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regularity — local, easy to verify
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Questions

symmetry =⇒ structural consequences
regularity ?

=⇒ similar structural consequences

paradox of symmetry
quality/quantity tradeoff
high degree of symmetry =⇒

few symmetries
high regularity ?

=⇒ few symmetries
regularity =⇒ symmetry

— without classification ?
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The challenge

Consequences of symmetry⇐ group theory
often via

Classification of Finite Simple Groups (CFSG)

Consequences of regularity⇐ what techniques?
combinatorics, linear algebra, ??

doing group theory without the groups
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Consequences of regularity — why it matters

Most regular objects not symmetric
— vast increase in scope

∗ symmetry: global, hard to verify
∗ regularity: local, easy to verify
∗ critical to algorithmic application: Graph Isomorphism

— regularity: easy to create
— symmetry: hard to detect

by-product: CFSG-free proof
gives new insight even under symmetry

CFSG as magic box
this is not how we

used to do math
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Symmetry: quality vs. quantity

Theorem (CFSG + Curtis, Kantor, Seitz (1976))

G doubly trans, G , An,Sn =⇒ |G| ≤ n1+log2 n

Theorem (B (1982), Pyber (1993) w/o CFSG)

G doubly trans, G , An,Sn =⇒ |G| ≤ exp(c(log n)3)

Dividend of elementary proof: ideas central to

Theorem (Helfgott–Seress (2013))
diam(Sn) < exp((log n)c) — quasipolynomial bound

diam(G): max word length under worst generators
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More symmetry paradox: graphs with symmetry

X vertex-transitive if Aut(X ) transitive on vertices
X arc-transitive if Aut(X ) transitive on adjacent pairs
connected 3-regular vertex-transitive graph can have
exponentially many automorphisms:
the crossed ladder has (n/2) · 2n/4

The crossed ladder (wraparound image)
a 3-regular vertex-transitive graph

Theorem (Tutte (1947))
A connected 3-regular arc-transitive graph has at most 32n
automorphisms.
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Finite geometry : Steiner 2-designs

incidence geometry: G = (P,L, I)
P – set of “points”
L – set of “lines”
I ⊆ P × L – incidence relation

Steiner 2-(v,k)-design:
v = |P |
k – “length” of each line (# points incident with line)
Axiom 1: (∀x , y ∈ P)(∃! line through x , y)

Finite projective plane:
Axiom 2: every pair of lines

intersects
=⇒ n = k2

− k + 1
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Symmetry vs. regularity

Theorem (Ostrom–Wagner 1959/65)
If a finite projective plane G with n points has a doubly
transitive automorphism group then it is Desarguesian
and therefore |Aut(G)| ≤ O(n4 log n)

Conjecture
If G is a finite projective plane with n points then

|Aut(G)| < nC

Best known without symmetry:
|Aut(G)| < n4+log2 log2 n
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Steiner 2-designs

Steiner 2-(v,k)-design:
v = |P |
k – “length” of each line (# points incident with line)
Axiom 1: (∀x , y ∈ P)(∃! line through x , y)

Examples:
points and lines of d-dim affine and projective
geometries over Fq

— these have doubly transitive automorphism groups
=⇒ |Aut | < n1+log2 n

What can be said without the symmetry?
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Steiner 2-designs

STS: Steiner triple system:
Steiner 2 − (v ,3)-design: lines have 3 points

Easy to show:

|Aut(STS)| < n1+log2 n

(b/c STS has log2 n generators)

Theorem (B-Wilmes, Chen-Sun-Teng (2013))
G Steiner 2-design with n points =⇒

|Aut(G)| < nO(log n)
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Johnson graphs

Distance-transitive graphs with many automorphisms
Johnson graph J(k , t): n = (k

t ) (t < k/2)

vertices: t-subsets of a k -set
adjacency: intersection = t − 1

Aut(J(k , t)) = S(t)
k

induced action of Sk
on t-sets

Petersen = complement
of J(5,2)
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Distance-transitive vs. distance-regular

distance-transitive =⇒ distance-regular
6⇐=

In fact, distance-regular 6=⇒ |Aut(X )| > 1
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Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ∼ 1980)

∃ ≈ nn/2 SR graphs with ≤ n vertices and no automorphisms.

“line-graphs” of Steiner triple systems:
vertices: lines, adjacency: intersection

Latin square graphs

Theorem (B, Cameron ∼ 1980)
Almost all Latin squares and almost all STSs with ≤ n
cells/points have no automorphisms.

Open problem: ∃ distance-regular graphs
of large diameter

with no automorphisms?
with more than 10 vertex orbits?

If this fails: example of regularity =⇒ symmetry
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Regularity =⇒ symmetry?

X = (V ,E) graph, A ⊆ V
induced subgraph X (A): vertex set A, adjacency: as in X

(symmetry) X = (V ,E) k -homogeneous if (∀A,B ⊆ V ) if
|A|, |B| ≤ k and X (A) � X (B) then (∃σ ∈ Aut(X ))(Aσ = B)

(regularity) X = (V ,E) k -set-regular if (∀A,B ⊆ V ) if
|A|, |B| ≤ k and X (A) � X (B) then A and B have the same
number of common neighbors

k = 1: regular graph
k = 2: strongly regular

k -homogeneous =⇒ k -set-regular
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Regularity =⇒ symmetry?

Theorem (Cameron, Klin–Gol’fand (1980))
6-set-regular =⇒ 6-homogeneous

(in fact k-homogeneous for all k)

regularity =⇒ symmetry !

Actual result:

Theorem (Cameron, Klin–Gol’fand (1980))
6-set-regular =⇒ union of cliques of equal size, or the
pentagon, or L(K3,3), or their complement

regularity =⇒ classification =⇒ symmetry
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Regularity =⇒ symmetry w/o classification?

Perhaps there is such a result.
We shall define certain type of

hidden irregularity

of which the opposite is not merely “hidden regularity,” but

hidden robust symmetry

Objects with robust (indestructible) symmetry:

Johnson graphs
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Primitive groups with a bounded suborbit
Suborbit of G ≤ Sn: orbit of stabilizer
Subdegrees: lengths of suborbits
Sims Conjecture

Theorem (Cameron–Praeger–Saxl–Seitz (CFSG))
Primitive group G ≤ Sn with subdegree k , 1 =⇒
|G| ≤ f (k) · n.

Corollary: Primitive group, one subdegree , 1 bounded
=⇒ all subdegrees bounded.

Combinatorial relaxation:

Conjecture (B)
Primitive coherent configuration; degrees of constituents
1 = d1 ≤ d2 ≤ · · · ≤ dr =⇒ dr ≤ f (d2).

Obvious if r bounded.
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Distance-regular vs. distance-transitive graphs

Theorem
Bounded degree =⇒ bounded size

1982: Proved for distance-transitive graphs
Macpherson–Cameron, based on Sims conj. (CFSG)

Bannai–Ito conjecture: same for distance-regular graphs

2015: confirmed!
S. Bang–A. Dubickas–J. H. Koolen–V. Moulton
combinatorial lemma by A. A. Ivanov
plus 40 pages of spectral arguments
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High regularity, few symmetries

Strongly regular graphs with large automorphism groups:

* trivial (union of cliques, complements) |Aut | > (
√

n)!

* H(k ,2) Hamming graph: n = k2 vertices: [k ] × [k ]
adjacent if share a coordinate
|Aut(H(k ,2))| = 2(k !)2

≈ n
√

n

* J(k ,2) Johnson graph: n =
(k
2
)

|Aut(J(k ,2))| = k ! ≈ n
√

n/2

“Standard exceptions”: trivial SR graphs, Hamming,
Johnson, their complements
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High regularity, few symmetries

“Standard exceptions”: trivial SR graphs, Hamming, Johnson,
their complements

Conjecture (B: quasipolynomial bound)
With these exceptions, SR graphs satisfy

|Aut(X )| ≤ exp((log n)c)

Best known:

Theorem (Chen, Sun, Teng (2013))

With these exceptions, SR graphs satisfy
|Aut(X )| ≤ exp(n9/37)
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Individualization/refinement (I/R) heuristics

Irregularity helps refute isomorphism
keep automorphisms down

create/propagate irregularity

individualize vertex , refine
individualize second vertex , refine
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Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x ∈ X : new structure Xx

ISO(X ,Y ) =
⋃

y∈Y ISO(Xx ,Yy )

multiplicative cost: n

László Babai Symmetry vs. Regularity



Individualization/refinement:
canonically destroying symmetry

Irregularity helps

Create irregularity: individualize t vertices:
give them unique colors

Spread irregularity: refine coloring:
count colors of neighbors

multiplicative cost: nt

branching factor: # instances in canonical set
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Advanced refinement: Weisfeiler-Leman 1968

color all ordered pairs, refine by counting triples with
shared base and same color composition

x y

z1
z2 z3

coherent configurations: stable under WL

SR graphs: stable for WL (no refinement made)
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I/R heuristic

individualize t points
canonical refinement

complete split: each point gets unique color

Fact (automorphism bound)
If structure X completely splits after t individualizations
and canonical refinement them

|Aut(X)| ≤ nt
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Coherent configurations

Coherent configuration of rank r : coloring (partition) of
V × V = R0∪̇ . . . ∪̇Rr−1

diag colors , off-diag colors diag(V ) = {(x , x) | x ∈ V }
color of x → y determines color of x ← y

for any (x , y) ∈ Rk
pk

ij : # z s.t. (x , z) ∈ Ri and (z, y) ∈ Rj

x y

z1
z2 z3

x ′ y ′

z′1
z′2 z′3
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Coherent configurations

Primitive coherent configuration:
all vertices (diagonal) same color
every off-diagonal color (strongly) connected

Schurian case: CC primitive⇔ group primitive

If rank 3: SR graph or SR tournament (oriented clique)

Theorem (B 1981)
X primitive coherent config of rank ≥ 3
⇒ |Aut(X)| ≤ exp(Õ(

√
n))

(Õ notation hides polylogarithmic factors)

Same paper: SR tournaments: |Aut(X)| ≤ nO(log n)
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Idea of proof

X = (V ;R0, . . . ,Rr−1)
Edge colors: c(x , y) = i if (x , y) ∈ Ri

Theorem (B 1981)
X primitive coherent config of rank ≥ 3
⇒ |Aut(X)| ≤ exp(Õ(

√
n))

For x , y ∈ V distinguishing set

D(x , y) = {z : c(z, x) , c(z, y)}

Fact. If T ⊂ V intersects each D(x , y) then T base of Aut(X),
i.e., Aut(X)(T ) = 1 (pointwise stabilizer) and so

|Aut(X)| < nt (n = |V |, t = |T |)
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Idea of proof

For x , y ∈ V distinguishing set

D(x , y) = {z : c(z, x) , c(z, y)}

Fact. If T ⊂ V intersects each D(x , y) then T base of Aut(X),
i.e., Aut(X)(T ) = 1 (pointwise stabilizer) and so

|Aut(X)| < nt (n = |V |, t = |T |)

So we need |T | ≤ Õ(
√

n).

Distinguishing number D = D(X) = minx,y |D(x , y)|

Fact. T := O((n/D) log n) random points work (whp)

Core technical result:

Theorem

(∀x , y ∈ V )(|D(x , y)| ≥
√

n/2)
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Coherent configurations

Theorem (B 1981)
X primitive coherent config of rank ≥ 3
⇒ |Aut(X)| ≤ exp(Õ(n1/2))

CHALLENGE: reduce bound WNE
(with known exceptions)
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Coherent configurations

John Wilmes Xiaorui Sun

Theorem (Xiaorui Sun - John Wilmes 2015)
X primitive coherent config of rank ≥ 3
⇒ |Aut(X)| ≤ exp(Õ(n1/3)) WNE

developed structure theory for PCCs
“clique geometry” separates exceptions
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Primitive permutation groups

Primitive groups: |G| ≤ nO(log n) WNE
[Cameron 1981, CFSG]
|G| ≤ n1+log2 n [Maróti 2010, CFSG]

EXCEPTIONS: unique min normal subgroup
(socle) Soc(G) = Am × · · · × Am

product of induced Am actions: n =
(m

k
)r

“Cameron groups”
acts on Cameron schemes: Johnson/Hamming
hybrid
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Primitive permutation groups vs. PCCs

Theorem (Cameron)
Primitive groups: |G| ≤ nO(log n) WNE

Ultimate goal:
combinatorial relaxation of this result
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Primitive coherent configurations

Conjecture
If X primitive coherent configuration
not a Cameron scheme, then
(a) |Aut(X)| quasipolynomially bounded
(b) polylog individualizations + efficient

canonical refinement completely split X

Confirmed
with n1/2 indiv [B 1981]
with n1/3 indiv [Sun - Wilmes 2015]
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Strongly regular graphs

Conjecture (B: quasipolynomial bound)
With these exceptions, SR graphs satisfy

|Aut(X )| ≤ exp((log n)c)

Maybe conjecture false.

But if not the log-order, something
is polylogarithmic about Aut(X )
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Thickness of groups: alternating sections

Definition
Thickness of G: θ(G): largest t such that At is
involved in G as quotient of subgroup

N / H ≤ G H/N � At

Example: X connected graph of degree ≤ d
G = edge-stabilizer of Aut(X )
⇒ θ(G) ≤ d − 1

→ Luks’s polynomial-time algorithm
to test isomorphism of graphs of bounded degree.
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Thickness versus order

Definition
Thickness of G: θ(G): largest t such that At is
involved in G as quotient of subgroup

Theorem (B-Cameron-Pálfy 1982 & refinements
by Pyber, Liebeck-Shalev)
G ≤ Sn primitive, θ(G) = t ⇒ |G| ≤ nO(t).
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Thickness of Aut(SRG)

Theorem (B 2014)
If X is a non-trivial, non-graphic SRG then

θ(Aut(X )) = O(log n)

If X graphic (Johnson or Hamming of rank 3)
then θ(Aut(X ) = Θ(

√
n)

[Pyber 2014] uses Thm for elementary proof of
quasipolynomial bound
on order of rank-3 groups
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Minimal degree of permutation group

DEF Minimal degree of a perm group G ≤ Sn

is the min # elements moved by any nonidentity
element of G.

Theorem (Bochert 1892)
Min deg of doubly trans group , An,Sn is
≥ (n − 1)/4.

Theorem (Liebeck 1984 (CFSG))
Min deg of primitive group Ω(n/ log n) WNE
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Min degree vs. thickness

Theorem (Wielandt, 1934)
If min degree of G ≤ Sn is Ω(n) then
θ(G) = O(log n).
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Thickness of Aut(SRG)

Theorem
If X is a non-trivial, non-graphic SRG then

θ(Aut(X )) = O(log n)

Follows by combining Wielandt’s bound with

Theorem (B 2014)
If X is a non-trivial, non-graphic SRG then min
degree of Aut(X ) is ≥ n/8.
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Spectral bound on minimal degree

Theorem (B 2014)
If X is a non-trivial, non-graphic SRG then min degree of
Aut(X ) is ≥ n/8.

Conjecture (B)
If X is a primitive coherent configuration and not a
Cameron scheme then min deg of Aut(X ) is ≥ Ω(n).

Verified for rank 3 above
Verified for rank 4: Bohdan Kivva 2018

NEW!

László Babai Symmetry vs. Regularity



Spectral bound on minimal degree

X : regular graph of degree k
adjacency matrix AX = (aij)n×n: aij = 1 if i ∼ j ; o/w aij = 0
adjacency eigenvalues k = λ1 ≥ · · · ≥ λn

∑
λi = 0

zero-weight spectral radius: ξ = max{|λ2|, |λn|}

k degree
ξ zero-weight spectral radius
q max number of common neighbors

of pairs of vertices

Theorem (B 2014)

Min degree of Aut(X ) is at least(
1 −

q + ξ

k

)
· n
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Spectral separation of “bad” graphs from crowd

Union of cliques has λn = −1
Line graphs have λn = −2

Theorem (J. J. Seidel 1968)
If n ≥ 29 and SRG X has least eigenvalue λn ≥ −2 then X
is trivial or graphic.

add to this:

Fact: if X SR and k < (n − 1)/2 then
all eigenvalues are integers

∴ λn ≤ −3 in the cases of interest
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Spectral separation of “bad” graphs from crowd
ξ: zero-weight spectral radius
q: max # common neighbors of pair of vertices
k : degree

Theorem (B 2014)

Min degree of Aut(X ) is at least(
1 −

q + ξ

k

)
· n

For this to be useful, we need: q + ξ ≤ 0.99k

But for SRG: λ2|λn| = k − µ < k
so if λn ≤ −3 then ξ = λ2 ≤ k/3.
Bounding q: [B 1980]

For k = o(n) we have q = o(k) [Neumaier 1979, Spielman
1996]
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Effect of small zero-weight spectral radius

X = (V ,E) regular graph of degree k
k = λ1 ≥ · · · ≥ λn adjacency eigenvalues
ξ = max{|λi | : i ≥ 2} zero-weight spectral radius
S ⊆ V
d(S) = average degree of subgraph induced by S

Expander Mixing Lemma (Alon, Chung 1988)
If ξ small then average degree in subset ≈
proportional to size of subset:

|d(S) − (|S|/n)k | ≤ ξ
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Expander mixing lemma and minimal degree

supp(σ)

x

xσ

q︷     ︸︸     ︷
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Expander mixing lemma and minimal degree

supp(σ)
x xσ

q︷     ︸︸     ︷
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Challenges

more/better examples of “regularity =⇒ symmetry”
w/o classification
distance-regular graphs of large diameter and
many vertex orbits
extend the Sun–Wilmes combinatorial structure
theory of PCCs
|Aut(PCC)| ≤ quasipoly WNE
or at least same for SR graphs
extend the Kivva theorem to bounded rank:
min deg Aut(rank-4 PCC) ≥ Ω(n)

|Aut( proj plane )| < nC

Steiner t-design =⇒ n > C t

(Keevash 2014: ∀t)(∃ Steiner t-design)
would imply |Aut(X )| ≤ nO(log n) for Steiner t-designs
(B–Wilmes)
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