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Graph, adjacency matrix and spectrum
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spectrum: 3,1,1,1,1,1, -2, =2, —2, =2
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Main question:

Can we construct new SRGs with the
same parameters as the symplectic

graph?
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graph?

Joint work with W.H. Haemers




2-rank

The 2-rank of a graph is the rank of its adja-
cency matrix over the finite field [».
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Godsil-McKay switching and its 2-rank behaviour

Lemma (Haemers, Peeters and van Rijckevorsel
1999)

The 2-rank of a symmetric integral matrix with zero diagonal
Is even.
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Godsil-McKay switching and its 2-rank behaviour

Lemma (Haemers, Peeters and van Rijckevorsel
1999)

The 2-rank of a symmetric integral matrix with zero diagonal
Is even.

Lemma (Abiad and Haemers 2016)

Suppose 2-rank(A) = r, then r is even and 2-rank(A’) = r — 2,
rorr—+2.
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G: SRG

T AL AN

G': graph obtained from G by switching

G, G’ same spectrum

O
G, G’ same parameters (n, k, A\, ;1)



Part |

Godsil-McKay switching can be used to construct
new SRG from known ones



Part |

Godsil-McKay switching can be used to construct
new SRG from known ones



Godsil-McKay switching can be used to construct
new SRG from known ones

NO guarantee that the switched graph is
nonisomorphic with the original SRG



Godsil-McKay switching can be used to construct
new SRG from known ones

NO guarantee that the switched graph is
nonisomorphic with the original SRG

OUR TOOL: 2-rank
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The symplectic graph

The symplectic graph Sp(2v,2) is a SRG with
parameters

PO(V) — (221/ . 1, 221/717 221/727 221/72) .

Theorem (Peeters 1995)

Po(v) = Sp(2v,2) is characterized by its parameters
and the minimality of its 2-rank, which equals 2v.
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Switched symplectic graphs

Godsil-McKay switching set

Vi = , Vo =

N OFrRrROHFH,ORK

where z € F3"7°.

Lemma (Abiad and Haemers 2016)
The set B = {v1, v», v3, v4} is a Godsil-McKay switching set of

Sp(2v,2) forv > 3.

N PO, OOHR

Part |

, V3 =

N mOORKRRKFEO

y Vg =

N OFR P, ORFRO
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Switched symplectic graphs

Theorem (Abiad and Haemers 2016)
For v > 3, the graph G’ obtained from Sp(2v,2) by
switching with respect to the switching set B given

above, is strongly regular with the same parameters
as Sp(2v,2), but with 2-rank equal to 2v + 2.
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Repeated switching in Sp(6,2)

We ran a search of repeated switching in Sp(6,2) and
found > 1800 nonisomorphic SRG (63, 32, 16, 16) with
2-ranks:

6,8,...,18.
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Hadamard matrices: HH'™ = nl

Ay = %(J—H)
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Hadamard matrices and 2-ranks

H:, H, Hadamard matrices — H; ® H, Hadamard matrix.

Lemma (Abiad and Haemers 2016)

Let Hy and H, be Hadamard matrices, and let
p(H) = 2-rank(An). Then,

p(H @ Ha) < p(Hi) + p(Hz),

with equality if H; and H, are normalized.
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11 1 1 0 00O
1 1 — 0 011

H= 11 | then A= 010 1|5 Sp(2,2)
1 — — 1 0110
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Alternative description of Sp(2v,2) using a recursive construction

Take
11 1 1 0 00O
11 - - 0 011

H= 11 | then A= 010 1|5 Sp(2,2)
1 — — 1 0110

with 2-rank(A) = 2. We define
H =H@H®---®H (v times)

which is a normalized graphical Hadamard matrix of order 4 and
2-rank(Ayzv) = 2v.

Theorem [Peeters, 1995]
Sp(2v,2) is characterized by its parameters
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Alternative description of Sp(2v,2) using a recursive construction

Take
11 1 1 0 00O
1 1 — 0 011

H= 11 | then A= 010 1|5 Sp(2,2)
1 — — 1 0110

with 2-rank(A) = 2. We define
H =H@H®---®H (v times)

which is a normalized graphical Hadamard matrix of order 4 and
2-rank(Ayzv) = 2v.

Theorem [Peeters, 1995]
Sp(2v,2) is characterized by its parameters

and the minimality of its 2-rank, which equals 2v.

The SRG associated with H®” is Sp(2v, 2)
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Hadamard matrices and 2-ranks

In H®", we can replace any H ® H ® H by any other
regular graphical Hadamard matrix of order 64 com-
ing from the SRG of order 63 found by computer
(with 2-ranks 6,8,10,12,14,16,18).
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Hadamard matrices and 2-ranks

In H®", we can replace any H ® H ® H by any other
regular graphical Hadamard matrix of order 64 com-
ing from the SRG of order 63 found by computer
(with 2-ranks 6,8,10,12,14,16,18).

Corollary (Abiad and Haemers 2016)

Using the above recursive construction we get SRG
with the parameters of Sp(2v,2) and 2-ranks:

2, 2v+2,...,2v 4+ 12|v/3].
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Related results

Hui and Rodrigues (2017)
Switched graphs from quadrics in PG(n,2)

Barwick, Jackson and Penttila (2017)
New families of strongly regular graphs

Ihringer (2017)
A switching for all strongly regular collinearity graphs
from polar spaces

Kubota (2017)
Strongly regular graphs with the same parameters as the
symplectic graph

Munemasa and Vanhove (2018-+)
Construction of graphs with the same parameters as
Sp(2v,2) and 2-rank at least 4v
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Hadamard matrices) having the same
parameters but different 2-rank?
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Main question:

Can we construct SRGs (from graphical
Hadamard matrices) having the same
parameters but different 2-rank?

Joint work with S. Butler and W.H. Haemers
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Butler ran a search of repeated switching in Sp(6,2) and found
> 6000000 nonisomorphic SRG (63,32, 16,16) with 2-ranks:

6,8,...,24.
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Is 26.
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Repeated switching in Sp(6,2)

Lemma (Peeters 1995)

Theoretical upper bound for the 2-rank of Sp(6,2)
Is 26.

2-rank=26777
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A graph product ®

For i = 1,2 let G; be a graph of order n; with vertex
set V.

G; ® Gy has vertex set V; x V5, where two vertices
(x1,x2) and (y1,y») are adjacent whenever:

{x;, yi} are adjacent in G; for i = 1,2,
or
{xi, y;} are nonadjacent in G; for i =1,2.
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A graph product ®
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Clebsch graph: 2K2®K4 =(16,10,6,6)
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A graph product ®

Inspired by the Kronecker product of
Hadamard matrices...

If H, and H, are graphical Hadamard
matrices, then

GHl ® GH2 — GH1®H2
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Our tool: graph product and its 2-rank behaviour

Theorem (Abiad, Butler and Haemers 2018)
For two graphs G; and G, the following hold:

(I) 1e COI2(G]_ X Gg) if and only ifle COI2(G1) or
1 S COlg(Gg),

(i) if1 € Coly(Gy) and 1 € Coly(Gy) then
2-rank(G; ® Gp) = 2-rank(Gp) + 2-rank(Gy) — 2,
(iii) if 1 & Cola(Gy) or 1 & Coly(Gy) then

2-rank(G; ® Gy) = 2-rank(G;) + 2-rank(Gy).



SRGs

Graph (ny ky A, ) | 2-rank
K (4,3,2,0) 4
2K, (4,1,0,0) 4
Lattice graph L(4) = 2K, ® 2K, | (16,6,2,2) 6
Shrikhande graph=switched L(4) | (16,6,2,2) 6
Clebsch graph=2K, ® K, (16,10,6,6) 6
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switched SRGs: Py(3), P+(3)

Graph (nyky A, 1) 2-ranks
Sp(6,2) (63,32,16,16) | {6,8,...,24}
Clebsch graph ® 2K, = 2K, @ Ky ® 2K, | (64,36,20,20) | {8,10,...,26}
Shrikhande graph ® 2K (64,28,12,12) | {8,10,...,26}
L(4) ® 2K, = 2K, @ 2K, @ 2K, (64,28,12,12) | {8,10,...,26}
Shrikhande graph ® K, * (64,36,20,20) | {8,10,...,26}

Po(3) = Sp(6,2) = (63,32, 16, 16)
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@ Seidel switching on Sp(6,2) gives SRGs with the same

parameters but it does not change the 2-rank!

@ 5p(6,2) has GM switching sets that increase the 2-rank

after GM switching
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switched SRGs: Py(3), P+(3)

Graph (nyky A, 1) 2-ranks
Sp(6,2) (63,32,16,16) | {6,8,...,24}
Clebsch graph ® 2K, = 2K, @ Ky ® 2K, | (64,36,20,20) | {8,10,...,26}
Shrikhande graph ® 2K; (64,28,12,12) | {8,10,...,26}
L(4) ® 2K, = 2K, @ 2K, @ 2K, (64,28,12,12) | {8,10,...,26}
Shrikhande graph ® K, * (64,36,20,20) | {8,10,...,26}

Po(3) = Sp(6,2) = (63,32, 16,16)
@ Seidel switching on Sp(6,2) gives SRGs with the same
parameters but it does not change the 2-rank!

@ 5p(6,2) has GM switching sets that increase the 2-rank
after GM switching

P, (3) = (64,36, 20, 20)
P_(3) = (64,28,12,12)
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SRGs with parameters Py(v), P.(v)

Po(v) = Sp(2v,2) = (22 — 1, 2271, 222 Q22
'Di(V) — (221/7 221/—1 :tzz/—l, 22V—2:i:2u—1’ 22V_2:i:21/_1)
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SRGs with parameters Py(v), P.(v)

'DO(V) — 5p(21/, 2) — (221/ _ 1’ 221/—1’ 22V—2’ 22V—2)
'Di(V) — (221/7 221/—1 :|:2V_1, 22V_2:|:2V_1, 22V_2:i:21/_1)

Theorem (Abiad, Butler and Haemers 2018)

(i) There exist SRGs with parameter set Py(v) and
2-rank r for every even r € [2v,2(v + 9(5])].
(ii) There exist SRGs with parameter set P, (v) and
2-rank r for every even
re2(v+1),2(v+1+95))l
(iii) There exist SRGs with parameter set P_(v) and

2-rank r for every even
re2(v+1),2(v+1+95))l
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Proof main idea

» Do the switched graphs have the all-one vector
in the span of the adjacency matrix?
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Proof main idea

» Do the switched graphs have the all-one vector
in the span of the adjacency matrix?

» Combine the graph product and the computa-
tional search of GM switching sets that increase
the 2-rank
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Consequence |

Two Hadamard matrices are equivalent if one can be
obtained from the other by row and column permu-
tation and multiplication of rows and columns by —1.



Consequence |

Two Hadamard matrices are equivalent if one can be
obtained from the other by row and column permu-
tation and multiplication of rows and columns by —1.

Corollary (Abiad, Butler and Haemers 2018)

The number of nonequivalent graphical Hadamard
matrices of order 4" is unbounded.
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energy graphs.
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Consequence |l

SRGs with parameters P_(m) are known as maximal
energy graphs.

Corollary (Abiad, Butler and Haemers 2018)

The number of nonisomorphic maximal energy
graphs of order 4" is unbounded.
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Open problems

» Does Sp(6,2) with 2-rank=26 exist?

» Can we apply similar techniques to other SRGs?

» Study the 2-rank behaviour of other products
used for the construction of Hadamard matrices.



Thank you for listening!
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