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Graph, adjacency matrix and spectrum

 

spectrum: 3, 1, 1, 1, 1, 1, −2, −2, −2, −2
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2-rank

The 2-rank of a graph is the rank of its adja-

cency matrix over the finite field F2.
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Godsil-McKay switching and its 2-rank behaviour

Lemma (Haemers, Peeters and van Rijckevorsel
1999)
The 2-rank of a symmetric integral matrix with zero diagonal
is even.

Lemma (Abiad and Haemers 2016)
Suppose 2-rank(A) = r , then r is even and 2-rank(A′) = r − 2,
r or r + 2.
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The symplectic graph Sp(2ν, 2) is a SRG with
parameters

P0(ν) =
(
22ν − 1, 22ν−1, 22ν−2, 22ν−2

)
.

Theorem (Peeters 1995)

P0(ν) = Sp(2ν, 2) is characterized by its parameters
and the minimality of its 2-rank, which equals 2ν.
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Switched symplectic graphs
Godsil-McKay switching set

v1 =
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1
0
0
1
0
1
z


, v3 =
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where z ∈ F2ν−6

2 .

Lemma (Abiad and Haemers 2016)
The set B = {v1, v2, v3, v4} is a Godsil-McKay switching set of
Sp(2ν, 2) for ν ≥ 3.
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Switched symplectic graphs

Theorem (Abiad and Haemers 2016)

For ν ≥ 3, the graph G ′ obtained from Sp(2ν, 2) by
switching with respect to the switching set B given
above, is strongly regular with the same parameters
as Sp(2ν, 2), but with 2-rank equal to 2ν + 2.
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Repeated switching in Sp(6, 2)

We ran a search of repeated switching in Sp(6, 2) and
found≥ 1800 nonisomorphic SRG (63, 32, 16, 16) with
2-ranks:

6, 8, . . . , 18.
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Hadamard matrices: HH> = nI

H =


1 1 1 1
1 1 − −
1 − 1 −
1 − − 1

 AH =
1

2
(J−H)

If H normalized, AH corresponds to
(
n − 1, n2 ,

n
4 ,

n
4

)
:

H =


1 1 1 1
1 1 − −
1 − 1 −
1 − − 1

 , AH =


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⇐= Sp(2, 2)
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Hadamard matrices and 2-ranks

H1, H2 Hadamard matrices =⇒ H1 ⊗ H2 Hadamard matrix.

Lemma (Abiad and Haemers 2016)
Let H1 and H2 be Hadamard matrices, and let
ρ(H) = 2-rank(AH). Then,

ρ(H1 ⊗ H2) ≤ ρ(H1) + ρ(H2),

with equality if H1 and H2 are normalized.
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Take
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1 1 − −
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1 − − 1

 , then A =


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⇐= Sp(2, 2)

with 2-rank(A) = 2. We define

H⊗ν = H ⊗ H ⊗ · · · ⊗ H (ν times)

which is a normalized graphical Hadamard matrix of order 4ν and
2-rank(AH⊗ν ) = 2ν.

The SRG associated with H⊗ν is Sp(2ν, 2)
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Hadamard matrices and 2-ranks

In H⊗ν, we can replace any H ⊗H ⊗H by any other
regular graphical Hadamard matrix of order 64 com-
ing from the SRG of order 63 found by computer
(with 2-ranks 6,8,10,12,14,16,18).

Corollary (Abiad and Haemers 2016)

Using the above recursive construction we get SRG
with the parameters of Sp(2ν, 2) and 2-ranks:

2ν, 2ν + 2, . . . , 2ν + 12bν/3c.
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Strongly regular graphs with the same parameters as the
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Construction of graphs with the same parameters as
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For i = 1, 2 let Gi be a graph of order ni with vertex
set Vi .

G1 ⊗ G2 has vertex set V1 × V2, where two vertices
(x1, x2) and (y1, y2) are adjacent whenever:

{xi , yi} are adjacent in Gi for i = 1, 2,
or
{xi , yi} are nonadjacent in Gi for i = 1, 2.
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H2K2 =


−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
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Our tool: graph product and its 2-rank behaviour

Theorem (Abiad, Butler and Haemers 2018)
For two graphs G1 and G2 the following hold:

(i) 1 ∈ Col2(G1 ⊗ G2) if and only if 1 ∈ Col2(G1) or
1 ∈ Col2(G2),

(ii) if 1 ∈ Col2(G1) and 1 ∈ Col2(G2) then

2-rank(G1 ⊗ G2) = 2-rank(G1) + 2-rank(G2)− 2,

(iii) if 1 6∈ Col2(G1) or 1 6∈ Col2(G2) then

2-rank(G1 ⊗ G2) = 2-rank(G1) + 2-rank(G2).
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SRGs

Graph (n, k, λ,µ) 2-rank
K4 (4,3,2,0) 4
2K2 (4,1,0,0) 4
Lattice graph L(4) = 2K2 ⊗ 2K2 (16,6,2,2) 6
Shrikhande graph=switched L(4) (16,6,2,2) 6
Clebsch graph=2K2 ⊗ K4 (16,10,6,6) 6
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switched SRGs: P0(3), P±(3)

Graph (n, k, λ,µ) 2-ranks
Sp(6,2) (63,32,16,16) {6, 8, . . . , 24}
Clebsch graph⊗ 2K2 = 2K2 ⊗ K4 ⊗ 2K2 (64,36,20,20) {8, 10, . . . , 26}
Shrikhande graph⊗ 2K2 (64,28,12,12) {8, 10, . . . , 26}
L(4)⊗ 2K2 = 2K2 ⊗ 2K2 ⊗ 2K2 (64,28,12,12) {8, 10, . . . , 26}
Shrikhande graph⊗ K4

∗ (64,36,20,20) {8, 10, . . . , 26}

P0(3) = Sp(6, 2) = (63, 32, 16, 16)

Seidel switching on Sp(6, 2) gives SRGs with the same
parameters but it does not change the 2-rank!

Sp(6, 2) has GM switching sets that increase the 2-rank
after GM switching

P+(3) = (64, 36, 20, 20)
P−(3) = (64, 28, 12, 12)
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SRGs with parameters P0(ν), P±(ν)

P0(ν) = Sp(2ν, 2) = (22ν − 1, 22ν−1, 22ν−2, 22ν−2)

P±(ν) = (22ν , 22ν−1 ± 2ν−1, 22ν−2 ± 2ν−1, 22ν−2 ± 2ν−1)

Theorem (Abiad, Butler and Haemers 2018)

(i) There exist SRGs with parameter set P0(ν) and
2-rank r for every even r ∈ [2ν, 2(ν + 9bν

3
c)].

(ii) There exist SRGs with parameter set P+(ν) and
2-rank r for every even
r ∈ [2(ν + 1), 2(ν + 1 + 9bν

3
c)].

(iii) There exist SRGs with parameter set P−(ν) and
2-rank r for every even
r ∈ [2(ν + 1), 2(ν + 1 + 9bν

3
c)].
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in the span of the adjacency matrix?

I Combine the graph product and the computa-
tional search of GM switching sets that increase
the 2-rank
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Consequence I

Two Hadamard matrices are equivalent if one can be
obtained from the other by row and column permu-
tation and multiplication of rows and columns by −1.

Corollary (Abiad, Butler and Haemers 2018)

The number of nonequivalent graphical Hadamard
matrices of order 4ν is unbounded.
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Consequence II

SRGs with parameters P−(m) are known as maximal
energy graphs.

Corollary (Abiad, Butler and Haemers 2018)

The number of nonisomorphic maximal energy
graphs of order 4ν is unbounded.
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Consequence II

SRGs with parameters P−(m) are known as maximal
energy graphs.

Corollary (Abiad, Butler and Haemers 2018)

The number of nonisomorphic maximal energy
graphs of order 4ν is unbounded.
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I Does Sp(6, 2) with 2-rank=26 exist?

I Can we apply similar techniques to other SRGs?

I Study the 2-rank behaviour of other products
used for the construction of Hadamard matrices.
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Thank you for listening!
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