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symmetry = regularity
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regularity = similar structural consequences

Laszl6 Babai Symmetry vs. Regularity



Questions

e symmetry == structural consequences
. ? .
regularity = similar structural consequences

e paradox of symmetry
quality/quantity tradeoff
high degree of symmetry —
few symmetries

Laszl6 Babai Symmetry vs. Regularity



Questions

e symmetry == structural consequences
. ? .
regularity = similar structural consequences

e paradox of symmetry
quality/quantity tradeoff
high degree of symmetry —
few symmetries

high regularity 25 few symmetries

Laszl6 Babai Symmetry vs. Regularity



Questions

e symmetry == structural consequences
. ? .
regularity = similar structural consequences

e paradox of symmetry
quality/quantity tradeoff
high degree of symmetry —
few symmetries
high regularity 25 few symmetries

e regularity — symmetry
— without classification ?
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The challenge

e Consequences of symmetry < group theory
often via
Classification of Finite Simple Groups (CFSG)

e Consequences of regularity < what techniques?
combinatorics, linear algebra, ??
doing group theory without the groups
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Consequences of regularity — why it matters

@ Most regular objects not symmetric
— vast increase in scope
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— regularity: easy to create
— symmetry: hard to detect

Laszl6 Babai Symmetry vs. Regularity



Consequences of regularity — why it matters

@ Most regular objects not symmetric
— vast increase in scope
@ = symmetry: global, hard to verify

+ regularity: local, easy to verify
+ critical to algorithmic application: Graph Isomorphism

— regularity: easy to create
— symmetry: hard to detect

@ by-product: CFSG-free proof
gives new insight even under symmetry

Laszl6 Babai Symmetry vs. Regularity



Consequences of regularity — why it matters

e Most regular objects not symmetric
— vast increase in scope
@ = symmetry: global, hard to verify

+ regularity: local, easy to verify
+ critical to algorithmic application: Graph Isomorphism

— regularity: easy to create
— symmetry: hard to detect

@ by-product: CFSG-free proof
gives new insight even under symmetry

CFSG as magic box I %

this is not how we ‘}
used to do math
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Symmetry: quality vs. quantity

Theorem (CFSG + Curtis, Kantor, Seitz (1976))
G doubly trans, G # A,, S, = |G| < n'*10%2n
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Symmetry: quality vs. quantity

Theorem (CFSG + Curtis, Kantor, Seitz (1976))
G doubly trans, G # A,, S, = |G| < n'*10%2n

Theorem (B (1982), Pyber (1993) w/o CFSG)
G doubly trans, G # A,, S, = |G| < exp(c(log n)3)
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Symmetry: quality vs. quantity

Theorem (CFSG + Curtis, Kantor, Seitz (1976))
G doubly trans, G # A,, S, = |G| < n'*10%2n

Theorem (B (1982), Pyber (1993) w/o CFSG)
G doubly trans, G # A,, S, = |G| < exp(c(log n)3)

Dividend of elementary proof: ideas central to

Theorem (Helfgott—Seress (2013))
diam(S,) < exp((log n)¢) — quasipolynomial bound

diam(G): max word length under worst generators
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More symmetry paradox: graphs with symmetry

X vertex-transitive if Aut(X) transitive on vertices
X arc-transitive if Aut(X) transitive on adjacent pairs

connected 3-regular vertex-transitive graph can have
exponentially many automorphisms:
the crossed ladder has (n/2) - 2"/4
KX XXX
The crossed ladder (wraparound image)
a 3-regular vertex-transitive graph

Theorem (Tutte (1947))

A connected 3-regular arc-transitive graph has at most 32n
automorphismes.
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Finite geometry : Steiner 2-designs

incidence geometry: G = (P, L, )
P — set of “points”
L — set of “lines”
| € P x L —incidence relation
Steiner 2-(v,k)-design:
v =|P|
k — “length” of each line (# points incident with line)
Axiom 1: (Vx # y € P)(3! line through x, y)

Finite projective plane:
Axiom 2: every pair of lines
intersects
= n=k—-k+1
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Symmetry vs. regularity
Theorem (Ostrom—Wagner 1959/65)

If a finite projective plane G with n points has a doubly

transitive automorphism group then it is Desarguesian

and therefore | Aut(G)| < O(n*log n)

If G is a finite projective plane with n points then
| Aut(G)| < n®

Best known without symmetry:
|AUt(g)| < n4+I092 log, n
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Steiner 2-designs

Steiner 2-(v,k)-design:
v=1P|
k — “length” of each line (# points incident with line)
Axiom 1: (Vx # y € P)(3! line through x, y)
Examples:

points and lines of d-dim affine and projective
geometries over IF,

— these have doubly transitive automorphism groups
= | Aut| < n'tlogz2n

What can be said without the symmetry?
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Steiner 2-designs

STS: Steiner triple system:
Steiner 2 — (v, 3)-design: lines have 3 points

Easy to show:

| Aut(STS)| < n'*ogzn

(b/c STS has log, n generators)

Theorem (B-Wilmes, Chen-Sun-Teng (2013))

G Steiner 2-design with n points —

| Aut(G)| < n®le9")
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Johnson graphs

Distance-transitive graphs with many automorphisms
Johnson graph J(k,t): n= (%) (t<k/2)

vertices: t-subsets of a k-set
adjacency: intersection =t — 1

Aut(J(k, 1)) = SV
induced action of Sy
on t-sets

Petersen = complement
of J(5,2)
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Distance-transitive vs. distance-regular

distance-transitive — distance-regular

q&
In fact, distance-regular =~ |Aut(X)| > 1

Laszl6 Babai Symmetry vs. Regularity



Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ~ 1980)

3 ~ n"/2 SR graphs with < n vertices and no automorphisms.

Laszl6 Babai Symmetry vs. Regularity



Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ~ 1980)

3 ~ n"/2 SR graphs with < n vertices and no automorphisms.

“line-graphs” of Steiner triple systems:
vertices: lines, adjacency: intersection

Latin square graphs

Theorem (B, Cameron ~ 1980)

Almost all Latin squares and almost all STSs with < n
cells/points have no automorphisms.
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Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ~ 1980)

3 ~ n"/2 SR graphs with < n vertices and no automorphisms.

Open problem: 3 distance-regular graphs
of large diameter
with no automorphisms?
with more than 10 vertex orbits?

If this fails: example of regularity =— symmetry
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Regularity = symmetry?

X=(V,E)graph, AC V
induced subgraph X(A): vertex set A, adjacency: as in X

(symmetry) X = (V, E) k-homogeneous if (VA, B C V) if
|A|,|1B| < k and X(A) = X(B) then (do € Aut(X))(A? = B)

(regularity) X = (V, E) k-set-regular if (VA BC V) if
|Al,|B] < k and X(A) = X(B) then A and B have the same
number of common neighbors

k = 1: regular graph
k = 2: strongly regular

k-homogeneous — k-set-regular
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Regularity = symmetry?

(symmetry) X = (V, E) k-homogeneous if (VA, B C V) if
|Al,|Bl < k and X(A) = X(B) then (do € Aut(X))(A? = B)

)
(regularity) X = (V, E) k-set-regular if (YA, BC V) if
|Al,|B] < k and X(A) = X(B) then A and B have the same
number of common neighbors

Theorem (Cameron, Klin—Gol'fand (1980))

6-set-reqular =— 6-homogeneous
(in fact k-homogeneous for all k)
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Regularity = symmetry?

Theorem (Cameron, Klin—Gol’'fand (1980))

6-set-reqular — 6-homogeneous
(in fact k-homogeneous for all k)

regularity =— symmetry !

Actual result:
Theorem (Cameron, Klin—Gol'fand (1980))

6-set-reqular = union of cliques of equal size, or the
pentagon, or L(Ks3), or their complement
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Regularity = symmetry?

Theorem (Cameron, Klin—Gol’'fand (1980))

6-set-reqular — 6-homogeneous
(in fact k-homogeneous for all k)

regularity =— symmetry !

Actual result:
Theorem (Cameron, Klin—Gol'fand (1980))

6-set-reqular = union of cliques of equal size, or the
pentagon, or L(Ks3), or their complement

regularity = classification = symmetry
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Regularity = symmetry w/o classification?

Perhaps there is such a result.
We shall define certain type of

hidden irregularity

of which the opposite is not merely “hidden regularity,” but
hidden robust symmetry
Objects with robust (indestructible) symmetry:

Johnson graphs
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Primitive groups with a bounded suborbit

Suborbit of G < S,: orbit of stabilizer
Subdegrees: lengths of suborbits
Sims Conjecture

Theorem (Cameron—Praeger—Sax|-Seitz (CFSG))

Primitive group G < S, with subdegree k + 1 —
|G| < f(k) - n.

Corollary: Primitive group, one subdegree # 1 bounded
= all subdegrees bounded.

Combinatorial relaxation:

Conjecture (B)

Primitive coherent configuration; degrees of constituents
1=di<dh<---<d = d <f(h).

Obvious if r bounded.
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Distance-regular vs. distance-transitive graphs

Bounded degree — bounded size

1982: Proved for distance-transitive graphs
Macpherson—-Cameron, based on Sims conj. (CFSG)

Bannai-Ito conjecture: same for distance-regular graphs
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Distance-regular vs. distance-transitive graphs

Bounded degree — bounded size

1982: Proved for distance-transitive graphs
Macpherson—-Cameron, based on Sims conj. (CFSG)

Bannai-Ito conjecture: same for distance-regular graphs

2015: confirmed!

S. Bang—A. Dubickas—J. H. Koolen—-V. Moulton
combinatorial lemma by A. A. Ivanov
plus 40 pages of spectral arguments
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High regularity, few symmetries

Strongly regular graphs with large automorphism groups:
* trivial (union of cliques, complements) | Aut| > (vVn)!
* H(k,2) Hamming graph: n = k2 vertices: [k] X [K]
adjacent if share a coordinate
| Aut(H(k, 2))| = 2(k!)2 ~ nVn
* J(k,2) Johnson graph: n= (’2‘})
| Aut(J(k, 2))| = k! ~ nVn/2

“Standard exceptions”: trivial SR graphs, Hamming,
Johnson, their complements
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High regularity, few symmetries

“Standard exceptions”: trivial SR graphs, Hamming, Johnson,
their complements

Conijecture (B: quasipolynomial bound)

With these exceptions, SR graphs satisfy
| Aut(X)| < exp((log n)°)

Best known:
Theorem (Chen, Sun, Teng (2013))

With these exceptions, SR graphs satisfy
| Aut(X)| < exp(n®/37)
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Individualization/refinement (I/R) heuristics

Irregularity helps refute isomorphism
keep automorphisms down
create/propagate irregularity
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keep automorphisms down
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n

2 A s iy A
\ <A / \ > /
\ J/ w7 \ J ‘&\ ;/
A N/ 0 \./
\, \«
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n

2 A » < A
Ko A oo &\w )
\\ /{ X / \\ 7‘\ /\/ /
\ WG
\ ” A . \ J &\ ;/
Nt N f \4 Neof
\, \ \«‘
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Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n

" A » e A
A / -
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
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\ o N AP - / \ £ R A . /
\ s \ X /
\ ” ’J,/‘ > \ J &\ ;/
A N/ 0 \./
\, \

Laszl6 Babai Symmetry vs. Regularity



Individualization: multiplicative cost
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Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n

*_ A " e A
— g f\\ T L ?
\\ ‘;{i X / \ % /
Pt o
\ AN/ \ A/
A N/ e /

\ Y} | VA V'

Laszl6 Babai Symmetry vs. Regularity



Individualization: multiplicative cost

Individualized x € X: new structure Xy
ISO(X,Y) = Uyey ISO(Xx, Yy)
multiplicative cost: n

Z N 2
A Ny /’/
7 N P e
/ ~ / \
N A 3

< A o o N =
T~ Tt
\ ] »\' / A e ]
\ e \ A ‘k\ /
A N/ ] \./
\, / \«
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Individualization/refinement:

canonically destroying symmetry
Irregularity helps

Create irregularity: individualize t vertices:
give them unique colors

Spread irregularity: refine coloring:
count colors of neighbors

multiplicative cost: nt

branching factor: # instances in canonical set
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Advanced refinement: Weisfeiler-Leman 1968

color all ordered pairs, refine by counting triples with
shared base and same color composition

Z4 22 Z3

s\

X y
coherent configurations: stable under WL

SR graphs: stable for WL (no refinement made)
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I/R heuristic

@ individualize t points
@ canonical refinement

complete split: each point gets unique color

Fact (automorphism bound)

If structure X completely splits after t individualizations
and canonical refinement them

| Aut(X)| < n'
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Coherent configurations

Coherent configuration of rank r: coloring (partition) of
VxV= RoU...URr_1
diag colors # off-diag colors  diag(V) = {(x, x) | x € V}
color of x — y determines color of x « y
forany (x,y) € R
p,’.]f 14 zst (x,z) € Rjand (z,y) € R

r Z! ’
z ZEQ z3 2 2 243
X Y x' y’
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Coherent configurations

Primitive coherent configuration:
all vertices (diagonal) same color
every off-diagonal color (strongly) connected

Schurian case: CC primitive & group primitive

If rank 3: SR graph or SR tournament (oriented clique)

Theorem (B 1981)

X primitive coherent config of rank > 3
= | Aut(X)| < exp(O(Vn))

(5 notation hides polylogarithmic factors)

Same paper: SR tournaments: | Aut(X)| < n©(°g")
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|ldea of proof

X=(V;Ry,...,R-1)
Edge colors: ¢(x,y) =iif (x,y) € R;

Theorem (B 1981)

X primitive coherent config of rank > 3
= | Aut(X)| < exp(O(Vn))

For x # y € V distinguishing set

D(x,y)=1{z:c(z,x) # c(z,y)}
Fact. If T c V intersects each D(x, y) then T base of Aut(X),

i.e., Aut(X)r) = 1 (pointwise stabilizer) and so
|Aut(X)| < nt  (n=1|V|,t =T
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|ldea of proof

For x # y € V distinguishing set

D(x,y)=1{z:c(z,x) # c(z,y)}

Fact. If T c V intersects each D(x, y) then T base of Aut(X),
i.e., Aut(X) ) = 1 (pointwise stabilizer) and so
[Aut(X)| < nt  (n=|V|,t=|T))

So we need |T| < 5( \n).
Distinguishing number D = D(X) = miny,, |D(x, y)|
Fact. T := O((n/D)log n) random points work (whp)

Core technical result:

(Vx # y € V)(ID(x,y)l = Vn/2)
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Coherent configurations

Theorem (B 1981)

X primitive coherent config of rank > 3
= | Aut(X)| < exp(O(n'/?))

CHALLENGE: reduce bound WNE

(with known exceptions)
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Coherent configurations

John Wilmes Xiaorui Sun

Theorem (Xiaorui Sun - John Wilmes 2015)

X primitive coherent config of rank > 3
= |Aut(X)| < exp(O(n'/?)) WNE

e developed structure theory for PCCs
e “clique geometry” separates exceptions

Laszl6 Babai Symmetry vs. Regularity



Primitive permutation groups

Primitive groups: |G| < n°(°97  WNE
[Cameron 1981, CFSG]
|G| < n'*1°%2" [Maréti 2010, CFSG]
EXCEPTIONS: unique min normal subgroup
(socle) Soc(G) = An X -+ X An
product of induced A, actions: n = ()"
“Cameron groups”
acts on Cameron schemes: Johnson/Hamming
hybrid
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Primitive permutation groups vs. PCCs

Theorem (Cameron)
Primitive groups: |G| < n®°9"  WNE

Ultimate goal:
combinatorial relaxation of this result
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Primitive coherent configurations

If X primitive coherent configuration
not a Cameron scheme, then

(a) | Aut(X)| quasipolynomially bounded

(b) polylog individualizations + efficient
canonical refinement completely split X
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Primitive coherent configurations

If X primitive coherent configuration
not a Cameron scheme, then

(a) | Aut(X)| quasipolynomially bounded

(b) polylog individualizations + efficient
canonical refinement completely split X

Confirmed
e with n'/2 indiv [B 1981]
o with n'/3 indiv [Sun - Wilmes 2015]
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Strongly regular graphs

Conjecture (B: quasipolynomial bound)

With these exceptions, SR graphs satisfy
| Aut(X)| < exp((log n)°)

Maybe conjecture false.
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Strongly regular graphs

Conjecture (B: quasipolynomial bound)

With these exceptions, SR graphs satisfy
| Aut(X)| < exp((log n)°)

Maybe conjecture false.

But if not the log-order, something
is polylogarithmic about Aut(X)
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Thickness of groups: alternating sections

Definition
Thickness of G: 0(G): largest t such that A; is
involved in G as quotient of subgroup

N<H<G H/N=A

Example: X connected graph of degree < d
G = edge-stabilizer of Aut(X)
= 0(G)<d-1

— Luks’s polynomial-time algorithm
to test isomorphism of graphs of bounded degree.
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Thickness versus order

Definition
Thickness of G: 0(G): largest t such that A; is
involved in G as quotient of subgroup

Theorem (B-Cameron-Palfy 1982 & refinements

by Pyber, Liebeck-Shalev)
G < S, primitive, 0(G) =t = |G| < n°0),
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Thickness of Aut(SRG)

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then

O(Aut(X)) = O(log n)

If X graphic (Johnson or Hamming of rank 3)
then O(Aut(X) = ©(vn)
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Thickness of Aut(SRG)

Theorem (B 2014)
If X is a non-trivial, non-graphic SRG then

O(Aut(X)) = O(log n)

If X graphic (Johnson or Hamming of rank 3)
then 6(Aut(X) = ©(+/n)

[Pyber 2014] uses Thm for elementary proof of
quasipolynomial bound
on order of rank-3 groups
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Minimal degree of permutation group

DEF Minimal degree of a perm group G < S,
is the min # elements moved by any nonidentity
element of G.

Laszl6 Babai Symmetry vs. Regularity



Minimal degree of permutation group

DEF Minimal degree of a perm group G < S,
is the min # elements moved by any nonidentity
element of G.

Theorem (Bochert 1892)

Min deg of doubly trans group + An, Sp is
>(n—1)/4.
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Minimal degree of permutation group

DEF Minimal degree of a perm group G < S,
is the min # elements moved by any nonidentity
element of G.

Theorem (Bochert 1892)

Min deg of doubly trans group + An, Sp is
>(n—1)/4.

\

Theorem (Liebeck 1984 (CFSQG))
Min deg of primitive group Q(n/log n) WNE
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Min degree vs. thickness

Theorem (Wielandt, 1934)

If min degree of G < S, is Q(n) then
0(G) = O(log n).
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Thickness of Aut(SRG)

If X is a non-trivial, non-graphic SRG then

O(Aut(X)) = O(log n)
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Thickness of Aut(SRG)

If X is a non-trivial, non-graphic SRG then

O(Aut(X)) = O(log n)

Follows by combining Wielandt’s bound with
Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then min
degree of Aut(X) is > n/8.
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Spectral bound on minimal degree

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then min degree of
Aut(X) is > n/8.

Conjecture (B)

If X is a primitive coherent configuration and not a
Cameron scheme then min deg of Aut(X) is > Q(n).

Verified for rank 3 above

Verified for rank 4: Bohdan Kivva 2018 W
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Spectral bound on minimal degree

X: regular graph of degree k

adjacency matrix Ax = (@j)nxn: @j = 1if i ~ j;0/w g; =0
adjacency eigenvalues k = A1 >--->A, Y A; =0
zero-weight spectral radius: & = max{|Az|, |Anl}

k degree

& zero-weight spectral radius

g max number of common neighbors
of pairs of vertices

Theorem (B 2014)
Min degree of Aut(X) is at least

_9tey
K
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Spectral separation of “bad” graphs from crowd

Union of cliques has A, = -1
Line graphs have A, = -2

Theorem (J. J. Seidel 1968)

If n > 29 and SRG X has least eigenvalue A, > —2 then X
is trivial or graphic.

add to this:

Fact: if X SRand k < (n—1)/2 then
all eigenvalues are integers

A, < =3 in the cases of interest
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Spectral separation of “bad” graphs from crowd

&: zero-weight spectral radius
g: max # common neighbors of pair of vertices
k: degree

Theorem (B 2014)

Min degree of Aut(X) is at least

For this to be useful, we need: q + £ < 0.99k
But for SRG:  ApApl=k-pu <k

soif A\p < —3then & = As < k/3.

Bounding g: [B 1980]

For k = o(n) we have q = o(k) [Neumaier 1979, Spielman
1996]
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Effect of small zero-weight spectral radius

X = (V, E) regular graph of degree k

k=Aq =--- > A, adjacency eigenvalues

& = max{|A;| : i = 2} zero-weight spectral radius
ScvVv

d(S) = average degree of subgraph induced by S

Expander Mixing Lemma (Alon, Chung 1988)

If & small then average degree in subset ~
proportional to size of subset:

1d(S) — (ISI/nkl| < &
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Expander mixing lemma and minimal degree
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Expander mixing lemma and minimal degree

J
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Expander mixing lemma and minimal degree

I
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Expander mixing lemma and minimal degree
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Challenges

e more/better examples of “regularity = symmetry”
w/o classification

e distance-regular graphs of large diameter and
many vertex orbits

e extend the Sun—-Wilmes combinatorial structure
theory of PCCs

@ | Aut(PCC)| < quasipoly WNE

e or at least same for SR graphs

e extend the Kivva theorem to bounded rank:
min deg Aut(rank-4 PCC) > Q(n)

e | Aut( proj plane )| < n®

e Steiner t-design =— n > C!
(Keevash 2014: Vt)(3 Steiner t-design)
would imply | Aut(X)| < n©(°9") for Steiner t-designs
(B—Wilmes)
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