HAMILTONIAN CYCLES IN SPANNING
SUBGRAPHS OF LINE GRAPHS

Hao Li, Weihua Yang, Yandong Bai, Weihua He

Laboratoire de Recherche en Informatique, C.N.R.S.-Université Paris Sud, France

Plzen, April 2nd, 2015



MOTIVATION
Line graph:

€

L(G):

€

2D

€3



MOTIVATION
Line graph:

€

L(G):

€

2D

€3

THEOREM (HARARY AND NASH-WILLIAMS, 1965)
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only if G has a dominating closed trail.
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THEOREM (HARARY AND NASH-WILLIAMS, 1965)

Let G be a graph not a star. Then L(G) is Hamiltonian if and
only if G has a dominating closed trail.

Question: If G has a dominating closed trail, can we remove
some edges in L(G) s.t. the resulting graph is Hamiltonian?
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Let G be a claw-free graph. Then
© the closure cl(G) is well-defined.
® cl(G) is the line graph of a triangle-free graph.
O c(G) = c(cl(G)).
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THEOREM (RYJACEK, 1997)

Let G be a claw-free graph. Then
© the closure cl(G) is well-defined.
® cl(G) is the line graph of a triangle-free graph.
© c(G) =c(cl(G)).

Consider an "inverse" operation of R-closure?
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¢ Robustly Hamiltonian property: for a Hamiltonian graph,
the Hamiltonian property preserves after removing some
edges.

QUESTION

Which kind of spanning subgraphs of a Hamiltonian line graph
is Hamiltonian?
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DEFINITION OF SL(G)

e it's a spanning subgraph of L(G),

e every vertex e = uv is adjacent to at least
min{dg(u) — 1, [3dg(u) + 5]} vertices of Eg(u) and to at least
min{dg(v) — 1, [3da(v) + 11} vertices of Eg(v).
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e SL(G) denote this graph family.
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THEOREM (LI, BAI, YANG AND HE)

If L(G) is Hamiltonian, then every SL(G) € SL(G) is also
Hamiltonian.

COROLLARY

If L(G) is Hamiltonian, then there are max{1, |}5(G) — 2]}
edge-disjoint Hamiltonian cycles in L(G).
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SKETCH OF THE PROOF

We need some more notation,
o Fake edge: an edge in L(G), not in SL(G).
o Stable vertex: Suppose that H is a Hamiltonian cycle of

L(G),if e~, e and e* are all in the same set Eg(v)(v is
any vertex of G), e is called a stable vertex of H.
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SKETCH OF THE PROOF

To the contrary, we assume that there is no Hamiltonian cycles
in SL(G).
We assume that H is a Hamiltonian cycle in L(G) such that
among all of the Hamiltonian cycles of L(G),

© H has the fewest fake edges and

® subject to 1, H has the most unstable vertices.
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SKETCH OF THE PROOF

e g;: stable vertex.

¢ Since the graph is finite, this progress will stop after some
steps.



SKETCH OF THE PROOF

KEY LEMMA
Let eje] be a fake edge in H, ejand e belong to Eg(u1)
(uy € V(Q)), there exists a vertex e> € Eg(uq) such that
® e16 and efeg are edges in SL(G),
O 6.6, e; all belong to Eg(u.) for a up € V(G) with
Up # Uy,
® ¢, ] is a fake edge in L(G) and e, e;, e;e5 are non-fake
edges in L(G).
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« Construct a new Hamiltonian cycle H' = P, + e2e1+.
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« Construct a new Hamiltonian cycle H' = P, + e2e1+.
e H' has fewer fake edges than H, a contradiction!
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SKETCH OF THE PROOF

e Construct a new Hamiltonian cycle in L(G),

!

H =P+ ege

e H' has the same number of fake edges with H.
o H' has more unstable vertices than H.
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SKETCH OF THE PROOF

o Case 3. ek=ej+orek=ej‘(2§j<k)

o H/ satisfies Case 1.
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FURTHER RESEARCHES

e Can we delete more edges in a Hamiltonian line graph
such that the resulting graph is still Hamiltonian?

e Are there more edge-disjoint Hamiltonian cycles in a
Hamiltonian line graph?

e For any graph G, every 4-connected SL(G) is Hamiltonian?



Thank you!
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