HAMILTONIAN CYCLES IN SPANNING SUBGRAPHS OF LINE GRAPHS

Hao Li, Weihua Yang, Yandong Bai, Weihua He

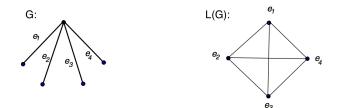
Laboratoire de Recherche en Informatique, C.N.R.S.-Université Paris Sud, France

Plzeň, April 2nd, 2015

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Line graph:



THEOREM (HARARY AND NASH-WILLIAMS, 1965)

Let G be a graph not a star. Then L(G) is Hamiltonian if and only if G has a dominating closed trail.

Question: If *G* has a dominating closed trail, can we remove some edges in L(G) s.t. the resulting graph is Hamiltonian?

・ロット (雪) (日) (日) (日)

Line graph:

THEOREM (HARARY AND NASH-WILLIAMS, 1965)

Let G be a graph not a star. Then L(G) is Hamiltonian if and only if G has a dominating closed trail.

Question: If G has a dominating closed trail, can we remove some edges in L(G) s.t. the resulting graph is Hamiltonian?

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Line graph:

THEOREM (HARARY AND NASH-WILLIAMS, 1965)

Let G be a graph not a star. Then L(G) is Hamiltonian if and only if G has a dominating closed trail.

Question: If *G* has a dominating closed trail, can we remove some edges in L(G) s.t. the resulting graph is Hamiltonian?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THEOREM (RYJÁČEK, 1997)

Let G be a claw-free graph. Then

- the closure cl(G) is well-defined.
- 2 cl(G) is the line graph of a triangle-free graph.
- **3** c(G) = c(cl(G)).

Consider an "inverse" operation of R-closure?

(ロ) (同) (三) (三) (三) (○) (○)

THEOREM (RYJÁČEK, 1997)

Let G be a claw-free graph. Then

- 1 the closure cl(G) is well-defined.
- 2 cl(G) is the line graph of a triangle-free graph.
- **3** c(G) = c(cl(G)).

Consider an "inverse" operation of R-closure?

QUESTION

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• **Robustly Hamiltonian property**: for a Hamiltonian graph, the Hamiltonian property preserves after removing some edges.

QUESTION

Which kind of spanning subgraphs of a Hamiltonian line graph is Hamiltonian?

QUESTION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• **Robustly Hamiltonian property**: for a Hamiltonian graph, the Hamiltonian property preserves after removing some edges.

QUESTION

Which kind of spanning subgraphs of a Hamiltonian line graph is Hamiltonian?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

DEFINITION OF SL(G)

- it's a spanning subgraph of L(G),
- every vertex e = uv is adjacent to at least min{d_G(u) - 1, [³/₄d_G(u) + ¹/₂]} vertices of E_G(u) and to at least min{d_G(v) - 1, [³/₄d_G(v) + ¹/₂]} vertices of E_G(v).

• SL(G) denote this graph family.

・ロト・日本・日本・日本・日本

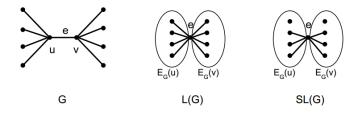
DEFINITION OF SL(G)

- it's a spanning subgraph of L(G),
- every vertex e = uv is adjacent to at least $min\{d_G(u) - 1, \lceil \frac{3}{4}d_G(u) + \frac{1}{2} \rceil\}$ vertices of $E_G(u)$ and to at least $min\{d_G(v) - 1, \lceil \frac{3}{4}d_G(v) + \frac{1}{2} \rceil\}$ vertices of $E_G(v)$.

(日) (日) (日) (日) (日) (日) (日)

DEFINITION OF SL(G)

- it's a spanning subgraph of *L*(*G*),
- every vertex e = uv is adjacent to at least $min\{d_G(u) - 1, \lceil \frac{3}{4}d_G(u) + \frac{1}{2} \rceil\}$ vertices of $E_G(u)$ and to at least $min\{d_G(v) - 1, \lceil \frac{3}{4}d_G(v) + \frac{1}{2} \rceil\}$ vertices of $E_G(v)$.

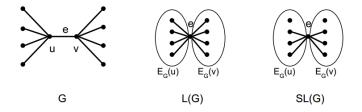


• SL(G) denote this graph family.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

DEFINITION OF SL(G)

- it's a spanning subgraph of L(G),
- every vertex e = uv is adjacent to at least $min\{d_G(u) - 1, \lceil \frac{3}{4}d_G(u) + \frac{1}{2} \rceil\}$ vertices of $E_G(u)$ and to at least $min\{d_G(v) - 1, \lceil \frac{3}{4}d_G(v) + \frac{1}{2} \rceil\}$ vertices of $E_G(v)$.



• SL(G) denote this graph family.

HAMILTONIAN CYCLES IN SL(G)

・ロト・日本・日本・日本・日本

THEOREM (LI, BAI, YANG AND <u>HE</u>)

If L(G) is Hamiltonian, then every $SL(G) \in SL(G)$ is also Hamiltonian.

COROLLARY

If L(G) is Hamiltonian, then there are $max\{1, \lfloor \frac{1}{8}\delta(G) - \frac{3}{4} \rfloor\}$ edge-disjoint Hamiltonian cycles in L(G).

HAMILTONIAN CYCLES IN SL(G)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THEOREM (LI, BAI, YANG AND HE)

If L(G) is Hamiltonian, then every $SL(G) \in SL(G)$ is also Hamiltonian.

COROLLARY

If L(G) is Hamiltonian, then there are max $\{1, \lfloor \frac{1}{8}\delta(G) - \frac{3}{4} \rfloor\}$ edge-disjoint Hamiltonian cycles in L(G).

(日) (日) (日) (日) (日) (日) (日)

We need some more notation,

- Fake edge: an edge in L(G), not in SL(G).
- Stable vertex: Suppose that *H* is a Hamiltonian cycle of *L*(*G*), if *e⁻*, *e* and *e⁺* are all in the same set *E_G*(*v*)(*v* is any vertex of *G*), *e* is called a stable vertex of *H*.

(日) (日) (日) (日) (日) (日) (日)

We need some more notation,

- Fake edge: an edge in L(G), not in SL(G).
- Stable vertex: Suppose that *H* is a Hamiltonian cycle of *L*(*G*), if *e*⁻, *e* and *e*⁺ are all in the same set *E_G*(*v*)(*v* is any vertex of *G*), *e* is called a stable vertex of *H*.

(ロ) (同) (三) (三) (三) (○) (○)

To the contrary, we assume that there is no Hamiltonian cycles in SL(G).

We assume that H is a Hamiltonian cycle in L(G) such that among all of the Hamiltonian cycles of L(G),

- *H* has the fewest fake edges and
- Subject to 1, H has the most unstable vertices.

(ロ) (同) (三) (三) (三) (○) (○)

To the contrary, we assume that there is no Hamiltonian cycles in SL(G). We assume that *H* is a Hamiltonian cycle in L(G) such that among all of the Hamiltonian cycles of L(G),

- H has the fewest fake edges and
- subject to 1, H has the most unstable vertices.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

To the contrary, we assume that there is no Hamiltonian cycles in SL(G). We assume that *H* is a Hamiltonian cycle in L(G) such that

among all of the Hamiltonian cycles of L(G),

1 H has the fewest fake edges and

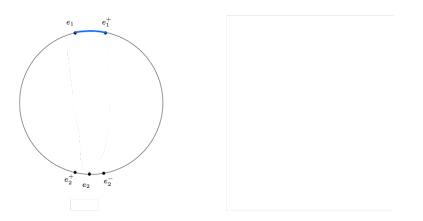
subject to 1, H has the most unstable vertices.

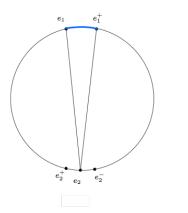
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

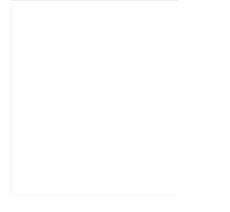
To the contrary, we assume that there is no Hamiltonian cycles in SL(G).

We assume that *H* is a Hamiltonian cycle in L(G) such that among all of the Hamiltonian cycles of L(G),

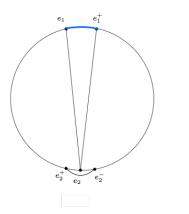
- 1 *H* has the fewest fake edges and
- 2 subject to 1, *H* has the most unstable vertices.

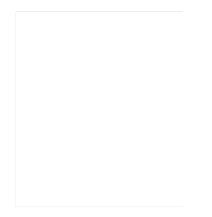




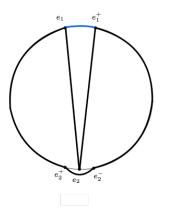


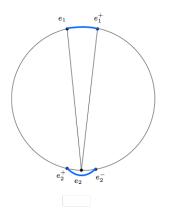
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

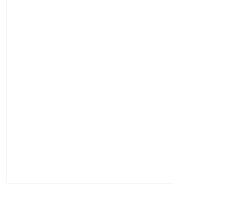


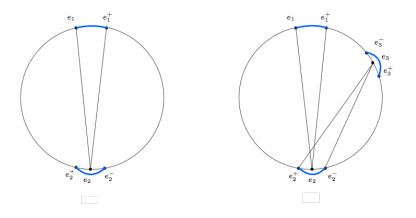


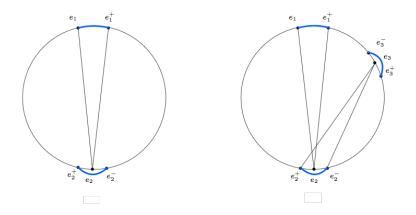
くりょう 小田 マイビット 日 うくの











- e_i: stable vertex.
- Since the graph is finite, this progress will stop after some steps.

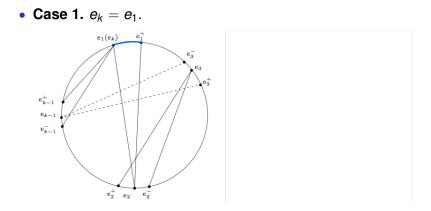
(日) (日) (日) (日) (日) (日) (日)

KEY LEMMA

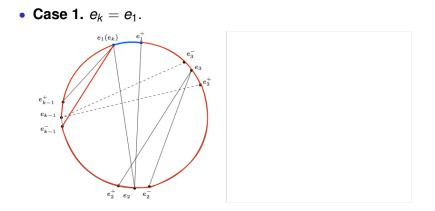
Let $e_1e_1^+$ be a fake edge in H, e_1 and e_1^+ belong to $E_G(u_1)$ $(u_1 \in V(G))$, there exists a vertex $e_2 \in E_G(u_1)$ such that

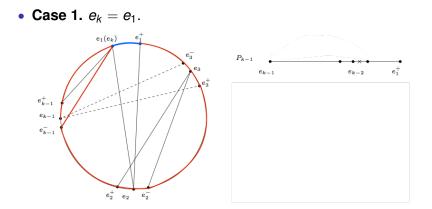
- 1 e_1e_2 and $e_1^+e_2$ are edges in SL(G),
- 2 e_2, e_2^-, e_2^+ all belong to $E_G(u_2)$ for a $u_2 \in V(G)$ with $u_2 \neq u_1$,
- **3** $e_2^- e_2^+$ is a fake edge in L(G) and $e_2^- e_2$, $e_2 e_2^+$ are non-fake edges in L(G).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

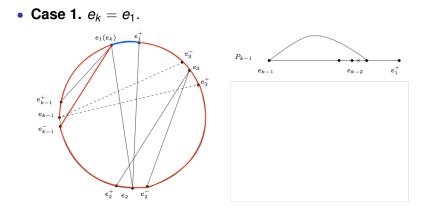


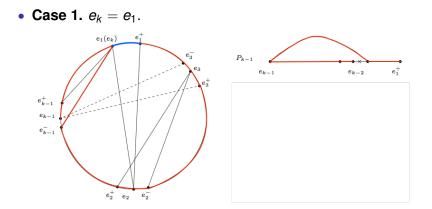
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

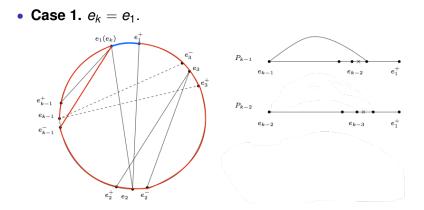


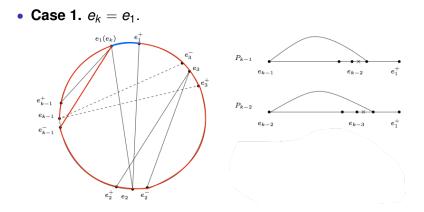


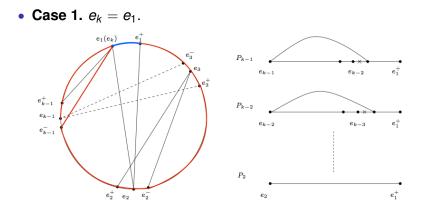
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ





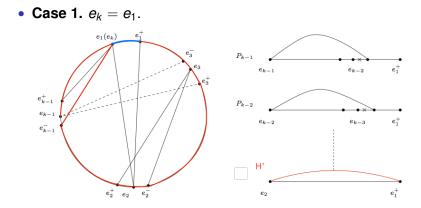




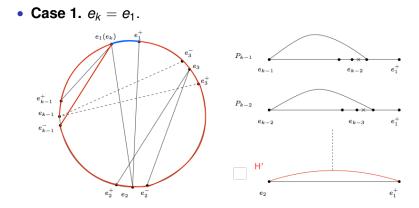


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

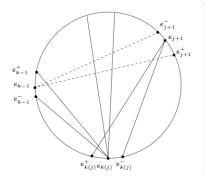


- Construct a new Hamiltonian cycle $H' = P_2 + e_2 e_1^+$.
- *H*['] has fewer fake edges than *H*, a contradiction!



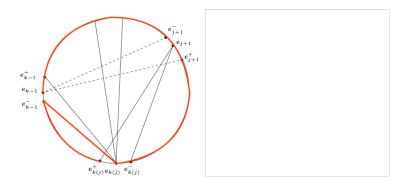
- Construct a new Hamiltonian cycle $H' = P_2 + e_2 e_1^+$.
- H' has fewer fake edges than H, a contradiction!

• Case 2.
$$e_k = e_j \ (2 \le j < k)$$

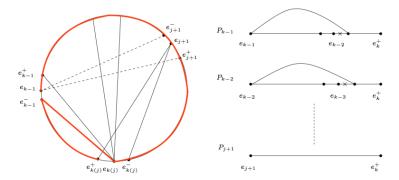


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Case 2.
$$e_k = e_j \ (2 \le j < k)$$



• Case 2. $e_k = e_j \ (2 \le j < k)$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Construct a new Hamiltonian cycle in *L*(*G*),

$$H' = P_{j+1} + e_k^+ e_{j+1}.$$

- H' has the same number of fake edges with H.
- *H*['] has more unstable vertices than *H*.

• Construct a new Hamiltonian cycle in *L*(*G*),

$$H' = P_{j+1} + e_k^+ e_{j+1}.$$

- H' has the same number of fake edges with H.
- H' has more unstable vertices than H.

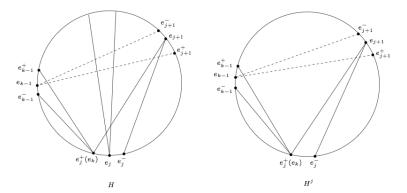
Construct a new Hamiltonian cycle in L(G),

$$H' = P_{j+1} + e_k^+ e_{j+1}.$$

- H' has the same number of fake edges with H.
- *H*['] has more unstable vertices than *H*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Case 3. $e_k = e_j^+$ or $e_k = e_j^-$ ($2 \le j < k$)



• H^j satisfies Case 1.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

• Case 3. $e_k = e_j^+$ or $e_k = e_j^-$ ($2 \le j < k$)



• H^j satisfies Case 1.

FURTHER RESEARCHES

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Can we delete more edges in a Hamiltonian line graph such that the resulting graph is still Hamiltonian?
- Are there more edge-disjoint Hamiltonian cycles in a Hamiltonian line graph?
- For any graph G, every 4-connected SL(G) is Hamiltonian?

FURTHER RESEARCHES

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Can we delete more edges in a Hamiltonian line graph such that the resulting graph is still Hamiltonian?
- Are there more edge-disjoint Hamiltonian cycles in a Hamiltonian line graph?
- For any graph G, every 4-connected SL(G) is Hamiltonian?

FURTHER RESEARCHES

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Can we delete more edges in a Hamiltonian line graph such that the resulting graph is still Hamiltonian?
- Are there more edge-disjoint Hamiltonian cycles in a Hamiltonian line graph?
- For any graph G, every 4-connected SL(G) is Hamiltonian?

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで