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Symmetry vs Regularity

The main goal of the conference is to reflect recent significant events in
the development of Algebraic Graph Theory (AGT) and related areas of
mathematics. In particular it will commemorate the 50th anniversary of
the discovery of a polynomial-time algorithm for the computation of the
coherent closure of a given graph. Over the years, this algorithm has played
a significant role in both AGT and computer science.
The abstracts of the talks to be given at the conference boldly demonstrate
the accomplishment process of the principal goal of the conference. The talks
included in the memorial session trace back the modern Algebraic Graph
Theory (AGT) to its founders: I.Schur, R.C.Bose, D.Mesner, D.Higman,
B.Weisfeiler, A.Leman, Ph.Delsare, H.Wielandt and others. These talks also
mention the famous people contributed to popularization of AGT, notably
J.J.Seidel, J.H.Conway and others including some participants of the con-
ference. The keynote and invited lectures cover most of the well established
directions, objects and problems of the modern AGT including Association
Schemes, Coherent Configurations, Cayley Graphs and Graph Isomorphism
Problem. The latter topic is highlighted by the tutorial sessions by L.Babai on
his recent discovery of the quasi-polynomial time algorithm. The contributed
talks and short presentations further refine the main directions of the current
AGT to more specific questions and expose some further applications. It is
not unlikely that some of these questions will grow into new important areas
of AGT. The variety of themes and objects as well as numerous connections
with other mathematical areas demonstrate that currently AGT experiences
a very healthy stage of development and expansion. It is hoped by the
organizers that the conference will stimulate further these developments and
will enable the participants to find new connections and applications of their
research.
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Logo of WL2018

The Paulus-Rozenfeld-Thompson graph T was independently discovered at
least three times at Eindhoven (1973), Moscow (1973) and Tucson (1979).
It is one of the ten strongly regular graphs (SRGs) with the parameters
(v, k, λ, µ) = (26, 10, 3, 4). Among these 10 graphs the SRG T has the largest
group AutT of order 120, which is isomorphic to A5 ×Z2, the full symmetry
group of the dodecahedron ∆, regarded as a distance transitive graph.
In modern terms, T appears as merging of relations of rank 14 coherent
configuration W , namely 2-orbits of the induced intransitive action (A5, C1 ∪
C2) with two fibers of length 20 and 6. The fiber C1 consists of all ordered
pairs (a, b) from the interval [0, 4]. The fiber C2 consists of the six images
of the pentagon ([0, 4], {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {0, 4}}) under action of
(A5, [0, 4]). There are three kinds of edges in the SRG T :

• edges in distance 3, graph ∆3:
• edges in distance 5, graph ∆5;
• edge between pair (a, b) and pentagon X, provided {a, b} is edge in X.

The diagram presents visual description of the SRG T , as merging of W , on
the canvas of ∆ with six extra vertices, corresponding to the pentagons with
nodes from [0, 4]. Different colors correspond to different orbits of A5 on the
edges of T .
A more detailed description of this Logo will appear in article Animated logo
of WL2018. The logo is created by a team of organizers, consisting of Štefan
Gyürki, Mikhail Klin and Matan Ziv-Av.
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An alternative drawing of Paulus-Rozenfeld-Thompson graph.
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Abstracts

Keynote lectures

Association schemes, graph homomorphisms, and synchronization
Peter J. Cameron

University of St Andrews, Fife, UK

One of the people who developed the theory of coherent configurations
was Donald Higman. He came to Oxford in 1970–1971, where (in
addition to being my DPhil examiner) he gave a course of lectures on
the subject, entitled “Combinatorial Considerations about Permutation
Groups”; the notes were taken by Susanna Howard and me, and were
published in the Oxford Mathematical Institute Lecture Notes series.
Recently, applications of this topic have emerged in the theory of syn-
chronizing finite automata, where a kind of “duality” between graphs
and transformation monoids is important. Investigation of some par-
ticular cases, especially the Johnson scheme, led Mohammed Aljohani,
John Bamberg and me to a conjecture which would extend Peter
Keevash’s celebrated result about the existence of Steiner systems.
My talk will reminisce about these topics.

Applications of semidefinite programming, symmetry, and algebra
to graph partitioning problems

Edwin van Dam
Tilburg University, Netherlands

A joint work with Renata Sotirov.
We will present semidefinite programming (SDP) and eigenvalue
bounds for several graph partitioning problems.
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The graph partition problem (GPP) is about partitioning the vertex
set of a graph into a given number of sets of given sizes such that the
total weight of edges joining different sets — the cut — is optimized.
We show how to simplify known SDP relaxations for the GPP for
graphs with symmetry so that they can be solved fast, using coherent
algebras.
We then consider several SDP relaxations for the max-k-cut problem,
which is about partitioning the vertex set into k sets (of arbitrary
sizes) such that the cut is maximized. For the solution of the weakest
SDP relaxation, we use an algebra built from the Laplacian eigenvalue
decomposition — the Laplacian algebra — to obtain a closed form
expression that includes the largest Laplacian eigenvalue of the graph.
This bound is exploited to derive an eigenvalue bound for the chromatic
number of a graph. For regular graphs, the new bound on the chromatic
number is the same as the well-known Hoffman bound. We demonstrate
the quality of the presented bounds for several families of graphs, such
as walk-regular graphs, strongly regular graphs, and graphs from the
Hamming association scheme.
If time permits, we will also consider the bandwidth problem for graphs.
Using symmetry, SDP, and by relating it to the min-cut problem, we
obtain best known bounds for the bandwidth of Hamming, Johnson,
and Kneser graphs up to 216 vertices.

Towards the classification of (P and Q)-polynomial schemes
Tatsuro Ito

Anhui University, China

The classification of (P and Q)-polynomial schemes was proposed
by Eiichi Bannai in his lectures at Ohio State University late in the
70s. He made a list of known (P and Q)-polynomial schemes, which
convinced him that (P and Q)-polynomial schemes are the discrete
analogue of compact symmetric spaces of rank 1. He conjectured that
(P and Q)-polynomial schemes with sufficiently large diameter are
either in his list or some sort of relatives to those in his list.
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Starting with the definition of (P and Q)-polynomial schemes and an
explanation of the list of Bannai, I will give a survey of the present
status of the classification, which falls into two problems: (A) to
show (P and Q)-polynomial schemes have the same parameters as in
Bannai’s list, (B) to characterize the (P and Q)-polynomial schemes
in Bannai’s list by the parameters. I will also discuss representation
theory of Terwilliger algebras of (P and Q)-polynomial schemes in
some depth in relation to the problem (A), focusing on the most vital
open problems about it.

Isomorphism problem for Cayley objects
Mikhail Muzychuk

Ben-Gurion University of the Negev, Be’er Sheva, Israel

A Cayley object over a finite group H is any relational structureR with
point set H which is invariant under the group of right translations HR.
The well-known examples of Cayley objects include Cayley graphs,
Cayley maps, group codes etc. The isomorphism problem for Cayley
objects may be formulated as follows:
Given two combinatorial objects over the group H, find whether they
are isomorphic or not.
In my talk I’ll present the old and the new results which solves the
above problem for different classes of objects.

Abstract regular polytopes and Y -presentations for sporadic
groups

Dmitrii Pasechnik
University of Oxford, UK

Presentations for sporadic groups by a Yabc-shaped Coxeter diagram
with 1 + a + b + c generators and few extra relations appear in a
number of contexts, cf. e.g. [2, 3, 4, 6, 11, 12]. We observe that an
easy “twisting” construction applied to Yaba gives rise to a quotient of
a Coxeter group with linear diagram {31+a, 4, 31+b}, and thus (usually)
to a combinatorial object called abstract regular polytope, studied in
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the past 40 years, cf. e.g. [1, 5, 7, 8, 10]. This allows to extend
and augment the list of abstract universal (a.k.a. simply connected)
polytopes of type {32, 4, 32}, disproving a long-standing conjecture by
P. McMullen and E. Schulte [7, 8].
Our new universal polytope is related to a well-known Y -shaped pre-
sentation for the sporadic simple group Fi22, and admits S4×O+

8 (2):S3
as the automorphism group. We also discuss further extensions of
its quotients in the context of Y -shaped presentations. Also, two
other known examples of universal {32, 4, 32}-polytopes are related to
Y -shaped presentations of orthogonal groups over F2. More details
may be found in [9].
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Schurian vs non-schurian coherent configurations
Ilia Ponomarenko

St Petersburg Department of Steklov Institute of Mathematics, Russia

Schurian coherent configurations are those formed by the orbitals of
permutation groups. They are exactly the closed objects with respect
to the Galois correspondence between coherent configurations and
permutation groups. The property of a coherent configuration to be
schurian is preserved under taking quotients, direct sums, tensor and
wreath products, etc.
The vast majority of coherent configurations are non-schurian. In a
sense, this is a reason that the graph isomorphism problem is difficult.
Moreover, a non-schurian coherent configuration can be arbitrarily close
to a schurian one; this shows that purely combinatorial methods (like
the multidimensional Weisfeiler-Leman algorithm) are not sufficient to
solve the graph isomorphism problem.
A lot of known results can be formulated in terms of the schurity
problem, which consists in identifying schurian coherent configurations
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in a given class. For example, the Tits theorem on spherical buildings
essentially states that the homogeneous coherent configurations associ-
ated with the buildings of rank at least three are schurian. Two other
recent results, worthy of attention, relate the schurity of circulant
schemes and solving linear systems modular congruences, and the
schurity of quasiregular coherent configurations with the existence of
amalgam of finite abelian groups.

From transposition groups to algebras
Sergey Shpectorov

University of Birmingham, UK

It is well known that the majority of finite simple groups arise as the
groups of automorphisms of Lie algebras, which form an important
class of non-associative algebras. It is somewhat less known that
classical and some exceptional groups are related to Jordan algebras
which are another important class of non-associative algebras. Recently
this again came into focus due to the introduction of the axial algebra
paradigm, pioneered by the Majorana algebras of Ivanov.
In the talk we will discuss these recent developments and present the
construction of a class of new algebras with “Monster” fusion.
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Memorial session

How group theory and statistics met in association schemes
Rosemary Bailey

University of St Andrews, Fife, UK

This talk has two beginnings, both in the 1930s. I. Schur considered
the orbits, of a transitive permutation group, on ordered pairs of points.
The partition into orbits is very natural, and properties of the partition
are helpful in understanding the groups. This is one fore-runner of
coherent configurations. R. C. Bose and his collaborators and students
generalized earlier work of F. Yates by introducing partially balanced
incomplete-block designs for parameters where no balanced incomplete-
block design exists. The condition of partial balance ensures that the
relevant matrices can be easily inverted by hand, which was important
for data analysis in the pre-computer age. This condition relies on the
existence of a (symmetric) association scheme.
In the 1950s, D. Mesner worked on association schemes as a PhD
student, later combining with Bose to present what is now called
the Bose-Mesner algebra. Not only that, he devised a new type of
association scheme, which he called negative Latin square type. He
found one on 100 points. In the 1960s Bose made the topic interesting
to pure mathematicians by naming strongly regular graphs. These
proved fruitful in the search for sporadic simple groups, with the result
that D. G. Higman and C. C. Sims rediscovered Mesner’s association
scheme on 100 points.
Meanwhile, other collaborators of Bose’s, including K. R. Nair and J.
N. Srivastava, were generalizing association schemes in different ways
that now fit within the framework of coherent configurations.
I will conclude by mentioning the series of lectures on coherent config-
urations that D. G. Higman gave to research students in group theory
at Oxford when I was there. It is a shame that some of the people
that I mention died before all the connections were understood and
acknowledged.
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History of the study of association schemes, a personal view
Eiichi Bannai

Shanghai Jiao Tong University, Shanghai, China

I was asked to talk on the history of association schemes. So, I will try
to talk on it as much as I could. However, it is too big of a subject,
and it is not so easy to give a comprehensive picture. So, please allow
me to give a talk only based on my personal view.
It seems that the origin of association schemes, as well as the name, is
in statistics, in particular by R.C. Bose and their associates. Another
source seems to be in group theory, particularly permutation group
theory, as seen in the earlier works of Schur, Wielandt and others.
In 1960’s these two sources discovered each other and the theory of
association schemes became very rich, as is seen in earlier papers
on permutation groups by the works of Feit-Higman, D.G. Higman,
N.L. Biggs, P. Neumann and many others. I think Delsarte (1973)
made it very clear that the association schemes provide an ideal
uniform framework to study design theory and coding theory. In fact,
association schemes play a key role in unifying individual areas such
as algebraic graph theory, algebraic coding theory, algebraic design
theory, in the name of algebraic combinatorics. This viewpoint was
presented in the book: Algebraic Combinatorics I, by Bannai and Ito
published in 1984. There, the influence of the classification problem of
finite simple groups was eminent and we put the classification problem
of P-and Q-polynomial association schemes as the main target of this
research direction. Furthermore, the book: Distance Regular Graphs
by Brouwer, Cohen and Neumaier published in 1989, gave a very
comprehensive treatment on various broad subjects. The study of
association schemes (as well as coherent configurations) and various
related topics has been flourishing, including many other viewpoints
on association schemes as well as connections with other branches of
mathematics and other sciences.
I would like to give a very brief overview of recent research directions in
association schemes and related topics, e.g. the works of Terwilliger-Ito
and many many others, but this may be presented only very partially.
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The book by Bannai-Ito mentioned above was immediately translated
into Russian (1987) by a group of researchers in Russia at that time.
The encounter with the translators and the Russian school of algebraic
combinatorics was very important for us. I also would like to recall
our encounters with the Russian mathematicians, including Weisfeiler,
Faradjev, A.A. Ivanov, A.V. Ivanov, Shpectorov, Klin, Muzychuk, and
many others.

Graphs and groups
Robert Curtis

University of Birmingham, UK

We start with a brief description of a Part III course in Cambridge
given by J.A. Todd (of the Todd-Coxeter coset enumeration algorithm)
in 1968. In this he described in detail the outer automorphism of the
symmetric group Sym(6), used this to construct the Steiner system
S(5, 6, 12), and so obtained the Mathieu group M12. He then used the
outer automorphism of M12 to construct the Steiner system S(5, 8, 24)
and hence obtained the Mathieu group M24.
I shall indulgently reminisce about those early days following the
discovery of the Leech lattice and the Conway groups, and speak
briefly about others such as John McKay and Mike Guy who played
significant roles. The origin of the so-called Miracle Octad Generator
(MOG) will be described and some of its applications will be referred
to in the sequel.
Some years later an innocent question from a colleague in connection
with arc transitive graphs led me to recognise the connection between
the Klein map and M24. I called on W.L Edge in his old people’s home
near Edinburgh to discuss this and will recount my interesting visit
in which he recalled his lecturing tour of Ireland in the days when De
Valera was the president.
The Klein-Mathieu connection led to the concept of symmetric gener-
ation of groups which, in many ways, has its roots in algebraic graph
theory. After all, given a graph Γ with group of symmetries N , one
can ask if there is a larger group G which contains a generating subset
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of elements corresponding to the elements of Γ along with a copy
of N acting on it. This process will be illustrated by obtaining the
Higman-Sims group from the beautiful Hoffman-Singleton graph, and
graphs preserved by M24 will yield the Conway group ·O and the
largest Janko group J4.

“Symmetry vs Regularity”. How it started and what it led to
Igor Faradjev

Institute for Systems Analysis, Federal Research Center “Computer
Science and Control” of Russian Academy of Sciences, Russia

The talk is divided to two parts. In the first part is described the
author’s vision of the process of origin and development of algebraic
combinatorics in 1968–1990 years. In more detail the author dwells
on the events, in which either he himself participated, or was a direct
onlooker. The second part is devoted to the author’s personal rela-
tionship with A.Leman and B.Weisfeiler and the atmosphere in which
Soviet mathematicians lived and worked.

On the power of WL[k]
Martin Fürer

Pennsylvania State University, PA, USA

A wrong conjecture about the power of the k-dimensional Weisfeiler-
Leman algorithm led to the discovery of its basic limitation. WL[k]
cannot replace the use of group theory for the graph isomorphism
problem restricted to graphs of degree 3, unless k grows proportional
to the order of the tested graphs.
On the other hand, WL[2] has strong implications in spectral graph
theory. This simple discrete algorithm is sufficiently powerful to replace
the numerical approximations in the bounded eigenvalue multiplicity
case of the graph isomorphism problem. In fact, WL[2] determines
not only the length of the projection of a standard basis vector into
any eigenspace, but also the angel between any two such projections.
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Jaap Seidel’s network
Willem Haemers

Tilburg University, Netherlands

In the seventies of the last century I was a student at the Technical
University of Eindhoven under supervision of Jaap Seidel. In these
years there was much activity in algebraic graph theory and Jaap
Seidel played a central role. Jaap had major contributions to the field,
and maybe more importantly, he had a large network of mathematical
friends and he often initiated collaboration when he found that the
research was related. In the presentation I will recall memories of that
periode that illustrate the influence of Jaap Seidel to the developments
on “symmetry and regularity”.

Remembering Volodya Zaichenko
Andrei Ivanov

Nvidia Corporation, USA

When we remember the departed loved ones, we remember with a
gratitude what we owe them and what they did for us. . .What they
taught us, or what we ourselves learned from them. And we also
remember what they gave us intentionally or accidentally, even some-
times without knowing that it was a real gift for us. About some of
such gifts, which I received from Volodya Zaichenko in more than 20
years of our close acquaintance, I want to tell.

Dale Mesner and his contributions to algebraic combinatorics
Robert Jajcay

Comenius University, Bratislava, Slovakia

Bose-Mesner algebras and Kramer-Mesner matrices are probably the
two best known contributions of Dale Marsh Mesner in the area of
discrete mathematics. Dale’s contributions are, however, not limited
to these two, and beside his mathematical contributions, it was also
his deep humanity and collegiality that made him an important figure
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to value and remember. We present an eye-witness tribute to Dale’s
legacy as a mathematician and as a human being.

Schur, Wielandt, Tamaschke: The development of S-rings into a
tool for group theorists
Kenneth W. Johnson

Penn State University, Abington, USA

I will discuss the history of how Schur’s papers were taken up and
used in group theory. Three main methods were used to examine
permutation groups with regular subgroups: character theory, S-rings
and invariant relations. The theory of B-groups (named after Burnside
but not to be confused with what are now called Burnside groups)
often involved applications of S-rings. Burnside’s original results
which motivated Schur’s papers used group character theory, and some
results by other authors also went along this route. However the group
character theory papers seem to have been unusually prone to error,
and even the “result” of Burnside which motivated the 1933 paper
of Schur had a gap, so Schur’s proof was in fact the first. Standard
references are Wielandt’s book [3] the set of notes [2], and the article
by P.M. Neumann in [4]. If time permits I may say something about
the use of S-rings in probability (see [1]).
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Issai Schur, Helmut Wielandt and schurian Schur-rings
Reinhard Pöschel

TU Dresden, Germany

In 1933 I. Schur introduced (matrix) rings with additional structure in
connection with a generalization of a theorem of W. Burnside. These
rings later (in an equivalent form) were called Schur-rings (S-rings)
by H. Wielandt who developed the theory of S-rings considerably. In
particular, H. Wielandt gave a counter-example to the presupposition
of I. Schur that each S-ring is the transitivity modul of a permutation
group (being transitive and containing a regular subgroup).
In the talk this history is sketched which led also to the notion and
investigation of so-called schurian as well as non-schurian S-rings.

Variations on some themes in the work of Donald G.Higman
Alyssa Sankey

University od New Brunswick, Canada

There is a comprehensive account of Don Higman’s work in a 2009
paper of Bannai, Griess, Praeger, and Scott which also includes many
personal stories. After touching on some of the highlights therein,
this talk will focus on work from ’88 through ’95 on strongly regular
designs (of the first and second kind), strongly regular decompositions
(with Haemers), imprimitive rank 5 schemes, weights and t-graphs,
and uniform schemes (unpublished and later fully developed by van
Dam, Martin, and Muzychuk). Generally speaking, this work involves
analysis of coherent configurations with small rank, and the problem
of classifying imprimitive association schemes. Some themes that
arise are methods of producing new coherent configurations from old:
fusion, refinement, restriction to – and quotients by – parabolics, and
Weisfeiler-Leman stabilization.
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Boris Weisfeiler (1941-1985?). Life of mathematician, adventurer,
and uncle

Lev Weisfeiler

Boris Weisfeiler was a brilliant mathematician and had worldwide
recognition. Born in Moscow in 1941, he was a great student and
excelled at math from early years.
Soviet system prevented him from achieving success in Russia and he
emigrated to the USA in 1975. There he became a math professor and
published a number of scientific papers with very significant results.
Boris was also an avid traveler and experienced hiker with intense
curiosity to see new things and to meet new people. Boris went on a
hiking vacation to Chile in late 1984 and disappeared there without a
trace.
His sister, Olga Weisfeiler, led efforts to find out what happened to
him for the next 33 years.
The talk will cover his biography and significant dates/events in his
life. To learn more about B. Weisfeiler work and his family effort to
find him, please visit http://boris.weisfeiler.com.
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Invited lectures

The Graham Higman method and beyond
Alexander Gavrilyuk

Pusan National University, South Korea

In the monograph “Permutation groups” [2], Peter Cameron gave
a proof, which was due to Graham Higman, that a putative Moore
graph of valency 57, i.e., a strongly regular graph with parameters
(3250, 57, 0, 1), cannot be vertex-transitive. The proof is based on
calculating character values of certain representations of the automor-
phism group of an association scheme and the fact that these values
must be algebraic integers. This gives a necessary condition which
may rule out the existence of some automorphisms, and we will refer
to it as the Higman method. The idea itself probably goes back to
the celebrated work of Feit and Higman on generalized polygons [4],
which inspired Benson [1] to apply it to generalized quadrangles with
prescribed symmetries. (The result of Benson was extended to other
types of incidence structures and became known in finite geometry as
the Benson type theorems, [3].)
In this survey talk, we give an overview of the Higman (-Benson)
method and its recent applications [3, 5, 6, 7] which include characteri-
zations, constructions and non-existence results of some strongly/distance
regular graphs with prescribed symmetries.
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16 July 1–July 7, 2018

[5] Mačaj M., Širáň J. Search for properties of the missing Moore
graph. Linear Algebra and its Applications 432 (2010), 2381-2398.

[6] Makhnev A.A. On automorphisms of distance-regular graphs. Jour-
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Minimal degree of the automorphism group of primitive coherent
configurations
Bohdan Kivva

University of Chicago, IL, USA

The minimal degree of a permutation group G is the minimum number
of points not fixed by non-identity elements of G. Lower bounds on
the minimal degree have strong structural consequences on G. In
2014 Babai proved that the automorphism group of a strongly regular
graph with n vertices has minimal degree at least cn, with known
exceptions. Strongly regular graphs correspond to primitive coherent
configurations of rank 3. We extend Babai’s result to primitive coher-
ent configurations of rank 4. We also show that the result extends to
non-geometric primitive distance-regular graphs of bounded diameter.
The proofs combine structural and spectral methods. The results
have consequences to primitive permutation groups that were previ-
ously known using the classification of finite simple groups (Cameron,
Liebeck).

Integral Cayley graphs on Symn and An

Elena Konstantinova
Sobolev Institute of Mathematics, Novosibirsk State University, Russia

The problem of classifying integral graphs was suggested by F. Harary
and A.J. Schwenk in the 1970’s. A graph is said to be integral if all
eigenvalues of the adjacency matrix are integers. Since the general
problem of classifying integral graphs seems too difficult, special classes
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of graphs are investigated. In this talk we discuss recent progress on
characterizing integral Cayley graphs on the symmetric group Symn

and the alternating group An.

Coherent configurations with nonsolvable automorphism group
Andrey Vasilyiev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Let X = (Ω, S) be a coherent configuration on a set Ω. Due to the
well-known Babai–Lucks result there is a polynomial-time algorithm
which finds the automorphisms of X inside any given permutation
group H ≤ Sym(Ω) of composition width bounded by a constant.
This explains an interest to coherent configurations having nonsolvable
automorphism group. One can get such a configuration X by taking
the orbitals of a nonsolvable group G. In this case, G is a subgroup
of the automorphism group Aut(X ) of X , and if G is nonsolvable, so
is Aut(X ). The same picture arises in the case of Cayley graphs (or
Cayley schemes) over nonsolvable groups. Indeed, if Γ is a Cayley
graph for a (nonsolvable) group G, then G is included in Aut(Γ) as
a regular subgroup. We are going to discuss some new results and
techniques on the isomorphism problem for coherent configurations of
the above types.

The Weisfeiler-Leman dimension and the speed of color
stabilization — logical and algorithmic aspects

Oleg Verbitsky
Humboldt University of Berlin, Germany

Let WL-dim(G) denote the Weisfeiler-Leman dimension of a graph
G, that is, the minimum k such that the k-dimensional Weisfeiler-
Leman algorithm identifies G up to isomorphism. Furthermore, let
WLk(G) denote the number of color refinement rounds performed by
the k-dimensional Weisfeiler-Leman algorithm on the input G until
the partition of V (G)k stabilizes.
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If WL-dim(G) is bounded by a constant k for all G in a class of graphs
C, then the isomorphism problem for C is solvable in polynomial time,
namely in time O(nk+1 logn), where n denotes the number of vertices
in G. If, moreover, WLk(G) = O(logn) for all G ∈ C, then the problem
is solvable even in logarithmic parallel time.
It is known that WL-dim(G) ≤ k if and only if the graph G is definable
up to isomorphism by a first-order sentence using at most k+1 variables
(possibly with many occurrences) and counting quantifiers. Moreover,
the quantifier depth of this sentence is closely related to WLk(G). In
this way, a very efficient isomorphism algorithm for a class of graphs
C can be obtained by proving that every graph in C is definable in a
finite-variable counting logic with logarithmic quantifier depth. This
approach works for graphs of bounded tree-width, planar graphs, and
interval graphs; see, e.g. [1].
After surveying this line of research, we will consider more general
combinatorial questions. Let Ck denote the class of all graphs G with
WL-dim(G) ≤ k. Thus, C1 consists of the graphs whose isomorphism
type is identifiable by Color Refinement, and C2 consists of the graphs
identifiable by the original Weisfeiler-Leman algorithm. The class C1
admits an efficient characterization. Obtaining such a characterization
for C2 is currently out of reach; this would include understanding of
which strongly regular graphs are determined by their parameters
uniquely.
We will conclude with a discussion of the speed of the Weisfeiler-
Leman stabilization. Trivially, WLk(G) < nk. There are graphs with
WL1(G) = (1−o(1))n, which turns out to be meaningful in the context
of distributed computing [2]. On the other hand, it is known [3] that
WL2(G) = o(n2) for all G.
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Primitive coherent configurations with very many automorphisms
John Wilmes

Georgia Institute of Technology, Atlanta, GA, USA

Coherent configurations (CCs) are highly regular colorings of the set
of ordered pairs of a “vertex set”; each color represents a “constituent
digraph.” Their history goes back to Schur in the 1930s. A CC is
primitive (PCC) if all its constituent digraphs are connected.
We address the problem of classifying PCCs with large automorphism
groups. This project was started in Babai’s 1981 paper [1] in which
he showed that only the trivial PCC admits more than exp(Õ(n1/2))
automorphisms. (Here, n is the number of vertices and the Õ hides
polylogarithmic factors.)
In joint work with Xiaorui Sun, we classify all PCCs that have more
than exp(Õ(n1/3)) automorphisms, making the first progress on Babai’s
conjectured classification of all PCCs with more than exp(nε) auto-
morphisms. Specifically, we prove that the only primitive coherent
configurations with more than exp(Õ(n1/3)) automorphisms are trivial
configurations, Johnson schemes, and Hamming schemes.
Our result implies an exp(Õ(n1/3)) bound on the order of primitive
but not doubly transitive permutation groups, with known exceptions.
This result was previously known only through the Classification of
Finite Simple Groups [2], while our proof is elementary and almost
completely combinatorial.
A crucial element of our proof is the discovery of “asymptotically uni-
form clique geometries” on PCCs in a certain range of the parameters.
In cases when such a geometry is present and has only two cliques at
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each vertex, we can directly classify all possible PCCs. When such
geometries are not present, or when there are more than three cliques
at each vertex, we instead find a set of vertices such that individual-
ization of these vertices gives a discrete coloring after two rounds of
Weisfeiler-Leman color refinement.
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Contributed talks

Graph switching, 2-ranks, and graphical Hadamard matrices
Aida Abiad

Maastricht University, Netherlands

We study the behaviour of the 2-rank of the adjacency matrix of a
graph under Godsil-McKay switching, and apply the result to certain
graphs coming from graphical Hadamard matrices of order 4m. Starting
with graphs from known Hadamard matrices of order 64, we find (by
computer) many Godsil-McKay switching sets that increase the 2-rank.
Thus we find strongly regular graphs with parameters (63, 32, 16, 16),
(64, 36, 20, 20), and (64, 28, 12, 12) for almost all feasible 2-ranks. In
addition we work out the behaviour of the 2-rank for a graph product
related to the Kronecker product for Hadamard matrices, which enables
us to find many graphical Hadamard matrices of order 4m for which
the related strongly regular graphs have an unbounded number of
different 2-ranks.
This is joint work with S. Butler and W.H. Haemers.

Geometric structures on the complement of a knotted θ-graph
embedded in S3

Nikolay Abrosimov
Laboratory of Topology and Dynamics of Novosibirsk State University,

Russia

A joint work with Alexander Mednykh and Daria Sokolova.
We consider the figure-eight knot 41 with a bridge which is a knotted
θ-graph embedded in S3. An Euclidean structure on the figure-eight
knot arises when its conical angle α equals 2π/3 [1]. An explicit
construction of fundamental set for a cone-manifold 41(α) in E3 was
given in [2]. The existence of the euclidean structure on figure-eight
with a bridge was shown in [3].
In the present work we consider a two-parameter family of cone mani-
folds 41(α, γ) whose singular set is the figure-eight knot with a bridge
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and conical angles α and γ along them. For such cone manifolds we
construct a fundamental set using the special representations of the
fundamental group in PSO(1, 3) and PSL(2, C). That is a non-convex
polyhedron P having 20 triangular faces and 12 vertices embedded
into the Cayley-Klein model of H3. We establish existence conditions
for the hyperbolic structure on 41(α, γ).

Theorem 1. A hyperbolic structure on 41(α, γ) is exist if and only if{
−1 + 3M2 + 12X2 − 4M2X2 − 16X4 ≥ 0, (i)
5 + 6M2 +M4 − 60X2 − 12M2X2 + 80X4 > 0, (ii)

where M = cot α2 , α ∈ (π3 , π), X = cos θ2 , θ ∈ (0, π2 ) and θ is the angle
of relative rotation between singular components. The equality in (i) is
achieved under the condition γ = 2π, i.e. when the bridge disappears.
The equality in (ii) is achieved if there exist an Euclidean structure
on 41(α, γ).

Theorem 2. If cone-manifold 41(α, γ) admits a hyperbolic structure
then

− cos γ2 = 8u2 − 16u4 + 5w − 40u2w + 80u4w + 32u2w2 − 128u4w2

− 20w3 + 64u2w3 + 64u4w3 − 64u2w4 + 16w5,

where u = 1
2 trA = 1

2 trB = cosα, w = tr(AB−1) = u2 − (1− u2) chρ
and ρ = 2h + i θ is the complex hyperbolic distance between the
singular components of 41(α, γ).
This work was supported by the Laboratory of Topology and Dynamics, Novosibirsk State
University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of
the Russian Federation).
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Strongly regular graphs constructed from groups
Dean Crnković

University of Rijeka, Croatia

A construction of 1-designs determined by a transitive action of a
finite group is given in [1]. Under certain conditions the incidence
matrix of a constructed 1-design is symmetric with zero diagonal, i.e.
this matrix is the adjacency matrix of a regular graph. Using this
method we construct a number of strongly regular graphs, including
the first known examples of strongly regular graphs with parameters
(216, 40, 4, 8) and (540, 187, 58, 68). This construction also leads to a
construction of some distance-regular graphs with diameter greater
than 2. Further, we discuss linear codes obtained from the constructed
graphs. The obtained codes usually have large automorphism groups,
hence they are suitable for permutation decoding.
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The Graph Isomorphism Problem and the Module Isomorphism
Problem

Harm Derksen
University of Michigan, Ann Arbor, MI, USA

Brooksbank and Luks gave a polynomial time algorithm for testing
whether two given n-dimensional modules are isomorphic. In my talk
I will explain how to use this result to build a stronger version of the
Weisfeiler-Leman algorithm. This new algorithm can also distinguish
pairs of graphs constructed by Cai, Fürer and Immerman in polynomial
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time that cannot be distinguished in polynomial time by the classical
Weisfeiler-Leman method.

PI-eigenfunctions of the star graphs
Sergey Goryainov

Shanghai Jiao Tong University, China

Based on joint work in progress with
Vladislav Kabanov, Elena Konstantinova, Leonid Shalaginov and
Alexandr Valyuzhenich.
Denote by Symn the symmetric group on {1, 2, . . . , n}. We investigate
eigenfunctions of the Star graph Sn = Cay(Symn, S), n > 2, which is
the Cayley graph on Symn with the generating set S = {(1 i) | 2 6
i 6 n}. For any n > 4, the spectrum of the Star graph Sn is integral
and consists of all integers in the range −(n− 1), . . . , n− 1 (see [1]).
This follows from the fact that the adjacency matrix of Sn coincides
with the transformation matrix of the Jucys-Murphy element Jn =
(1 n) + . . .+ (n− 1 n) acting on the group algebra C[Symn].
In this talk, for any positive integers n > 3 and m with n > 2m,
we present a family of (1,−1, 0)-eigenfunctions (we call them PI-
eigenfunctions) of the Star graph Sn with eigenvalue n−m− 1, and
establish a connection between these eigenfunctions and the standard
basis of a Specht module. More precisely, we embed a permutation
module into C[Symn] and prove that an eigenfunction of the Jucys-
Murphy operator Jn with eigenvalue n −m − 1, n > 2m, given by
a polytabloid can be expressed as a sum of PI-eigenfunctions of Sn.
The discussed results are presented in [2].
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Edge-regular graphs and regular cliques
Gary Greaves

Nanyang Technological University, Singapore

We solve a problem of Neumaier about the existence of non-strongly-
regular edge-regular graphs that pos sess regular cliques. In this talk,
we will present a construction of such graphs. This talk is based on
joint work with Jack Koolen.

On p-valenced association schemes whose thin residue has
valency p2

Mitsugu Hirasaka
Pusan National University, South Korea

Let (X,S) be an association scheme where X is a finite set and S
is a partition of X × X, and p a prime. We say that (X,S) is p-
valenced if each valency is a power of p. In this talk we focus on
p-valenced association schemes with their thin residues of valency
p2. The structure of the thin residue of such association schemes is
isomorphic to one of the following: (i) Cp2 ; (ii) Cp ×Cp or (iii) Cp oCp
where Cn means the cyclic group of order n. We aim to summarize
known results on (i) and (ii) to show a construction such association
schemes of type (iii) by using generalized Hadamard matrices. This is
a joint work with J.R. Cho and K. Kim.

Commutative Schur rings of maximal dimension
Stephen Humphries

Brigham Young University, Provo, UT, USA

Let d1, . . . , dk be the degrees of the irreducible representations of a
finite group G. Then the dimension of a maximal commutative Schur
ring over G is d1 + · · · + dk. We determine classes of groups that
achieve this maximal dimension. This includes PSL(2, 2n), metacyclic
group, extra special groups, and groups whose character degrees are 1
and p for a fixed prime p. We also determine families of groups that do
not attain this bound. We show that the class of groups attaining this
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bound is invariant under quotients and certain facts about random
walks.

Deza graphs with parameters (n, k, k − 1, a)
Vladislav Kabanov

Institute Mathematics and Mechanics,
Ural Branch of Russian Academy of Sciences, Russia

A nonempty k-regular graph G on n vertices is called a Deza graph if
there exist constants b and a, (b ≥ a) such that any pair of distinct
vertices of G has precisely either b or a common neighbours. The
quantities n, k, b, and a are called the parameters of G and are written
as the quadruple (n, k, b, a). If a Deza graph has diameter 2 and is not
strongly regular, then it is called a strictly Deza graph. We classified
all strictly Deza graphs with parameters (n, k, k− 1, a). This is a joint
work with S. Goryainov, N. Maslova, L. Shalaginov

Two-fold orbitals
Josef Lauri

Josef Lauri, University of Malta, Malta

Let V be a finite set and let G be a subgroup of SV ×SV , where SV is
the symmetric group of all permutations on the set V . We define the
action of G on V × V in the following natural manner: if (f, g) ∈ G
and (u, v) ∈ V × V then (u, v)(f,g) is defined to be (uf , vg). Such a
permutation of V × V is said to be a two-fold permutation of V × V .
I shall very briefly show how two-fold permutations enabled us to
construct a smallest possible unstable graph with trivial automorphism
group and also a family of asymmetric graphs with an arbitrarily high
index of instability. (A graph Γ is said to be stable if |Aut(Γ)| =
2|Aut(Γ×K2)|, where × here denotes the direct product of graphs; also,
the index of instability of Γ is defined to be |Aut(Γ×K2)|/2|Aut(Γ)|.)
But the best context in which to study two-fold permutations is to
consider the family of orbits of the action of G on the ordered pairs
V × V , which is somewhat analogous to the study of 2-orbits of a
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permutation group acting on the set V , and which we therefore call
two-fold orbitals. But unlike orbitals, a family of two-fold orbitals can
never form a coherent configuration since some orbits must contain
loops together with ordered pairs of distinct elements of V . However,
under certain conditions, a family of two-fold orbitals does satisfy
relationships which give a well-definition of structure constants anal-
ogous to those defined for coherent configurations. I shall discuss
these conditions and also show the results of some experimentation we
carried out on two-fold orbitals using COCO-II and GAP.

On packings of disjoint copies of the Hoffman-Singleton graph
into K50

Martin Mačaj
Comenius University, Bratislava, Slovakia

In 1983, A.J. Schwenk asked whether it is possible to decompose K10
into three copies of the Petersen graph. In an analogous way, we may
ask whether there exists a decomposition of K50 into seven copies of
the Hoffman-Singleton graph (HoSi).
Further, in a paper published in 2010, E.R. van Dam and M. Muzy-
chuk asked whether there exists a SRG(50, 21, 8, 9) which can be
decomposed into three copies of HoSi. Similarly, we may ask for a
decomposition of a SRG(50, 28, 15, 16) into four copies of HoSi.
Using methods of J. Šiagiová and M. Meszka, we answer these questions
under the condition that all HoSis share a non-trivial automorphism.
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On pronormal subgroups in finite groups
Natalia Maslova

Krasovskii Institute of Mathematics and Mechanics, Russia

This talk is based on joint papers with W. Guo, A. S. Kondraťev, and
D. O. Revin.
According to Ph. Hall, a subgroup H of a group G is said to be
pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.
Obvious examples of pronormal subgroups are normal subgroups,
maximal subgroups, and Sylow subgroups of finite groups; Sylow
subgroups of proper normal subgroups of finite groups; Hall subgroups
of finite solvable groups.
With respect to a result by Ph. Hall [Theorem 6.6, 4], a subgroup
H is pronormal in a finite group G if and only if in any transitive
permutation representation of G, the subgroup NG(H) acts transitively
on the set fix(H). Thus, the pronormality of a subgroup is very closely
connected with properties of permutation representations of a finite
group. Moreover, pronormality is the universal property with respect
to the Frattini Argument (see [11] and [Lemma 4, 4].
A number of problems in combinatorics and permutation group theory
were solved in terms of the pronormality (see, for example [1,9,10]).
The following problem naturally arises.
Problem. Given a finite group G and its subgroup H. We wish to
be able to answer the following question: Is H pronormal in G?
Assume that G is not simple, and A is a minimal normal subgroup
of G. In all the cases, except when A is nonabelian and G = HA,
the solution of Problem could be reduced to solutions of Problem for
groups of order less than the order of G. But the case when A is
nonabelian and G = HA is really very difficult. So, it is necessary to
obtain some nice restrictions to G and H.
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With respect to a result by Ch. Praeger [10], if G is a transitive
permutation group on a set of n points and K is a nontrivial pronormal
subgroup of G, then |fix(K)| ≤ 1

2(n − 1); moreover, if |fix(K)| =
1
2(n− 1), then G and K are known. Thus, it is important to consider
pronormality question of overgroups of a-priori pronormal subgroups,
in particular, of Sylow subgroups.
In [Theorem 4, 2]we obtained a criteria of pronormality of overgroups
of Sylow p-subgroups in finite groups G such that G contains a non-
trivial normal subgroup A, and the overgroups of Sylow p-subgroups
are pronormal in A. Thus, we are interested on pronormality question
for overgroups of Sylow subgroups in finite nonabelian simple groups
and in direct products of finite nonabelian simple groups. Here the
situations for Sylow subgroups of odd order and for Sylow 2-subgroups
are really distinct.
The following proposition is a nice corollary of Ph. Hall’s result [Theo-
rem 6.6, 4]. Suppose that G is a finite group, H ≤ G, and H contains a
Sylow p-subgroup S of G. Then H is pronormal in G if and only if the
subgroups H and Hg are conjugate in 〈H,Hg〉 for every g ∈ NG(S).
Thus, if Sylow p-subgroups are self-normalized in a finite group G,
then the overgroups of Sylow p-subgroups are pronormal in G. Now,
if p = 2, then the Sylow 2-subgroups are often self-normalized in
finite simple groups (see [5]). However, if p is odd, then the Sylow
p-subgroups are never self-normalized in finite simple groups (see [3]).
In [12], Vdovin and Revin conjectured that the subgroups of odd index
are pronormal in finite simple groups. The conjecture was verified for
many families of finite simple groups in [6]. Namely, it was proved
that the subgroups of odd index are pronormal in the following finite
simple groups: An, where n ≥ 5; sporadic groups; groups of Lie type
over fields of characteristic 2; PSL2n(q); PSU2n(q); PSp2n(q), where
q 6≡ ±3 (mod 8); PΩ2n+1(q); PΩε

2n(q), where ε ∈ {+,−}; exceptional
groups of Lie type not isomorphic to E6(q) or 2E6(q).
In [7, 8] it was proved that the conjecture fails. Precisely, if q ≡ ±3
(mod 8) and n 6∈ {2m, 2m(22k + 1) | m, k ∈ N ∪ {0}}, then the finite
simple symplectic group PSp2n(q) contains a non-pronormal subgroup
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of odd index. In this talk we discuss a pronormality question for
subgroups of odd index in finite groups. In particular, we discuss a
recent progress in the classification of finite simple groups in which
the subgroups of odd index are pronormal, and some corresponding
results for direct products of finite simple groups.
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On asymptotics and arithmetical properties of complexity for
circulant graphs

Alexander Mednykh
Sobolev Institute of Mathematics, Novosibirsk State University, Russia

We study analytical and arithmetical properties of the complexity
function for infinite families of circulant graphs Cn(s1, s2, . . . , sk) and
C2n(s1, s2, . . . , sk, n). Exact analytical formulas for the complexity
functions of these families are derived, and their asymptotics are found.
As a consequence, we show that the thermodynamic limit of these
families of graphs coincides with the small Mahler measure of the
accompanying Laurent polynomials.

Highly regular graphs. Part one: Introduction and examples
Christian Pech

A regularity type T of order (m,n) is a triple (∆, ι,Θ), where ∆ and
Θ are graphs of order m and n, respectively, and where ι : ∆ ↪→ Θ is
an embedding. A graph Γ is called T-regular if for all κ : ∆ ↪→ Γ the
number of embeddings κ̂ : Θ ↪→ Γ with κ = κ̂ ◦ ι is equal to a constant
#(Γ,T) (i.e., it does not depend on κ). A graph is called (m,n)-regular
if it is T-regular, for all regularity types T of order (k, l), for k ≤ m,
l ≤ n. Note that strongly regular graphs are just the (2, 3)-regular
graphs and graphs that satisfy the t-vertex condition correspond to
the (2, t)-regular graphs. Moreover, the k-isoregular graphs are just
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the (k, k+1)-regular graphs. Often, regularity is entailed by symmetry.
Recall that a graph is called m-homogeneous if every isomorphism
between induced subgraphs of order ≤ n extends to an automorphism
of the graph. Clearly, if a graph is m-homogeneous, then it is (m,n)
regular, for all n ≥ m. We are interested into regularities that are
not entailed by symmetries. We call a graph Γ highly regular if there
is some m ≥ 2 and some n ≥ 4, such that Γ is (m,n)-regular, but
not m-homogeneous. Note that high regularity does not completely
exclude high symmetry. The only request that we have from a highly
regular graph is that there exists some degree of regularity that is
not explainable by symmetries. E.g., the McLaughlin graph on 275
vertices is (4, 5)-regular but is not 4-homogeneous. So in particular it
is highly regular. On the other hand it is 3-homogeneous. In the first
part of our presentation we introduce the theoretical framework of
regularity conditions and we give an overview of known highly regular
graphs.
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Highly regular graphs. Part two: On a family of strongly regular
graphs by Brouwer, Ivanov and Klin

Maja Pech
University of Novi Sad, Serbia

In 1989 A.V.Ivanov discovered a (2, 5)-regular graph whose subcon-
stituents are (2, 4)-regular. His construction was generalized by Brouwer,
Ivanov and Klin to an infinite family of strongly regular graphs. They
showed that all members of the family are (3, 4)-regular and that their
first subconstituents are (2, 4)-regular but not 2-homogeneous. Only
much later on it was shown by Reichard that these graphs are also
(2, 5)-regular. In this talk we are going to reanalyze the Brouwer-
Ivanov-Klin graphs using the techniques introduced in the first part
thus uncovering regularities of these graphs that hitherto remained
hidden.
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Implementation of stabilization algorithms for configurations
Sven Reichard

TU Dresden, Germany

One origin of the notion of coherent configurations is the study of
the complexity of the graph isomorphism problem. Given an edge-
coloring of a complete graph the algorithm by Weisfeiler and Leman [8]
constructs a refinement of the coloring using invariants on the edges;
the resulting refined coloring has the same automorphisms as the
original coloring. The invariant that is used counts colored triangles
involving a given edge. Coherent configurations may be defined as
colorings that are stable under this procedure.
The concepts above can be generalized in several directions. Instead
of graphs we can consider (uniform) hypergraphs; this leads to k-ary
coherent configurations [6], which play a prominent role in recent
advances in the study of the graph isomorphism problem [1]. In this k-
dimensional WL algorithm one uses structures of order k+1 containing
a given k-tuple. Another invariant for graphs is related to the t-vertex
condition [5]; here one looks at t-vertex subgraphs containing a given
pair of vertices. We look at a common generalization of both directions,
considering structures of arbitrary order t containing a given k-tuple.
It is known that the algorithm of Weisfeiler-Leman is polynomial
in complexity [3, 7]. Twenty years ago two implementations were
described [2] which both had their advantages and disadvantages.
We will present a new implementation of a more general framework
that takes into account the generalizations described above as well
as advances of modern computer architecture. Main features include
methods for the quick evaluation of invariants as well as paralleliza-
tion [4]. A practical demonstration will be given; the programs will be
available as open source.
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Coherent configurations from quantum permutation groups
David Roberson

Technical University of Denmark, Kgs. Lyngby, Denmark

Given a permutation group G acting on a set X, the orbits of G on
X ×X (often called the “orbitals” of G) form a coherent configuration.
In a recent work, we have shown how to define orbitals for quantum
permutation groups, and moreover have shown that these also form a
coherent configuration. This allows us to apply techniques from the
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study of graph isomorphism to the study of the recently defined notion
of quantum isomorphism of graphs. Given a graph X, its quantum
automorphism group gives rise to a coherent configuration on V (X)
as described above. We show that for quantum isomorphic graphs
X and Y , the coherent configurations arising from their quantum
automorphism groups must be (weakly) isomorphic. This further
implies that the graphs are not distinguished by the Weisfeiler-Leman
algorithm, thus providing an efficiently computable necessary condition
for two graphs to be quantum isomorphic.
Joint work with Martino Lupini and Laura Mancinska. Based on
arXiv:1712.01820.

Separability and schurity of Cayley schemes over Abelian groups
Grigory Ryabov

Novosibirsk State University, Russia

A coherent configuration is called separable if every algebraic iso-
morphism from it to another coherent configuration is induced by a
combinatorial one. A finite group G is said to be separable if every
Cayley scheme over G is separable. In the case when a group G is
separable an isomorphism of two given Cayley graphs over G can
be tested by using the Weisfeiler-Leman algorithm. Indeed, given
two graphs this algorithm enables to check whether there exists an
algebraic isomorphism of the corresponding coherent configurations
that maps the arc set of the first graph to that of the second.
It was proved in [1] that all cyclic p-groups are separable. One can
prove that a noncyclic abelian separable p-group is isomorphic to
Cp × Cpk or Cp × Cp × Cpk , where p ≤ 3 and k ≥ 1. We prove the
following statement.
Theorem. The group Cp × Cpk is separable for p ≤ 3 and k ≥ 1.
Actually, we prove that each of the above groups is a Schur group.
Recall that a finite group is called a Schur group if every Cayley
scheme over this group is schurian. This definition was suggested by
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Pöschel in [2]. Together with the previously obtained results, this
completes the classification of abelian Schur groups of odd order.
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The Weisfeiler-Leman dimension of graphs and isomorphism
testing

Pascal Schweitzer
TU Kaiserslautern, Germany

The Weisfeiler-Leman algorithm is an indispensable subroutine that
appears both in practical and theoretical algorithms for the graph
isomorphism problem. More accurately, it comprises a family of
algorithms: for every positive integer k there is a k-dimensional ver-
sion. The 1-dimensional version is often called color refinement or
naive vertex refinement and the 2-dimensional version is the classical
Weisfeiler-Leman algorithm tightly related to coherent configurations.
The k-dimensional variant repeatedly colors k tuples of vertices, col-
lecting more and more information, until after at most nk iterations
no new information is gathered and stabilization occurs. The collected
information can often be used to distinguish non-isomorphic graphs.
The Weisfeiler-Leman dimension of a graph is the minimum k for
which the k-dimensional Weisfeiler-Leman algorithm distinguishes the
graph from every non-isomorphic graph. Trivially this dimension is
in O(n) for graphs on n vertices and the famous result of Cai, Fürer
and Immerman [1] shows that there are graphs with a Weisfeiler-Leman
dimension in Ω(n).
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My talk will touch on several recent results regarding the Weisfeiler-
Leman algorithm that are related to isomorphism testing. Specifically,
I will address the following:

• The properties of graphs or, more generally, structures that have
Weisfeiler-Leman dimension 1. In other words, graphs or struc-
tures that can always be distinguished from other non-isomorphic
objects using color refinement. While for dimension 2 or higher
the analogous question appears not to reveal a structured answer,
for dimension 1, i.e., color refinement, a precise answer can be
given [2].

• I will also talk about the maximal number of iterations that
the 2-dimensional version can take until it reaches stabilization.
While a linear lower bound was shown by Fürer [2], the best
upper bound of O(n2/ log(n)) shows that the trivial upper bound
of O(n2) is not tight [4].

• Finally, I will discuss the Weisfeiler-Leman dimension of planar
graphs, which is at most 3, and explain how this gives simple
isomorphism tests for planar graphs [5].

This talk is based on results obtained jointly with Sandra Kiefer, Ilia
Ponomarenko, and Erkal Selman.
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Finding a maximal subgroup of minimal index in polynomial time
Savelii Skresanov

Novosibirsk State University, Russia

Let G be a finite group. Denote by κ(G) the smallest positive integer
d, such that there exists a nontrivial homomorphism from G into the
symmetric group Sd. Clearly κ(G) is the smallest index of a maximal
subgroup of G. We obtain the following result.
Theorem 1. Given a Cayley table of a finite group G, the number
κ(G) can be found in polynomial time in |G|.
In [1], Dutta and Kurur introduced the group representability problem:
given a group G and a graph X, decide whether there is a nontrivial
homomorphism from G into the automorphism group Aut(X) of X.
By [Theorem 8, 1] the problem of group representability on trees is
polynomial-time Turing reducible to the problem of testing, given an
integer d and a group G via Cayley table, whether there is a nontrivial
homomorphism to Sd or not. Combining that with our result, we get
the following corollary.
Corollary. The problem of group representability on trees can be
solved in polynomial time.
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Discrete version of Fuglede’s conjecture and Pompeiu problem
Gábor Somlai

Eötvös Loránd University, Budapest, Hungary

We present a discrete version of two old problems (Fuglede and Pom-
peiu) originated in analysis that were investigated by many researcher
and we develop a strong connection between them. This connection
help us to provide new results for Fuglede’s conjecture in the discrete
setting. Pompeiu raised the following question [5]. Take a continuous
function f on the plane whose integral on every unit disc is zero. Does
it follow that f is the constant zero function? The answer is no, but
the question initiated several different type of investigations including
many positive results as well. Fuglede conjectured [1] that a bounded
domain S ⊂ Rd tiles the d-dimensional Euclidean space if and only
if the set of L2(S) functions admits an orthogonal basis of exponen-
tial functions. The discrete version of Fuglede’s conjecture might be
formulated in the following way. A subset S of a finite abelian group
G tiles G if and only if the character table of G has a submatrix,
whose rows are indexed by the elements of S, which is a complex
Hadamard matrix. The spectral-tile direction of Fuglede’s conjecture
was disproved by Tao [6] and the proof is based on a counterexample
for elementary abelian p-groups of finite rank. This result led to the
first counterexample for the original problem in the continuous case.
The other direction was disproved by Koloutzakis and Matolcsi [3].
In order to find answers for Pompeiu type problems one has to investi-
gate the eigenvalues of the Cayley graph Cay(G,S), that shows the
connection of these two problems. It is worth to investigate Fuglede’s
conjecture for finite cyclic groups since every tiling of Z is periodic so
it originates in a tiling of a finite cyclic group. However, not much is
known for cyclic groups. A recent paper of Malikiosis and Kolountza-
kis [4] shows that Fuglede’s conjecture holds for cyclic group of order
pnq, where p and q are different primes. Our main contribution to-
wards Fuglede’s conjecture for cyclic groups is to connect this problem
with the Pompeiu problem, introduce more combinatorial ideas and
verify it for yet unknown cases: cyclic groups of order p2q2 and pqr,
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where r is also a prime. Further we give a neat and combinatorial
proof for the previously known fact (proved by Iosevich, Mayeli and
Pakianathan [2]) that Fuglede’s conjecture holds for Z2

p.
A joint work with Gergely Kiss and Máté Vizer.
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Constructing Majorana representations
Madeleine Whybrow

Imperial College, London, UK

Majorana theory is an axiomatic framework in which to study objects
related to the Monster group and its 196, 884 dimensional representa-
tion, the Griess algebra. The objects at the centre of the theory are
known as Majorana algebras and can be studied either in their own
right, or as Majorana representations of certain groups. I will discuss
my work developing an algorithm in GAP to construct the Majorana
representations of a given group. This work is based on a paper of
Á. Seress and is joint with M. Pfeiffer.
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Short presentations

2-closure of 3
2-transitive groups in polynomial time

Dmitry Churikov
Novosibirsk State University, Novosibirsk, Russia

Let G be a permutation group on a finite set Ω. Wielandt [6] defined
the 2-closure G(2) of G to be the automorphism group of the set
of 2-orbits of G. There is a natural Galois correspondence between
permutation groups and coherent configurations (see, e.g. [2]). In the
context of computational complexity theory, this correspondence leads
to two natural problems: given a coherent configuration X, find the
schurian closure of Aut(X) and given a permutation group G, find
G(2). It is well known that the first problem is equivalent to the Graph
Isomorphism Problem. Here we are interested in the second one, which
we specify as follows.

2-Closure problem. Given a finite permutation group G, find gen-
erators of its 2-closure G(2).

Clearly this problem is tightly connected with the problem of finding
the automorphism group of a schurian coherent configuration. It was
solved for nilpotent groups [5] and groups of odd order [3] in time
polynomial in |Ω| by using a technique from [1] and the fact that the
2-closures of such groups are solvable.
In the talk (based on a joint paper with Andrey Vasil′ev), we discuss
this problem for 3

2 -transitive groups. It turns out that the recently
finished classification of finite 3

2 -transitive groups [4] provides sufficient
theoretical tools for proving the following

Theorem. The 2-closure problem for a 3
2 -transitive group of finite

degree n can be solved in time polynomial in n.
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Cubic bi-Cayley graphs over solvable groups are 3-edge-colorable
István Estélyi

University of West Bohemia, Pilsen, Czech Republic

Bi-Cayley graphs are graphs admitting a semiregular group of auto-
morphisms with two orbits. A notable cubic subclass of bi-Cayley
graphs is the so-called generalized Petersen graphs. Castagna and
Prins proved in 1972 that all generalized Petersen graphs except for the
Petersen graph itself can be properly 3-edge-colored. In this talk, we
are going to discuss the extension of this result to all connected cubic
bi-Cayley graphs over solvable groups. Our theorem is a bi-Cayley
analogue of similar results obtained by Nedela and Škoviera for Cayley
graphs any by Potočnik for vertex-transitive graphs.

Average mixing of quantum walks on graphs
Krystal Guo

Université libre de Bruxelles, Belgium

The study of quantum walks on graphs has given rise to a rich con-
nection between algebraic graph theory, linear algebra and quantum
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computing. A system of interacting quantum qubits can be modelled
by a graph. The evolution of the quantum system can be completely
encoded as a quantum walk in a graph, which can be seen, in some
sense, as a quantum analogue of random walk. The behaviours of the
quantum walks are seen as graph invariants and some properties have
even been proposed as complete graph invariants.
In this talk, I will present recent results on the average mixing matrix
of a graph: a quantum walk has a transition matrix which is a unitary
matrix with complex values and thus will not converge, but we may
speak of an average distribution over time, which is modelled by the
average mixing matrix. It is a surprising fact that this matrix is equal
to the sum of the Schur squares of the idempotent projections in the
spectral decomposition of the adjacency matrix. We take advantage
of this to approach several problems using algebraic graph theory.

Automorphisms of an srg(162, 21, 0, 3)
Leif Jørgensen

Aalborg University, Denmark

Maknev and Nosov [1] proved that if g is an automorphism of a strongly
regular graph with parameters (162, 21, 0, 3) then the subgraph fixed
by g is either empty or K1,3. And if there are no fixed vertices then
an srg(81,20,1,6) can be obtained by collapsing the orbits. We present
a computation showing that an automorphism of order 2 can not be
without fixed vertices, and we show that an srg(162, 21, 0, 3) is not
vertex-transitive.
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Resistance-distance transform in the context of Weisfeiler-Leman
stabilization

Mikhail Kagan
Penn State University, Abington, PA, USA

The concept of resistance distance (RD), which was proposed in [1],
originates from mathematical chemistry. Inspired by the effective
resistance of electrical circuits, it found interesting applications in
diverse fields, including AGT. More recent works [2, 3] proposed a
somewhat shortcut method for obtaining RD between any pair of
vertices for a wide class of graphs. Based on these ideas, we suggest a
procedure, called resistance-distance transform (RDT), which can be
applied to any simple graph Γ, as well as to a complete undirected graph
with colored edges. When acting on graph Γ, RDT attributes to each
edge (and non-edge) its corresponding RD value. Thus the outcome
of this procedure constitutes a complete symmetric colored graph and
can be compared to the result of Weisfeiler-Leman stabilization (WLS).
Surprisingly, for many classes of experimentally inverstigated graphs,
just one iteration of RDT provides the same result as WLS. We shall
discuss the observed links between the two procedures obtained via
both theoretical and computer aided considerations. In particular, the
classical WL closure of graph Γ, expressed in the matrix form [4], will
be compared with the RD matrix expressed either using the Moore-
Penrose pseudo-inverse of the Laplacian matrix of Γ [1] or the shortcut
methods of [2, 3]. This is a joint project together with Mikhail Klin
(Ben-Gurion University, Israel).
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Using strong paths to solve isomorphism problems
Matthias Koch

In this presentation a universal strategy to solve isomorphism problems
is developed. The strategy is based on the homomorphism principle
for group actions [1], double cosets and the “Snakes and Ladders”
algorithm [4].
Many discrete structures can be built from simpler ones by using
the fundamental homomorphism theorem applied to group actions [3].
For a wide range of discrete structures this is not applicable, since
there is no suitable unidirectional chain of homomorphisms. Following
the ’snakes and ladders’ strategy by using homomorphisms in both
directions, an appropriate chain of homomorphisms (ladder) can be
built [5].
The original snakes and ladders algorithm had several drawbacks,
namely the extensive demand on memory and the inadequate runtime
when used for single structures. These downsides have now been
overcome by extending the mathematical basis by the so-called “Strong
Paths” [2].
This strategy is applicable for the construction of double cosets. Since
many isomorphism problems can be expressed by means of double
cosets they can be solved by this approach [5].
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Invariants for efficiently computing the autotopism group of a
partial latin rectangle

Daniel Kotlar
Tel-Hai College, Qiryat Shemona, Israel

A joint work with Raúl M. Falcón and Rebecca J. Stones.
Let [n] := {1, . . . , n}. An r×s partial Latin rectangle based on [n] is an
r× s array L = (L[i, j]) containing symbols from the set [n]∪ {·} such
that each row and each column contains at most one copy of any symbol
in [n]. The set of such rectangles is denoted PLR(r, s, n). An isotopism
θ = (α, β, γ) ∈ Sr×Ss×Sn acts on the set PLR(r, s, n), by permuting
the rows, columns, and symbols of any L ∈ PLR(r, s, n) by α, β, and γ,
respectively. If θ(L) = L, then θ is said to be an autotopism of L. The
set Atop(L) of autotopisms of L forms a group, called the autotopism
group of L. For a Latin square L, the autotopism group Atop(L) has
received much attention, such as early works of Schönhardt [10] and
Artzy [1] and, more recently, Bailey [4]. Thereafter, many works of
McKay, Wanless and others deal with the computation of Atop(L).
Autotopisms of (partial) Latin rectangles, however, have only been
studied recently by Falcon and Stones.
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Any method for obtaining the autotopism group of a (partial) Latin
square or rectangle is based on a backtracking computation of non-
polynomial time complexity, or on the computation of the automor-
phism group of a related graph. McKay et al. [9] introduced the
standard way of computing the autotopism group Atop(L) of a Latin
square L of order n by constructing a vertex-coloured graph whose
automorphism group is isomorphic to Atop(L). The problem of com-
puting the autotopism group of a Latin square is, therefore, as dif-
ficult as solving the graph isomorphism problem, whose complexity
is exp(O(

√
n logn)) by Babai, Kantor and Luks [3] and even claimed

to be exp((logn)O(1)) by Babai [2], where n is the number of vertices.
This method has recently been generalized in a natural way [5] so that
any r × s partial Latin rectangle with n symbols and m filled cells is
uniquely related to a vertex-coloured bipartite graph with m+r+s+n
vertices and 3m edges.
In order to narrow down the search by backtracking as much as possible
or reduce the complexity of computing the automorphism group of
the previously described graphs as low as possible, distinct autotopism
invariants of (partial) Latin rectangles have been described [5, 6, 7,
8, 11] for which the complexity of their computation is polynomial in
the order of the array under consideration. All these invariants yield
a series of partitions of the entries, rows, columns and/or symbols of
the corresponding (partial) Latin rectangle so that all their parts are
preserved by autotopisms. The finer each partition is, the lower the
complexity of computing the autotopism group is. Nevertheless, no
autotopism invariant is currently known so that the corresponding
partitions are optimal.
In this work we introduce new autotopism invariants which get closer
to optimal partitions. For this we define the (r1, r2)-row graph of an
r×s partial Latin rectangle L, with r ≥ 2, as a vertex-and-edge-colored
bipartite graph related to its rth

1 and rth
2 rows. For example, the graph

corresponding to the rows [2, ·, 3, ·, 6, ·, 1, 4] and [3, 2, ·, 6, ·, 4, ·, 5] is
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2

corresponding (partial) Latin rectangle so that all their parts are preserved by
autotopisms. The finer each partition is, the lower the complexity of computing
the autotopism group is. Nevertheless, no autotopism invariant is currently known
so that the corresponding partitions are optimal.

In this work we introduce new autotopism invariants which get closer to optimal
partitions. For this we define the (r1, r2)-row graph of an r⇥s partial Latin rectangle
L, with r � 2, as a vertex-and-edge-colored bipartite graph related to its rth

1 and
rth
2 rows. For example, the graph corresponding to the rows [2, ·, 3, ·, 6, ·, 1, 4] and

[3, 2, ·, 6, ·, 4, ·, 5] is

w2 w3 w6 w1 w4

b3 b2 b6 b4 b5

The distribution of these graphs into isomorphism classes yields three new auto-
topism invariants that can be either combined with other invariants or used in those
cases for which the currently known invariants have little or no e↵ect for computing
the autotopism group of the partial Latin rectangle under consideration. Experi-
mental evidence shows that these three invariants yield partitions that are closer
to optimal, thus improving the computational complexity of finding autotopism
groups of random partial Latin rectangles.
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The distribution of these graphs into isomorphism classes yields three
new autotopism invariants that can be either combined with other
invariants or used in those cases for which the currently known in-
variants have little or no effect for computing the autotopism group
of the partial Latin rectangle under consideration. Experimental evi-
dence shows that these three invariants yield partitions that are closer
to optimal, thus improving the computational complexity of finding
autotopism groups of random partial Latin rectangles.
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Inverse problems in spectral theory of graphs
Viktoriia Lebid

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

Spectral graph theory uses the eigenvalues of matrices associated with
a graph to determine structural properties of that graph. Graphs
with the same spectrum are called cospectral. The construction of the
cospectral graphs calling GM-switching was discussed in the paper
E. R. van Dam and W. H. Haemers “Which graphs are determined
by their spectrum?” (2003). We consider this construction for graph
G taking the cycle C2n and adjoining a vertex v adjacent to half the
vertices of C2n. For these graphs for small n are determined the pairs
of cospectral nonisomorphic graphs.

On the complexity of testing isomorphism of graphs of bounded
eigenvalue multiplicity
Takunari Miyazaki

Takunari Miyazaki, Trinity College, Hartford, CT, USA

In this talk, using Delsarte, Goethals and Seidel’s fundamental theorem
of spherical codes and designs, I will make some observations about the
complexity of graph-isomorphism testing. In particular, I will derive a
set of group-theoretic conditions under which testing isomorphism of
graphs of bounded eigenvalue multiplicity is immediately reducible to
testing isomorphism of graphs of bounded color multiplicity.
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Steinitz’s lattice and diagonal constructions
Bogdana Oliynyk

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

Steinitz’s lattice was introduced at the beginning of the XX century
by A. Steinitz for describing the structure of subfields of algebraically
closed field of prime characteristic. It can be determined as the lattice
of supernatural numbers with a relation of the divisibility.
In this talk we discuss Steinitz’s lattices arising from diagonal con-
structions of groups, semigroups, Boolean algebras and metric spaces
and consider connections between them.

Combinatorics in sublattices of invariant subspaces
Alicia Roca1

Universitat Poitécnica de Valéncia, Spain

Joint work with David Mingueza and M. Eulàlia Montoro2

Let F be a field. Given a matrix A ∈Mn(F), a subspace V ⊂ Fn is A-
invariant if AV ⊂ V . An A-invariant subspace is called characteristic
(respectively hyperinvariant) if it is also T -invariant for all of the
nonsingular matrices T (respectively, matrices T ) commuting with A.
We denote by Inv(A), Chinv(A) and Hinv(A) the lattices of invariant,
characteristic and hyperinvariant subspaces, respectively. Obviously,
Hinv(A) ⊂ Chinv(A) ⊂ Inv(A).
The lattice Inv(A) is not necessarily finite, but Chinv(A) is always
finite. We present here how to obtain the cardinality of Chinv(A).
When the minimal polynomial of A is separable, the study of the
lattices Inv(A), Hinv(A) and Chinv(A) can be reduced to the case
where A is nilpotent (see [2, 3, 5] respectively). It was proved in [?] that
only if F = GF (2), the lattices of characteristic and hyperinvariant
subspaces may not coincide.
Assume then that A is a nilpotent matrix, F = GF (2) and that the
minimal polynomial of the endomorphism splits over the underlying
field F. Shoda’s Theorem [6] characterizes the existence of charac-
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teristic non hyperinvariant subspaces. According to [4], a subspace
X ∈ Chinv(A) \Hinv(A) can be written as a direct sum of two sub-
spaces X = Y ⊕Z, with Y and Z associated to a so called chartuple, Y
is hyperinvariant with some extra conditions and Z is called a minext
subspace.
The cardinality of Hinv(A) is known. We understand

Chinv(A) = Hinv(A) ∪ (Chinv(A) \Hinv(A)).
To compute the cardinality of Chinv(A) \Hinv(A) we find the number
of possible chartuples, and the number of minext and hyperinvariant
subspaces associated to each chartuple. We present here the highly
combinatorial results. The cardinality of minext subspaces is stated
in terms of a recurrent formula, and the cardinality of hyperinvariant
subspaces associated to a chartuple, through an algorithm.
The results obtained involve combinatorial numbers and Gauss bino-
mial coefficients. The algorithm constructs a table which generalizes
the Pascal matrix. It is shown that the results of the algorithm can
also be derived from generating polynomials. A different combinatorial
strategy to obtain the result will also be presented.
1Partially supported by grants MTM2017-83624-P, MTM2017-90682-REDT.

2Partially supported by grants MTM2015-65361-P MINECO/FEDER, MTM2017-90682-
REDT.
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The construction of combinatorial structures and linear codes
from orbit matrices of strongly regular graphs

Sanja Rukavina
University of Rijeka, Croatia

Orbit matrices of strongly regular graphs were introduced in 2011 by
M. Behbahani and C. Lam [1].
A method for constructing self-orthogonal codes from orbit matrices
of strongly regular graphs admitting an automorphism group G which
acts with orbits of length w, where w divides |G| is given in [2]. In this
talk we will present the construction of some combinatorial structures
and linear codes from orbit matrices of strongly regular graphs and
their submatrices.
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Coherent configurations and higher dimensional Weisfeiler-Leman
equivalence

Danny Vagnozzi
University of Cambridge, UK

The k-Weisfeiler-Leman refinements for a family of algorithms indexed
by a positive integer k which approximate graph isomorphism. For
k = 2, the algorithm can be formulated in terms of an isomorphism
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problem of coherent algebras. We make this connection explicit for
larger values of k, and show that for k = 2m, m > 1 as well, the
algorithm can be understood in terms of coherent algebra isomorphism.
This allows us to make a connection with a known graph invariant
arising from quantum in formation: indeed, we show that the k-
boson invariant defined in [1] fails to distinguish Cai-Fürer-Immerman
graphs. Finally, we give a tight connection between k-invertible map
refinements [1] and k-Weisfeiler-Leman.
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Reconstructability index of finite 2-step nilpotent graph p-groups
Natalia Vanetik

Shamoon College of Engineering, Be’er Sheva, Israel

Let Γ = (T,E) be a graph. Let V be the vector space freely generated
by the set of vertices T = {v1, . . . , vn} over finite field Fp with p 6= 2.
In [3] we define the free 2-step nilpotent Lie algebra Nn = V

⊕
∧2V

and define M = G(NR
n ) to be the group Lazard corresponding to Lie

ring NR
n .

BCH-formula. Because any Lie ring homomorphism ϕ : LR1 → LR2 ,
where LR1 , LR2 ∈ L, induces the group homomorphism ϕ̂ : G(LR1 ) →
G(LR2 ). Let Mn is a free group freely generated by T in the variety
of groups determined by the identities xp = 1, [[x, y], z] = 1. Then a
2-step nilpotent finite graph p-group for the graph Γ = (T,E) is defined
as

GΓ = Mn/J,

where J is a normal subgroup of Mn generated by vi ∧ vj for all
{vi, vj} ∈ E. 2-step nilpotent). It is shown in [3] that isomorphism of
graphs Γ1 and Γ2 implies isomorphism of their graph groups and vice
versa.



56 July 1–July 7, 2018

Following [7], let multiset S on a ground set X be a function m :
X → N, and let P(S) and P{k}(X) denote collections of all multisets
contained in S of any size and of size k respectively. Let G→ X be
a group action on X. Then G acts naturally on multisets S on X by
(g, S) = {(g, x) : x ∈ S}. Two multisets S, T are called isomorphic
w.r.t. G if there exists g ∈ G such that (g, S) = T ; the isomorphism
class of S under given group action is denoted by [S]G. Then the
k-deck of S is defined as the multiset

Dk(S) = {[K]G |K ∈ P(S), |K| ≤ k},

containing isomorphism classes of r-subsets of S with r ≤ k. A
multiset S in X is called k-reconstructable if every multiset T ⊂ X
with Dk(T ) = Dk(S) is isomorphic to S.
Reconstructability index rN(G→ X) of a group action G→ X is the
minimum k such that all finite multisets in X are k-reconstructable;
rN(G) denotes the reconstructability index of a left-regular action
G→ G.
In this work of we show that rN(GΓ) ≤ 36 for any 2-step nilpotent
finite graph p-group GΓ.
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