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MOTIVATION

Line graph:

THEOREM (HARARY AND NASH-WILLIAMS, 1965)

Let G be a graph not a star. Then L(G) is Hamiltonian if and
only if G has a dominating closed trail.

Question: If G has a dominating closed trail, can we remove
some edges in L(G) s.t. the resulting graph is Hamiltonian?
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MOTIVATION

THEOREM (RYJÁČEK, 1997)

Let G be a claw-free graph. Then
1 the closure cl(G) is well-defined.
2 cl(G) is the line graph of a triangle-free graph.
3 c(G) = c(cl(G)).

Consider an "inverse" operation of R-closure?
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QUESTION

• Robustly Hamiltonian property: for a Hamiltonian graph,
the Hamiltonian property preserves after removing some
edges.
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SL(G)

DEFINITION OF SL(G)

• it’s a spanning subgraph of L(G),

• every vertex e = uv is adjacent to at least
min{dG(u)− 1, d 3

4 dG(u) + 1
2e} vertices of EG(u) and to at least

min{dG(v)− 1, d 3
4 dG(v) + 1

2e} vertices of EG(v).

• SL(G) denote this graph family.
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HAMILTONIAN CYCLES IN SL(G)

THEOREM (LI, BAI, YANG AND HE)

If L(G) is Hamiltonian, then every SL(G) ∈ SL(G) is also
Hamiltonian.

COROLLARY

If L(G) is Hamiltonian, then there are max{1, b1
8δ(G)− 3

4c}
edge-disjoint Hamiltonian cycles in L(G).
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SKETCH OF THE PROOF

We need some more notation,
• Fake edge: an edge in L(G), not in SL(G).
• Stable vertex: Suppose that H is a Hamiltonian cycle of

L(G), if e−, e and e+ are all in the same set EG(v)(v is
any vertex of G), e is called a stable vertex of H.
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SKETCH OF THE PROOF

To the contrary, we assume that there is no Hamiltonian cycles
in SL(G).
We assume that H is a Hamiltonian cycle in L(G) such that
among all of the Hamiltonian cycles of L(G),

1 H has the fewest fake edges and
2 subject to 1, H has the most unstable vertices.
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SKETCH OF THE PROOF

• ei : stable vertex.
• Since the graph is finite, this progress will stop after some

steps.



SKETCH OF THE PROOF

KEY LEMMA

Let e1e+
1 be a fake edge in H, e1and e+

1 belong to EG(u1)
(u1 ∈ V (G)), there exists a vertex e2 ∈ EG(u1) such that

1 e1e2 and e+
1 e2 are edges in SL(G),

2 e2,e−
2 ,e

+
2 all belong to EG(u2) for a u2 ∈ V (G) with

u2 6= u1,
3 e−

2 e+
2 is a fake edge in L(G) and e−

2 e2,e2e+
2 are non-fake

edges in L(G).
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• Case 1. ek = e1.
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• Case 1. ek = e1.

• Construct a new Hamiltonian cycle H
′
= P2 + e2e+

1 .

• H
′

has fewer fake edges than H, a contradiction!
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• Case 2. ek = ej (2 ≤ j < k )
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SKETCH OF THE PROOF

• Construct a new Hamiltonian cycle in L(G),

H
′
= Pj+1 + e+

k ej+1.

• H
′

has the same number of fake edges with H.
• H

′
has more unstable vertices than H.
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SKETCH OF THE PROOF

• Case 3. ek = e+
j or ek = e−

j (2 ≤ j < k )

• H j satisfies Case 1.
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FURTHER RESEARCHES

• Can we delete more edges in a Hamiltonian line graph
such that the resulting graph is still Hamiltonian?

• Are there more edge-disjoint Hamiltonian cycles in a
Hamiltonian line graph?

• For any graph G, every 4-connected SL(G) is Hamiltonian?
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Thank you!


	Motivation

