
The Paulus-Rozenfeld-Thompson strongly

regular graph on 26 vertices:

animated logo of WL 2018

July 5, 2018

� This graph T was discovered a few times:

{ by A. J. L. Paulus in [14];

{ by M. Z. Rozenfeld in [15];

{ by D. M. Thompson in [16].

� The graph is listed in [17] as graph #8 in the list of all SRGs with the
parameters (v; k; �; �) = (26; 10; 3; 4).

� The graph T appears also in [6]. As J. J. Seidel is writing in his review
MR0505849 of [6], signi�cant references to [1] and [17], regarding graph
T and SRGs related to it, were missing in [6].

� For the modern reader, probably the most convenient reference would
be to the article Paulus graphs on the home page [4] of Andries Brouwer.
There one can �nd 15 SRGs with the parameters (25; 12; 5; 6) and 10
SRGs with the parameters (26; 10; 3; 4) are considered, including also
their adjacency lists. T has name P26.10.

� The graph T has the highest symmetry among all 10 SRGs on 26 ver-
tices in the family of Paulus graphs. The group G = Aut(T ) of order
120 is isomorphic to A5 � Z2 and has two orbits of length 20 and 6 on
the vertex set V = V (T ).
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� Thus we get an automorphic equitable partition � of V (T ), see [8],

[13], [12]. Its collapsed matrix is equal to

�
7 3
10 0

�
. Here � = fC1; C2g,

jC1j = 20, jC2j = 6, the induced graph ~T1 = (C1; E11) in C1 is regular of
valency 7, while the induced graph ~T2 on C2 is empty, that is a coclique
of size 6.

� Our description of T is given in the terms of the Schurian coherent
con�guration (CC) (the term goes back to D. Higman [9], see [5]). We
consider intransitive action (A5; C1 [ C2) of the alternating group A5

on the orbits of length 20 and 6 and construct, using computer package
COCO [7], the CC W (A5; V ). This CC has rank 14 and consists of
two �bers (orbits of A5) and 14 2-orbits of A5 (in the same sense of
H. Wielandt [18]). The edge set E(T ) is a union of suitable 2-orbits;
the idea of description goes back to D. Thompson, though we are using
reasonably uni�ed modern language of CCs.

� An essential feature of the graph T , in comparison with 9 other SRGs
on 26 vertices, is that the used coclique C2 is coherent. This means
that �ber, consisting of C2, is not destroyed by the Weisfeiler-Leman
stabilization of T together with partition �.

� We need to describe the edge set E(T ) as union E11[E12[E22. The set
E22 of the edges in the coclique, induced by C2, is empty. Let us start
from E11. For this purpose we will investigate an auxiliary structure of
dodecahedron, platonic solid D and distance transitive graph (DTG),
see [2], [3].

� First, we describe permutation group (A5; V ) = (A5; C1 [ C2).

{ Clearly, up to similarity, A5 has one transitive action of degree 6
and one of degree 20.

{ We start from the natural action (A5; [0; 4]) of degree 5. Then the
induced action of A5 on ordered pairs of elements from [0; 4] has
degree 20.

{ Action of degree 6 coincides with the action of A5 on six pentagons
as in Figure 1 below.

{ The 14 2-orbits of (A5; V (T )) are described with the aid of repre-
sentatives:
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Figure 1: Six pentagons in �5;5.

R0 = ((0; 1); (0; 1))A5 ,
R1 = ((0; 1); (1; 2))A5 ,
R2 = ((0; 1); (2; 3))A5 ,
R3 = ((0; 1); (2; 4))A5 ,
R4 = ((0; 1); (4; 0))A5 ,
R5 = ((0; 1); (0; 3))A5 ,
R6 = ((0; 1); (4; 1))A5 ,
R7 = ((0; 1); (1; 0))A5 ,
R8 = ((0; 1); (0; 1; 2; 3; 4))A5 ,
R9 = ((0; 1); (0; 3; 1; 2; 4))A5 ,
R10 = ((0; 1; 2; 3; 4); (0; 1))A5 ,
R11 = ((0; 1; 2; 3; 4); (1; 3))A5 ,
R12 = ((0; 1; 2; 3; 4); (0; 1; 2; 3; 4))A5 ,
R13 = ((0; 1; 2; 3; 4); (0; 1; 3; 2; 4))A5 ,
Here R0, R12 reexive orbits, R4 = RT

1
, R10 = RT

8
, R11 = RT

9
,

while other six 2-orbits are symmetric and non-reexive.

� Clearly, relations from R0 to R7, de�ned on the set C1, de�ne a homo-
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geneous CC of rank 8. It turns out that the graph (C1; R2) is one of
the classical cases of DTGs, namely �. Its planar diagram is depicted
in Figure 2.

� The intersection diagram of � looks as follows:

� � � � � �
3 1 2 1 1 1 2 1 3

1 3 6 6 3 1

1 1

Denote by �i, 1 � i � 5, distance i graphs for �. They are de�ned by
relations: R2, R1 [R4, R5 [R6, R3, R7, respectively.

� There are three imprimitivity systems for (A5; C1). Relations R5 and
R6 de�ne graphs 5 �K4, relation R7 de�nes antipodal system 10 �K2.
Their combinatorial meaning in terms of natural action (A5; [0; 4]) is
evident: pairs share �rst or second element, or are opposite.

� Note that graph (C1; R3) is also dodecahedron, opposite to � = �1.

� Now, we describe the induced subgraph (C1; E11) on 20 vertices: it is
de�ned by the union R5[R6[R7 of all imprimitive disconnected basic
SRGs of V (A5; C1). Its diagram symbolically appears in Figure 3.

We have 5� 5 grid with removed vertices on the main diagonal. Thick
horizontal and vertical lines correspond to 10 cliques of size 4. In
addition, each vertex is joined with its mate via reection with respect
to the (empty) main diagonal. Thus, �nally, we get regular graph on
20 vertices of valency 7.

� The remaining 60 edges from E12(= E21) form bipartite graph with two
parts of size 20 and 6 and valencies 3 and 10 respectively. This graph
is de�ned by union R8 [ R10. The combinatorial meaning, in terms of
(A5; [0; 4]) is pretty clear: a pentagon X in C2 is joined by edge with
pair (a; b) if and only if fa; bg is one of the edges of X.

� Thus, in principle, graph T is fully described. It remains, however to
provide a few nice diagrams of T .

� Recall that � is the skeleton of a dodecahedron D. The group of space
rotations of orientable map, corresponding to D, is isomorphic to A5.
The dual map see, e.g. [10] to D is the icosahedron I. Twelve vertices
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Figure 2: Dodecahedron.
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Figure 3: Induced subgraph on C1.
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of I correspond to the faces of D. The skeleton of I is also DTG, it is
antipodal graph of diameter 3. The six space diagonals of I, regarded
as opposite pairs of vertices, form imprimitivity system 6 � K2 of the
action of A5 on the vertex set of I. These six diagonals bijectively
correspond to the set C2 = fa; b; c; d; e; fg.

� Now we can provide to the reader an an explanation cf. [11] of our
animated description of T .

{ start from the canvas of planar diagram of �;

{ �nd six representatives of antipodal faces of D;

{ denote them by the elements of C2, see Figure 4.

{ put six extra vertices.

{ depict edges from �3, where �3 is the distance-3 graph of �.

{ add edges from �5, where �5 is the distance-5 graph of �.

{ join each element X of C2 with the vertices of the pentagon sur-
rounding X, as well as with the opposite pentagon of �.

{ Di�erent colors mean di�erent types of edges.

� According to construction, Aut(T ) � A5 � Z2, the group, isomorphic
to Aut(�).

� It is an easy exercise to show that Aut(T ) = Aut(�) �= A5 � Z2.

An animated version is here.
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Figure 4: Dodecahedron with six pentagons.
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Figure 5: The graph T .
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