally connected

A vertex v of a graph G is N_2 -locally connected if the subgraph of G induced by the edge $\{e = xy \in E(G) : v \notin \{x, y\} \text{ and } \{x, y\} \cap N(v) \neq \emptyset\}$ is connected.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 1.4 • Locally connected

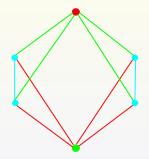
A vertex v of a graph G is *locally connected* if $G[N_G(v)]$ is connected; otherwise, it is *locally disconnected*.

Definition 1.5 • N_2 -locally connected

A vertex v of a graph G is N_2 -locally connected if the subgraph of G induced by the edge $\{e = xy \in E(G) : v \notin \{x, y\} \text{ and } \{x, y\} \cap N(v) \neq \emptyset\}$ is connected.

- * 同 * * ヨ * * ヨ * - ヨ

Every locally connected graph is $N_2\mbox{-locally connected},$ but the converse is not true.



A B M A B M

The related theorems

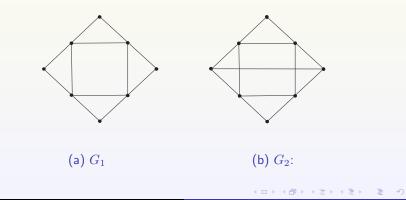
Theorem 1.1 (Oberly and Sumner, 1979)

Every connected locally connected claw-free graph on at least three vertices is Hamiltonian.

伺 ト イヨト イヨト

Theorem 1.2 (Ryjáček, 1990)

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex x of degree 4 in H is locally disconnected in G. Then G is Hamiltonian.



Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

◆ロト ◆聞 ト ◆ ヨト ◆ ヨト ― ヨ

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

イロト 不得 とくほ とくほ とうほう

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

イロト 不得 とくほ とくほ とうほう

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

イロト イポト イヨト イヨト

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Let G be a connected, N_2 -locally connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to either G_1 or G_2 such that every vertex of degree 3 or 4 in H is locally disconnected in G. Then G is Hamiltonian.

Theorem 1.3 means that the conclusion of Theorem 1.2 is also true for the degree set $\{3,4\}$ of G_1, G_2 .

Note

The later result implies the forward one:

Question:

- Is there a more extending result???
- If yes, how to do it???

Singular edge

We need the following definitions.

Definition 1.6 • Singular edge

An edge e of G is *singular* if it does not lie on any triangle of G; otherwise, it is *non-singular*.

Definition: $\mathcal{P}(C, k, l)$

 $\mathcal{P}(C,k,l)$: A locally disconnected vertex lies on an induced cycle C of length at least 4 that has at most k non-singular edges and has at least k-l locally connected vertices.

(人間) トイヨト (日) - 日

Theorem 1.4 (R. Tian and X., 2012^+)

Let ${\cal G}$ be a connected claw-free graph satisfying the following two conditions:

- (i) Every locally disconnected vertex of degree at least 3 lies on an induced cycle of length at least 4 with at most s non-singular edges and with at least s - 3 locally connected vertices(*i.e.*, $\mathcal{P}(C, s, 3)$ holds);
- (ii) Every locally disconnected vertex of degree 2 lies on an induced cycle C of length at least 4 with at most s non-singular edges and with at least s-2 locally connected vertices (*i.e.*, $\mathcal{P}(C, s, 2)$ holds) such that $G[V(C) \cap V_2(G)]$ is a path.

Then G is Hamiltonian.

Theorem 1.4 (R. Tian and X., 2012^+)

Let ${\cal G}$ be a connected claw-free graph satisfying the following two conditions:

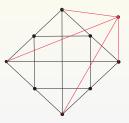
- Every locally disconnected vertex of degree at least $d \in \{2,3\}$ satisfies $\mathcal{P}(C,s,d)$;
- If a locally disconnected vertex of degree two satisfies $\mathcal{P}(C,s,2),$ then $G[V(C)\cap V_2(G)]$ is a path.

Then G is Hamiltonian.

- 4 同 2 4 日 2 4 日 2 - 日

Proposition 1.5 (R. Tian and X., 2012⁺)

If a graph G satisfies the condition of Theorem 1.3 and G is not isomorphic to G_3 , then G satisfies condition of Theorem 1.4.



 G_3 :

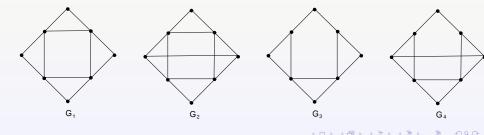
・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 1.5 • N^2 -locally connected

A vertex v of a graph G is N^2 -locally connected if the subgraph of G induced by the vertices set $\{v \in V(G) : 1 \le d_G(v, x) \le 2\}$ is connected.

Corollary (Li, 2000)

Every connected N^2 -locally connected claw-free graph G with $\delta(G) \ge 2$ that has no induced subgraph isomorphic to G_1, G_2, G_3, G_4 is Hamiltonian.



Liming Xiong (Beijing Institute of Technology

Singular edges and hamiltonicity in claw-free graphs with locally

Remark

The above results show that our result extends both of Bielak's results and Li's results, therefore also extends the results of Ryjáček, and, Oberly and Sumner.

Question

Is there something more we can get from our new extending result?

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

The above results show that our result extends both of Bielak's results and Li's results, therefore also extends the results of Ryjáček, and, Oberly and Sumner.

Question

Is there something more we can get from our new extending result?

・ 同 ト ・ ヨ ト ・ ヨ ト

What happen if we improve the connectivity of considered graphs?

Theorem 1.6 (R. Tian, X. and Z. Niu, 2012^+)

Let G be a 3-connected claw-free graph. If every locally disconnected vertex lies on some induced cycle C of length at least 4 with at most 4 non-singular edges $(i.e., \mathcal{P}(s, 4) \text{ holds}))$, then G is Hamiltonian.

The above result extends the following result, since every locally disconnected, N_2 -locally connected vertex of a graph G lies on some induced cycle of length 4.

Theorem 1.7 (Lai, Shao and Zhan, 2005; Conjectured by Ryjäček, 1990) Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

・ロト ・回ト ・ヨト ・ヨト

What happen if we improve the connectivity of considered graphs?

Theorem 1.6 (R. Tian, X. and Z. Niu, 2012^+)

Let G be a 3-connected claw-free graph. If every locally disconnected vertex lies on some induced cycle C of length at least 4 with at most 4 non-singular edges (*i.e.*, $\mathcal{P}(s, 4)$ holds)), then G is Hamiltonian.

The above result extends the following result, since every locally disconnected, N_2 -locally connected vertex of a graph G lies on some induced cycle of length 4.

Theorem 1.7 (Lai, Shao and Zhan, 2005; Conjectured by Ryjaček, 1990) Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

イロト 不得 トイヨト イヨト 二日

What happen if we improve the connectivity of considered graphs?

Theorem 1.6 (R. Tian, X. and Z. Niu, 2012^+)

Let G be a 3-connected claw-free graph. If every locally disconnected vertex lies on some induced cycle C of length at least 4 with at most 4 non-singular edges (*i.e.*, $\mathcal{P}(s, 4)$ holds)), then G is Hamiltonian.

The above result extends the following result, since every locally disconnected, N_2 -locally connected vertex of a graph G lies on some induced cycle of length 4.

Theorem 1.7 (Lai, Shao and Zhan, 2005; Conjectured by Ryjaček, 1990) Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

イロト 不得 とくほ とくほ とうほう

What happen if we improve the connectivity of considered graphs?

Theorem 1.6 (R. Tian, X. and Z. Niu, 2012^+)

Let G be a 3-connected claw-free graph. If every locally disconnected vertex lies on some induced cycle C of length at least 4 with at most 4 non-singular edges $(i.e., \mathcal{P}(s, 4) \text{ holds}))$, then G is Hamiltonian.

The above result extends the following result, since every locally disconnected, N_2 -locally connected vertex of a graph G lies on some induced cycle of length 4.

Theorem 1.7 (Lai, Shao and Zhan, 2005; Conjectured by Ryjáček, 1990)

Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

What happen if we improve the connectivity of considered graphs?

Theorem 1.6 (R. Tian, X. and Z. Niu, 2012^+)

Let G be a 3-connected claw-free graph. If every locally disconnected vertex lies on some induced cycle C of length at least 4 with at most 4 non-singular edges $(i.e., \mathcal{P}(s, 4) \text{ holds}))$, then G is Hamiltonian.

The above result extends the following result, since every locally disconnected, N_2 -locally connected vertex of a graph G lies on some induced cycle of length 4.

Theorem 1.7 (Lai, Shao and Zhan, 2005; Conjectured by Ryjáček, 1990)

Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

- The graph G in Figure is a connected claw-free graph such that every locally disconnected vertex of G lies on an induced cycle of length 5 with 3 non-singular edges;
- but it is not N₂-locally connected.

An example G:

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

/□ ▶ < □ ▶ < □

- The graph G in Figure is a connected claw-free graph such that every locally disconnected vertex of G lies on an induced cycle of length 5 with 3 non-singular edges;
- but it is not N₂-locally connected.

An example G:

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

/□ ▶ < □ ▶ < □

- The graph G in Figure is a connected claw-free graph such that every locally disconnected vertex of G lies on an induced cycle of length 5 with 3 non-singular edges;
- but it is not N₂-locally connected.

An example G:

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

- The graph G in Figure is a connected claw-free graph such that every locally disconnected vertex of G lies on an induced cycle of length 5 with 3 non-singular edges;
- but it is not N₂-locally connected.

An example G:

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

An example

- The graph G in Figure is a connected claw-free graph such that every locally disconnected vertex of G lies on an induced cycle of length 5 with 3 non-singular edges;
- but it is not N_2 -locally connected.

An example G:

Outline

2 Further extension of the result above

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

The Matthews and Sumner Conjecture

Conjecture 2.1 (Matthews and Sumner, 1984)

Every 4-connected claw-free graph is Hamiltonian.

Remark

Up to now, we do not know whether there is a weaker condition of our type for those 4-connected graphs.

Conjecture 2.1

Every 4-connected claw-free graph with the property $\mathcal{P}(4, s, s)$ is Hamiltonian.

イロト 不得 とくほ とくほ とうほ

The Matthews and Sumner Conjecture

Conjecture 2.1 (Matthews and Sumner, 1984)

Every 4-connected claw-free graph is Hamiltonian.

Remark

Up to now, we do not know whether there is a weaker condition of our type for those 4-connected graphs.

Conjecture 2.1'

Every 4-connected claw-free graph with the property $\mathcal{P}(4,s,s)$ is Hamiltonian.

イロト イポト イヨト イヨト 二日

Theorem (Z. Ryjáček, P. Vrána and X., working 2014^+)

Let G be a connected claw-free graph satisfying the following conditions:

- every locally disconnected nonsingular vertex of degree 4 is on an induced cycle of length at least 4 with at most 4 nonsingular edges;
- every locally disconnected vertex that is not nonsingular of degree 4 is on an induced cycle of length at least 4 with at most 3 nonsingular edges;
- (III) every singular vertex of degree 2 is on an induced cycle C of length at least 4 with at most 2 nonsingular edges such that $G[V(C) \cap V_2(G)]$ is a path or a cycle.

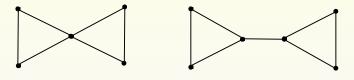
Then either G is hamiltonian or G is the line graph of the graph obtained from $K_{2,3}$ by attaching a pendant edge to every its vertex of degree two.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Corollary

Every connected claw-free graph of $\delta(G) \ge 3$ satisfying Conditions (I) and (II) of the theorem above is hamiltonian.

・ 同 ト ・ ヨ ト ・ ヨ ト



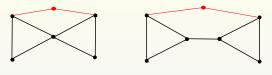
 $\Gamma_0 = \mathsf{Hourglass}, \ \Gamma_1,:$

 $\Gamma_0 = Hourglass$, a graph consisting of two triangles sharing exactly one common vertex.

 Γ_1 : a graph consisting of two triangles by adding an edge between two vertices of the two triangles.

ヨッ イヨッ イヨッ

A graph is said to have the Γ_i k-Property if for every induced Hourglass Γ_i , there exists a path $P(\Gamma_i)$ joining two vertices of Γ_i whose distance is i + 2 in Γ_i such that $P(\Gamma_i)$ has no inner vertex of Γ_i and it has at most k nonsingular edges.



 Γ_i 2-Property:

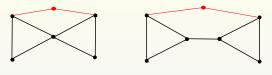
Corollary

Let G be a connected claw-free graph with (II) and (III) of the theorem above such that G has the Hourglass 2-property. Then G is hamiltonian or the line graph of $K'_{2,3}$ depicted in the theorem above.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・

-

A graph is said to have the Γ_i k-Property if for every induced Hourglass Γ_i , there exists a path $P(\Gamma_i)$ joining two vertices of Γ_i whose distance is i + 2 in Γ_i such that $P(\Gamma_i)$ has no inner vertex of Γ_i and it has at most k nonsingular edges.



 Γ_i 2-Property:

Corollary

Let G be a connected claw-free graph with (II) and (III) of the theorem above such that G has the Hourglass 2-property. Then G is hamiltonian or the line graph of $K'_{2,3}$ depicted in the theorem above.

イロト イポト イヨト イヨト

Corollary

Every 3-edge-connected claw-free graph with Γ_i (i+2)-Properties for $i \in \{0,1\}$ is hamiltonian.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof idea: Ryjáček's closure + Lai's Theorem + Harary and Nash-Williams's Theorem.

Theorem(Z. Ryjáček, 1997)

If G is a claw-free graph, then there is a closed claw-free graph cl(G) such that

- there is a triangle-free graph H such that cl(G)=L(H);
- G is Hamiltonian if and only if cl(G) is Hamiltonian.

Theorem(H.-J. Lai, 1991)

Let G be a 2-connected graph with $\delta(G) \ge 3$. If every edge of G lies on a cycle of length at most 4, then G has a spanning Eulerian subgraph.

Theorem (Harary and Nash-Williams, 1965)

Let G be a graph with at least 3 edges. Then the line graph L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

Liming Xiong (Beijing Institute of Technology

Proof idea: Ryjáček's closure + Lai's Theorem + Harary and Nash-Williams's Theorem.

Theorem(Z. Ryjáček, 1997)

If G is a claw-free graph, then there is a closed claw-free graph cl(G) such that

- there is a triangle-free graph H such that cl(G) = L(H);
- G is Hamiltonian if and only if cl(G) is Hamiltonian.

Theorem(H.-J. Lai, 1991)

Let G be a 2-connected graph with $\delta(G) \ge 3$. If every edge of G lies on a cycle of length at most 4, then G has a spanning Eulerian subgraph.

Theorem (Harary and Nash-Williams, 1965)

Let G be a graph with at least 3 edges. Then the line graph L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

Liming Xiong (Beijing Institute of Technology

Proof idea: Ryjáček's closure + Lai's Theorem + Harary and Nash-Williams's Theorem.

Theorem(Z. Ryjáček, 1997)

If G is a claw-free graph, then there is a closed claw-free graph cl(G) such that

- there is a triangle-free graph H such that cl(G) = L(H);
- G is Hamiltonian if and only if cl(G) is Hamiltonian.

Theorem(H.-J. Lai, 1991)

Let G be a 2-connected graph with $\delta(G) \ge 3$. If every edge of G lies on a cycle of length at most 4, then G has a spanning Eulerian subgraph.

Theorem (Harary and Nash-Williams, 1965)

Let G be a graph with at least 3 edges. Then the line graph L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

Liming Xiong (Beijing Institute of Technology

Proof idea: Ryjáček's closure + Lai's Theorem + Harary and Nash-Williams's Theorem.

Theorem(Z. Ryjáček, 1997)

If G is a claw-free graph, then there is a closed claw-free graph cl(G) such that

- there is a triangle-free graph H such that cl(G) = L(H);
- G is Hamiltonian if and only if cl(G) is Hamiltonian.

Theorem(H.-J. Lai, 1991)

Let G be a 2-connected graph with $\delta(G) \ge 3$. If every edge of G lies on a cycle of length at most 4, then G has a spanning Eulerian subgraph.

Theorem (Harary and Nash-Williams, 1965)

Let G be a graph with at least 3 edges. Then the line graph L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

Liming Xiong (Beijing Institute of Technology

Thanks for your attention!!

Liming Xiong (Beijing Institute of Technology Singular edges and hamiltonicity in claw-free graphs with locally

・ 同 ト ・ ヨ ト ・ ヨ ト