Graph switching, 2-ranks, and graphical Hadamard matrices

Aida Abiad

Maastricht University, The Netherlands Ghent University, Belgium

Joint work with S. Butler and W.H. Haemers

Symmetry vs Regularity Pilsen, 1-7 July 2018 Plan

Background

Part I

Part II

Background

Part I

Part II

Graph, adjacency matrix and spectrum

spectrum: 3, 1, 1, 1, 1, 1, -2, -2, -2, -2

Background

Part I

Part II

Main question:

Can we construct new SRGs with the same parameters as the symplectic graph?

Main question:

Can we construct new SRGs with the same parameters as the symplectic graph?

Joint work with W.H. Haemers

2-rank

The 2-rank of a graph is the rank of its adjacency matrix over the finite field \mathbb{F}_2 .

Godsil-McKay switching and its 2-rank behaviour

0

 $S = \int_{-\infty}^{-\infty} J$

0 0

Godsil-McKay switching and its 2-rank behaviour

 $A' = A + S \pmod{2}$

Godsil-McKay switching and its 2-rank behaviour

- Lemma (Haemers, Peeters and van Rijckevorsel 1999)
- The 2-rank of a symmetric integral matrix with zero diagonal is even.

Godsil-McKay switching and its 2-rank behaviour

Lemma (Haemers, Peeters and van Rijckevorsel 1999)

The 2-rank of a symmetric integral matrix with zero diagonal is even.

Lemma (Abiad and Haemers 2016) Suppose 2-rank(A) = r, then r is even and 2-rank(A') = r - 2, r or r + 2. G: SRG (k) (k) (k) (k) (k)

G': graph obtained from G by switching

G: SRG

G': graph obtained from G by switching

G, G' same spectrum

G: SRG

G': graph obtained from G by switching

G, G' same spectrum \clubsuit

G: SRG

G': graph obtained from G by switching

G, G' same spectrum \clubsuit G, G' same parameters (n, k, λ, μ)

HOWEVER

HOWEVER

NO guarantee that the switched graph is nonisomorphic with the original SRG

HOWEVER

NO guarantee that the switched graph is nonisomorphic with the original SRG

OUR TOOL: 2-rank

The symplectic graph

The symplectic graph $Sp(2\nu, 2)$ is a SRG with parameters

$$P_0(\nu) = \left(2^{2\nu} - 1, \ 2^{2\nu-1}, \ 2^{2\nu-2}, \ 2^{2\nu-2}\right)$$

The symplectic graph

The symplectic graph $Sp(2\nu, 2)$ is a SRG with parameters

$$P_0(\nu) = \left(2^{2\nu} - 1, \ 2^{2\nu-1}, \ 2^{2\nu-2}, \ 2^{2\nu-2}\right)$$

Theorem (Peeters 1995)

 $P_0(\nu) = Sp(2\nu, 2)$ is characterized by its parameters and the minimality of its 2-rank, which equals 2ν .

Switched symplectic graphs

Godsil-McKay switching set

$$v_{1} = \begin{bmatrix} 1\\0\\1\\0\\1\\0\\z \end{bmatrix}, v_{2} = \begin{bmatrix} 1\\0\\0\\1\\0\\1\\z \end{bmatrix}, v_{3} = \begin{bmatrix} 0\\1\\1\\0\\0\\1\\z \end{bmatrix}, v_{4} = \begin{bmatrix} 0\\1\\0\\1\\1\\0\\z \end{bmatrix}$$

where $z \in \mathbb{F}_2^{2\nu-6}$.

Switched symplectic graphs

Godsil-McKay switching set

$$v_{1} = \begin{bmatrix} 1\\0\\1\\0\\1\\0\\z \end{bmatrix}, v_{2} = \begin{bmatrix} 1\\0\\0\\1\\0\\1\\z \end{bmatrix}, v_{3} = \begin{bmatrix} 0\\1\\1\\0\\0\\1\\z \end{bmatrix}, v_{4} = \begin{bmatrix} 0\\1\\0\\1\\1\\0\\z \end{bmatrix}$$

where $z \in \mathbb{F}_2^{2\nu-6}$.

Lemma (Abiad and Haemers 2016) The set $B = \{v_1, v_2, v_3, v_4\}$ is a Godsil-McKay switching set of $Sp(2\nu, 2)$ for $\nu \ge 3$.

Switched symplectic graphs

Theorem (Abiad and Haemers 2016)

For $\nu \geq 3$, the graph G' obtained from $Sp(2\nu, 2)$ by switching with respect to the switching set B given above, is strongly regular with the same parameters as $Sp(2\nu, 2)$, but with 2-rank equal to $2\nu + 2$. Repeated switching in Sp(6,2)

We ran a search of repeated switching in Sp(6, 2) and found \geq 1800 nonisomorphic SRG (63, 32, 16, 16) with 2-ranks:

Hadamard matrices: $HH^{\top} = nI$

Hadamard matrices: $HH^{\top} = nI$

Hadamard matrices: $HH^{\top} = nI$

Hadamard matrices: $HH^{\top} = nI$

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix} \qquad A_H = \frac{1}{2}(J - H)$$

If *H* normalized, A_H corresponds to $\left(n-1, \frac{n}{2}, \frac{n}{4}, \frac{n}{4}\right)$:

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \qquad A_H = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2,2)$$

Hadamard matrices and 2-ranks

 H_1 , H_2 Hadamard matrices $\implies H_1 \otimes H_2$ Hadamard matrix.

Lemma (Abiad and Haemers 2016) Let H_1 and H_2 be Hadamard matrices, and let $\rho(H) = 2$ -rank(A_H). Then,

 $\rho(H_1 \otimes H_2) \leq \rho(H_1) + \rho(H_2),$

with equality if H_1 and H_2 are normalized.

Take

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \text{ then } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2,2)$$

Take

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \text{ then } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2, 2)$$

with 2-rank(A) = 2. We define

Take

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \text{ then } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2, 2)$$

with 2-rank(A) = 2. We define

$$H^{\otimes \nu} = H \otimes H \otimes \cdots \otimes H$$
 (ν times)

which is a normalized graphical Hadamard matrix of order 4^{ν} and 2-rank $(A_{H^{\otimes \nu}}) = 2\nu$.

Take

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \text{ then } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2,2)$$

with 2-rank(A) = 2. We define

 $H^{\otimes \nu} = H \otimes H \otimes \cdots \otimes H \quad (\nu \text{ times})$

which is a normalized graphical Hadamard matrix of order 4^{ν} and 2-rank $(A_{H^{\otimes \nu}}) = 2\nu$.

Theorem [Peeters, 1995] $Sp(2\nu, 2)$ is characterized by its parameters and the minimality of its 2-rank, which equals 2ν .

Take

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{bmatrix}, \text{ then } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \iff Sp(2, 2)$$

with 2-rank(A) = 2. We define

 $H^{\otimes \nu} = H \otimes H \otimes \cdots \otimes H \quad (\nu \text{ times})$

which is a normalized graphical Hadamard matrix of order 4^{ν} and 2-rank $(A_{H^{\otimes \nu}}) = 2\nu$.

 Sp(2ν , 2) is characterized by its parameters and the minimality of its 2-rank, which equals 2ν .

The SRG associated with $H^{\otimes \nu}$ is $Sp(2\nu, 2)$

Hadamard matrices and 2-ranks

In $H^{\otimes \nu}$, we can replace any $H \otimes H \otimes H$ by any other regular graphical Hadamard matrix of order 64 coming from the SRG of order 63 found by computer (with 2-ranks 6,8,10,12,14,16,18).

Hadamard matrices and 2-ranks

In $H^{\otimes \nu}$, we can replace any $H \otimes H \otimes H$ by any other regular graphical Hadamard matrix of order 64 coming from the SRG of order 63 found by computer (with 2-ranks 6,8,10,12,14,16,18).

Corollary (Abiad and Haemers 2016) Using the above recursive construction we get SRG with the parameters of $Sp(2\nu, 2)$ and 2-ranks:

$$2\nu$$
, $2\nu + 2, \ldots, 2\nu + 12\lfloor \nu/3 \rfloor$.

Hui and Rodrigues (2017) Switched graphs from quadrics in PG(n, 2)

- Hui and Rodrigues (2017)
 Switched graphs from quadrics in PG(n, 2)
- Barwick, Jackson and Penttila (2017) New families of strongly regular graphs

- Hui and Rodrigues (2017)
 Switched graphs from quadrics in PG(n, 2)
- Barwick, Jackson and Penttila (2017) New families of strongly regular graphs
- Ihringer (2017)

A switching for all strongly regular collinearity graphs from polar spaces

- Hui and Rodrigues (2017)
 Switched graphs from quadrics in PG(n, 2)
- Barwick, Jackson and Penttila (2017) New families of strongly regular graphs
- Ihringer (2017)

A switching for all strongly regular collinearity graphs from polar spaces

Kubota (2017)

Strongly regular graphs with the same parameters as the symplectic graph

- Hui and Rodrigues (2017)
 Switched graphs from quadrics in PG(n, 2)
- Barwick, Jackson and Penttila (2017) New families of strongly regular graphs
- Ihringer (2017)

A switching for all strongly regular collinearity graphs from polar spaces

Kubota (2017)

Strongly regular graphs with the same parameters as the symplectic graph

▶ Munemasa and Vanhove (2018+)

Construction of graphs with the same parameters as $Sp(2\nu, 2)$ and 2-rank at least 4ν

Part I

Part II

Main question:

Can we construct SRGs (from graphical Hadamard matrices) having the same parameters but different 2-rank?

Main question:

Can we construct SRGs (from graphical Hadamard matrices) having the same parameters but different 2-rank?

Joint work with S. Butler and W.H. Haemers

We ran a search of repeated switching in Sp(6,2) and found ≥ 1800 nonisomorphic SRG (63, 32, 16, 16) with 2-ranks:

 $6, 8, \ldots, 18.$

Butler ran a search of repeated switching in Sp(6, 2) and found \geq 6000000 nonisomorphic SRG (63, 32, 16, 16) with 2-ranks:

 $6, 8, \ldots, 24.$

Butler ran a search of repeated switching in Sp(6, 2) and found \geq 6000000 nonisomorphic SRG (63, 32, 16, 16) with 2-ranks:

 $6, 8, \ldots, \frac{24}{24}$

Lemma (Peeters 1995)

Theoretical upper bound for the 2-rank of Sp(6,2) is 26.

Lemma (Peeters 1995)

Theoretical upper bound for the 2-rank of Sp(6,2) is 26.

2-rank=26???

Part I

Part II

Part I

Part II

Part I

For i = 1, 2 let G_i be a graph of order n_i with vertex set V_i .

For i = 1, 2 let G_i be a graph of order n_i with vertex set V_i .

 $G_1 \otimes G_2$ has vertex set $V_1 \times V_2$, where two vertices (x_1, x_2) and (y_1, y_2) are adjacent **whenever**:

For i = 1, 2 let G_i be a graph of order n_i with vertex set V_i .

 $G_1 \otimes G_2$ has vertex set $V_1 \times V_2$, where two vertices (x_1, x_2) and (y_1, y_2) are adjacent **whenever**:

 $\{x_i, y_i\}$ are adjacent in G_i for i = 1, 2, or $\{x_i, y_i\}$ are nonadjacent in G_i for i = 1, 2.

Part I

Part II

Inspired by the Kronecker product of Hadamard matrices...

Inspired by the Kronecker product of Hadamard matrices...

If H_1 and H_2 are graphical Hadamard matrices, then

$$G_{H_1}\otimes G_{H_2}=G_{H_1\otimes H_2}$$

Our tool: graph product and its 2-rank behaviour

Theorem (Abiad, Butler and Haemers 2018) For two graphs G_1 and G_2 the following hold: (i) $\mathbf{1} \in \operatorname{Col}_2(G_1 \otimes G_2)$ if and only if $\mathbf{1} \in \operatorname{Col}_2(G_1)$ or $\mathbf{1} \in \operatorname{Col}_2(G_2)$, (ii) if $\mathbf{1} \in \operatorname{Col}_2(G_1)$ and $\mathbf{1} \in \operatorname{Col}_2(G_2)$ then $2-\operatorname{rank}(G_1 \otimes G_2) = 2-\operatorname{rank}(G_1) + 2-\operatorname{rank}(G_2) - 2$ (iii) if $\mathbf{1} \notin \operatorname{Col}_2(G_1)$ or $\mathbf{1} \notin \operatorname{Col}_2(G_2)$ then

 $2\text{-rank}(G_1 \otimes G_2) = 2\text{-rank}(G_1) + 2\text{-rank}(G_2).$
C	D.	$\boldsymbol{\sim}$	
\mathbf{D}	R	lп	ς
		\sim	-

Graph	(n, k, λ, μ)	2-rank
κ_4	(4,3,2,0)	4
2K ₂	(4,1,0,0)	4
Lattice graph $L(4) = 2K_2 \otimes 2K_2$	(16,6,2,2)	6
Shrikhande graph=switched $L(4)$	(16,6,2,2)	6
Clebsch graph= $2K_2 \otimes K_4$	(16,10,6,6)	6

switched SRGs: $P_0(3)$, $P_{\pm}(3)$

Graph	(n, k, λ, μ)	2-ranks
Sp(6,2)	(63,32,16,16)	$\{6, 8, \dots, 24\}$
$Clebsch graph\otimes 2K_2 = 2K_2\otimes K_4\otimes 2K_2$	(64,36,20,20)	$\{8, 10, \dots, 26\}$
Shrikhande graph $\otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
$L(4) \otimes 2K_2 = 2K_2 \otimes 2K_2 \otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
Shrikhande graph $\otimes K_4$ *	(64,36,20,20)	$\{8, 10, \dots, 26\}$

 $P_0(3) = Sp(6, 2) = (63, 32, 16, 16)$

Part I

switched SRGs: $P_0(3)$, $P_{\pm}(3)$

Graph	$(\mathbf{n}, \mathbf{k}, \lambda, \mu)$	2-ranks
Sp(6,2)	(63,32,16,16)	$\{6, 8, \dots, 24\}$
$Clebsch graph\otimes 2K_2 = 2K_2\otimes K_4\otimes 2K_2$	(64,36,20,20)	$\{8, 10, \dots, 26\}$
Shrikhande graph $\otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
$L(4) \otimes 2K_2 = 2K_2 \otimes 2K_2 \otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
Shrikhande graph \otimes K_4 *	(64,36,20,20)	$\{8,10,\ldots,26\}$

 $P_0(3) = Sp(6, 2) = (63, 32, 16, 16)$

- Seidel switching on *Sp*(6, 2) gives SRGs with the same parameters but it does not change the 2-rank!
- Sp(6,2) has GM switching sets that increase the 2-rank after GM switching

switched SRGs: $P_0(3)$, $P_{\pm}(3)$

Graph	$(\mathbf{n}, \mathbf{k}, \lambda, \mu)$	2-ranks
Sp(6,2)	(63,32,16,16)	$\{6, 8, \dots, 24\}$
$Clebsch graph\otimes 2K_2 = 2K_2\otimes K_4\otimes 2K_2$	(64,36,20,20)	$\{8, 10, \dots, 26\}$
Shrikhande graph $\otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
$L(4) \otimes 2K_2 = 2K_2 \otimes 2K_2 \otimes 2K_2$	(64,28,12,12)	$\{8, 10, \dots, 26\}$
Shrikhande graph $\otimes K_4$ *	(64,36,20,20)	$\{8, 10, \dots, 26\}$

 $P_0(3) = Sp(6, 2) = (63, 32, 16, 16)$

- Seidel switching on *Sp*(6, 2) gives SRGs with the same parameters but it does not change the 2-rank!
- Sp(6,2) has GM switching sets that increase the 2-rank after GM switching

$$P_+(3) = (64, 36, 20, 20)$$

 $P_-(3) = (64, 28, 12, 12)$

SRGs with parameters
$$P_0(\nu)$$
, $P_{\pm}(\nu)$
 $P_0(\nu) = Sp(2\nu, 2) = (2^{2\nu} - 1, 2^{2\nu-1}, 2^{2\nu-2}, 2^{2\nu-2})$
 $P_{\pm}(\nu) = (2^{2\nu}, 2^{2\nu-1} \pm 2^{\nu-1}, 2^{2\nu-2} \pm 2^{\nu-1}, 2^{2\nu-2} \pm 2^{\nu-1})$

Part II

SRGs with parameters $P_0(\nu)$, $P_{\pm}(\nu)$ $P_0(\nu) = Sp(2\nu, 2) = (2^{2\nu} - 1, 2^{2\nu-1}, 2^{2\nu-2}, 2^{2\nu-2})$ $P_{\pm}(\nu) = (2^{2\nu}, 2^{2\nu-1} \pm 2^{\nu-1}, 2^{2\nu-2} \pm 2^{\nu-1}, 2^{2\nu-2} \pm 2^{\nu-1})$

Theorem (Abiad, Butler and Haemers 2018)

- (i) There exist SRGs with parameter set $P_0(\nu)$ and 2-rank r for every even $r \in [2\nu, 2(\nu + 9\lfloor \frac{\nu}{3} \rfloor)]$.
- (ii) There exist SRGs with parameter set P₊(ν) and 2-rank r for every even
 r ∈ [2(ν + 1), 2(ν + 1 + 9|^ν/₂|)].
- (iii) There exist SRGs with parameter set $P_{-}(\nu)$ and 2-rank r for every even $r \in [2(\nu+1), 2(\nu+1+9\lfloor \frac{\nu}{3} \rfloor)].$

Proof main idea

Do the switched graphs have the all-one vector in the span of the adjacency matrix?

Proof main idea

Do the switched graphs have the all-one vector in the span of the adjacency matrix?

 Combine the graph product and the computational search of GM switching sets that increase the 2-rank

Consequence I

Two Hadamard matrices are *equivalent* if one can be obtained from the other by row and column permutation and multiplication of rows and columns by -1.

Consequence I

Two Hadamard matrices are *equivalent* if one can be obtained from the other by row and column permutation and multiplication of rows and columns by -1.

Corollary (Abiad, Butler and Haemers 2018) The number of nonequivalent graphical Hadamard matrices of order 4^{ν} is unbounded.

Consequence II

SRGs with parameters $P_{-}(m)$ are known as *maximal* energy graphs.

Consequence II

SRGs with parameters $P_{-}(m)$ are known as *maximal* energy graphs.

Corollary (Abiad, Butler and Haemers 2018) The number of nonisomorphic maximal energy graphs of order 4^{ν} is unbounded.

Open problems

▶ Does *Sp*(6,2) with 2-rank=26 exist?

Open problems

▶ Does *Sp*(6,2) with 2-rank=26 exist?

Can we apply similar techniques to other SRGs?

Open problems

▶ Does *Sp*(6,2) with 2-rank=26 exist?

Can we apply similar techniques to other SRGs?

 Study the 2-rank behaviour of other products used for the construction of Hadamard matrices.

Thank you for listening!