Symmetry vs. Regularity

László Babai (University of Chicago)

WL50, Pilsen

6 July 2018

László Babai Symmetry vs. Regularity

regularity — local, easy to verify **symmetry** — global, hard to verify

regularity — local, easy to verify **symmetry** — global, hard to verify

regularity: combinatorial relaxation of symmetry

symmetry \implies regularity

regularity $\stackrel{?}{\Longrightarrow}$ symmetry

Symmetry vs. Regularity

symmetry \implies regularity regularity $\stackrel{?}{\Longrightarrow}$ symmetry

Symmetry vs. Regularity

symmetry \implies regularity

regularity \implies classification \implies symmetry

László Babai Symmetry vs. Regularity

symmetry ⇒ structural consequences
 regularity ⇒ similar structural consequences

• symmetry \implies structural consequences

regularity $\stackrel{?}{\Longrightarrow}$ similar structural consequences

paradox of symmetry

quality/quantity tradeoff **high** degree of symmetry \implies

few symmetries

 symmetry ⇒ structural consequences regularity [?]⇒ similar structural consequences
 paradox of symmetry quality/quantity tradeoff high degree of symmetry ⇒ few symmetries high regularity [?]⇒ few symmetries

• symmetry \implies structural consequences regularity $\stackrel{?}{\Longrightarrow}$ similar structural consequences paradox of symmetry quality/quantity tradeoff **high** degree of symmetry \implies few symmetries high regularity $\stackrel{?}{\Longrightarrow}$ few symmetries • regularity \implies symmetry - without classification ?

- Consequences of symmetry
 group theory often via
 Classification of Finite Simple Groups (CFSG)
- Consequences of regularity

 what techniques?
 combinatorics, linear algebra, ??
 doing group theory without the groups

Most regular objects not symmetric

 vast increase in scope

- Most regular objects not symmetric

 vast increase in scope
- * symmetry: global, hard to verify
 - * regularity: local, easy to verify
 - * critical to algorithmic application: Graph Isomorphism
 - regularity: easy to create
 - symmetry: hard to detect

- Most regular objects not symmetric

 vast increase in scope
- * symmetry: global, hard to verify
 - * regularity: local, easy to verify
 - * critical to algorithmic application: Graph Isomorphism
 - regularity: easy to create
 - symmetry: hard to detect
- by-product: CFSG-free proof gives new insight even under symmetry

- Most regular objects not symmetric

 vast increase in scope
- * symmetry: global, hard to verify
 - * regularity: local, easy to verify
 - * critical to algorithmic application: Graph Isomorphism
 - regularity: easy to create
 - symmetry: hard to detect
- by-product: CFSG-free proof gives new insight even under symmetry

CFSG as magic box

this is not how we used to do math

Theorem (CFSG + Curtis, Kantor, Seitz (1976))

G doubly trans, $G \neq A_n, S_n \implies |G| \le n^{1 + \log_2 n}$

Theorem (CFSG + Curtis, Kantor, Seitz (1976))

G doubly trans, $G \neq A_n, S_n \implies |G| \le n^{1 + \log_2 n}$

Theorem (B (1982), Pyber (1993) w/o CFSG)

G doubly trans, $G \neq A_n, S_n \implies |G| \le \exp(c(\log n)^3)$

Theorem (CFSG + Curtis, Kantor, Seitz (1976))

G doubly trans, $G \neq A_n$, $S_n \implies |G| \le n^{1 + \log_2 n}$

Theorem (B (1982), Pyber (1993) w/o CFSG)

G doubly trans, $G \neq A_n, S_n \implies |G| \le \exp(c(\log n)^3)$

Dividend of elementary proof: ideas central to

Theorem (Helfgott–Seress (2013))

 $diam(S_n) < exp((log n)^c) - quasipolynomial bound$

diam(G): max word length under worst generators

More symmetry paradox: graphs with symmetry

X vertex-transitive if Aut(X) transitive on vertices X arc-transitive if Aut(X) transitive on adjacent pairs

connected 3-regular vertex-transitive graph can have exponentially many automorphisms:

the crossed ladder has $(n/2) \cdot 2^{n/4}$

The crossed ladder (wraparound image) a 3-regular vertex-transitive graph

Theorem (Tutte (1947))

A connected 3-regular **arc-transitive** graph has at most 32n automorphisms.

incidence geometry: $\mathcal{G} = (P, L, I)$

P-set of "points"

L - set of "lines"

 $I \subseteq P \times L$ – incidence relation

Steiner 2-(v,k)-design:

v = |P|

k − "length" of each line (# points incident with line) **Axiom 1:** $(\forall x \neq y \in P)(\exists!$ line through *x*, *y*)

Finite projective plane:

Axiom 2: every pair of lines intersects

$$\implies n = k^2 - k + 1$$

Theorem (Ostrom–Wagner 1959/65)

If a finite projective plane \mathcal{G} with n points has a doubly transitive automorphism group then it is Desarguesian and therefore $|\operatorname{Aut}(\mathcal{G})| \leq O(n^4 \log n)$

Conjecture

If G is a finite projective plane with n points then $|\operatorname{Aut}(G)| < n^{C}$

Best known without symmetry: $|\operatorname{Aut}(\mathcal{G})| < n^{4+\log_2 \log_2 n}$

Steiner 2-(v,k)-design:

v = |P|

k – "length" of each line (# points incident with line)

Axiom 1: $(\forall x \neq y \in P)(\exists! \text{ line through } x, y)$

Examples:

points and lines of *d*-dim affine and projective geometries over \mathbb{F}_q

- these have doubly transitive automorphism groups \implies |Aut| < $n^{1+\log_2 n}$

What can be said without the symmetry?

STS: Steiner triple system: Steiner 2 - (v, 3)-design: lines have 3 points Easy to show:

 $|\operatorname{Aut}(STS)| < n^{1 + \log_2 n}$

(b/c STS has log₂ n generators)

Theorem (B-Wilmes, Chen-Sun-Teng (2013))

 \mathcal{G} Steiner 2-design with n points \implies

 $|\operatorname{Aut}(\mathcal{G})| < n^{O(\log n)}$

Johnson graphs

Distance-transitive graphs with many automorphisms Johnson graph J(k, t): $n = {k \choose t}$ (t < k/2)vertices: *t*-subsets of a *k*-set

adjacency: intersection = t - 1

Aut(J(k, t)) = $S_k^{(t)}$ induced action of S_k on *t*-sets

Distance-transitive vs. distance-regular

$\begin{array}{rcl} \text{distance-transitive} & \Longrightarrow & \text{distance-regular} \\ & \nleftrightarrow \\ \text{In fact,} & \text{distance-regular} & \not \Rightarrow & |\operatorname{Aut}(X)| > 1 \end{array}$

Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron \sim 1980)

 $\exists \approx n^{n/2}$ SR graphs with $\leq n$ vertices and no automorphisms.

Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ~ 1980)

 $\exists \approx n^{n/2}$ SR graphs with $\leq n$ vertices and no automorphisms.

"line-graphs" of Steiner triple systems: vertices: lines, adjacency: intersection Latin square graphs

Theorem (B, Cameron ~ 1980)

Almost all Latin squares and almost all STSs with $\leq n$ cells/points have no automorphisms.

Distance-regular graphs with no automorphisms

Strongly regular graph: distance-regular graph of diameter 2

Theorem (B, Cameron ~ 1980)

 $\exists \approx n^{n/2}$ SR graphs with $\leq n$ vertices and no automorphisms.

Open problem: ∃ distance-regular graphs of large diameter with no automorphisms? with more than 10 vertex orbits?

If this fails: example of regularity \implies symmetry

X = (V, E) graph, $A \subseteq V$ induced subgraph X(A): vertex set A, adjacency: as in X

(symmetry) X = (V, E) *k*-homogeneous if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then $(\exists \sigma \in Aut(X))(A^{\sigma} = B)$

(regularity) X = (V, E) *k*-set-regular if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then A and B have the same number of common neighbors

- k = 1: regular graph
- k = 2: strongly regular

k-homogeneous \implies *k*-set-regular

(symmetry) X = (V, E) *k*-homogeneous if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then $(\exists \sigma \in Aut(X))(A^{\sigma} = B)$

(regularity) X = (V, E) *k*-set-regular if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then A and B have the same number of common neighbors

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular $\implies 6$ -homogeneous (in fact k-homogeneous for all k)

(symmetry) X = (V, E) *k*-homogeneous if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then $(\exists \sigma \in Aut(X))(A^{\sigma} = B)$

(regularity) X = (V, E) *k*-set-regular if $(\forall A, B \subseteq V)$ if $|A|, |B| \le k$ and $X(A) \cong X(B)$ then A and B have the same number of common neighbors

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular \implies 6-homogeneous (in fact k-homogeneous for all k)

regularity \implies symmetry !

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular $\implies 6$ -homogeneous (in fact k-homogeneous for all k)

regularity \implies symmetry !

Actual result:

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular \implies union of cliques of equal size, or the pentagon, or $L(K_{3,3})$, or their complement

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular \implies 6-homogeneous (in fact k-homogeneous for all k)

regularity \implies symmetry !

Actual result:

Theorem (Cameron, Klin–Gol'fand (1980))

6-set-regular \implies union of cliques of equal size, or the pentagon, or $L(K_{3,3})$, or their complement

regularity \implies classification \implies symmetry

Regularity \implies symmetry w/o classification?

Perhaps there is such a result. We shall define certain type of

hidden irregularity

of which the opposite is not merely "hidden regularity," but

hidden robust symmetry

Objects with robust (indestructible) symmetry:

Johnson graphs

Primitive groups with a bounded suborbit

Suborbit of $G \le S_n$: orbit of stabilizer **Subdegrees:** lengths of suborbits **Sims Conjecture**

Theorem (Cameron–Praeger–Saxl–Seitz (CFSG))

Primitive group $G \leq S_n$ with subdegree $k \neq 1 \implies$ $|G| \leq f(k) \cdot n.$

Corollary: Primitive group, one subdegree \neq 1 bounded \implies all subdegrees bounded.

Combinatorial relaxation:

Conjecture (B)

Primitive coherent configuration; degrees of constituents $1 = d_1 \le d_2 \le \cdots \le d_r \implies d_r \le f(d_2).$

Obvious if r bounded.

Distance-regular vs. distance-transitive graphs

Theorem

Bounded degree \implies bounded size

1982: Proved for **distance-transitive graphs** Macpherson–Cameron, based on Sims conj. (CFSG)

Bannai-Ito conjecture: same for distance-regular graphs

Distance-regular vs. distance-transitive graphs

Theorem

Bounded degree \implies bounded size

1982: Proved for **distance-transitive graphs** Macpherson–Cameron, based on Sims conj. (CFSG)

Bannai-Ito conjecture: same for distance-regular graphs

2015: confirmed!

S. Bang–A. Dubickas–J. H. Koolen–V. Moulton combinatorial lemma by A. A. Ivanov plus 40 pages of spectral arguments
Strongly regular graphs with large automorphism groups:

- * trivial (union of cliques, complements) $|Aut| > (\sqrt{n})!$
- * H(k, 2) Hamming graph: $n = k^2$ vertices: $[k] \times [k]$ adjacent if share a coordinate $|\operatorname{Aut}(H(k, 2))| = 2(k!)^2 \approx n^{\sqrt{n}}$

*
$$J(k,2)$$
 Johnson graph: $n = \binom{k}{2}$
 $|\operatorname{Aut}(J(k,2))| = k! \approx n^{\sqrt{n/2}}$

"Standard exceptions": trivial SR graphs, Hamming, Johnson, their complements "Standard exceptions": trivial SR graphs, Hamming, Johnson, their complements

Conjecture (B: quasipolynomial bound)

With these exceptions, SR graphs satisfy $|\operatorname{Aut}(X)| \le \exp((\log n)^c)$

Best known:

Theorem (Chen, Sun, Teng (2013))

With these exceptions, SR graphs satisfy $|\operatorname{Aut}(X)| \le \exp(n^{9/37})$

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex , refine

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex , refine individualize second vertex

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex , refine individualize second vertex , refine

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex , refine individualize second vertex , refine

Irregularity helps refute isomorphism keep automorphisms down create/propagate irregularity

individualize vertex , refine individualize second vertex , refine

Individualization/refinement: canonically destroying symmetry Irregularity helps Create irregularity: **individualize** *t* vertices: aive them unique colors Spread irregularity: refine coloring: count colors of neighbors multiplicative cost: n^t branching factor: # instances in canonical set

Advanced refinement: Weisfeiler-Leman 1968

color all ordered pairs, refine by counting triples with shared base and same color composition

coherent configurations: stable under WL

SR graphs: stable for WL (no refinement made)

- individualize t points
- canonical refinement

complete split: each point gets unique color

Fact (automorphism bound)

If structure \mathfrak{X} completely splits after *t* individualizations and canonical refinement them

 $|\operatorname{Aut}(\mathfrak{X})| \leq n^t$

Coherent configurations

Coherent configuration of rank *r*: coloring (partition) of $V \times V = R_0 \dot{\cup} \dots \dot{\cup} R_{r-1}$ diag colors \neq off-diag colors $diag(V) = \{(x, x) \mid x \in V\}$ color of $x \rightarrow y$ determines color of $x \leftarrow y$ for any $(x, y) \in R_k$ $p_{ij}^k : \# z \text{ s.t. } (x, z) \in R_i \text{ and } (z, y) \in R_j$

Primitive coherent configuration:

all vertices (diagonal) same color every off-diagonal color (strongly) connected

```
Schurian case: CC primitive ⇔ group primitive
```

If rank 3: SR graph or SR tournament (oriented clique)

Theorem (B 1981)

 $\begin{aligned} \mathfrak{X} \text{ primitive coherent config of rank} &\geq 3 \\ \Rightarrow |\operatorname{Aut}(\mathfrak{X})| \leq \exp(\widetilde{O}(\sqrt{n})) \end{aligned}$

(O notation hides polylogarithmic factors)

Same paper: SR tournaments: $|\operatorname{Aut}(\mathfrak{X})| \leq n^{O(\log n)}$

Idea of proof

$$\mathfrak{X} = (V; R_0, \dots, R_{r-1})$$

Edge colors: $c(x, y) = i$ if $(x, y) \in R_i$

Theorem (B 1981)

 $\begin{aligned} \mathfrak{X} \text{ primitive coherent config of rank} \geq 3 \\ \Rightarrow |\operatorname{Aut}(\mathfrak{X})| \leq \exp(\widetilde{O}(\sqrt{n})) \end{aligned}$

For $x \neq y \in V$ distinguishing set

$$D(x,y) = \{z : c(z,x) \neq c(z,y)\}$$

Fact. If $T \subset V$ intersects each D(x, y) then T base of $Aut(\mathfrak{X})$, i.e., $Aut(\mathfrak{X})_{(T)} = 1$ (pointwise stabilizer) and so $|Aut(\mathfrak{X})| < n^t$ (n = |V|, t = |T|)

Idea of proof

For $x \neq y \in V$ distinguishing set

$$D(x,y) = \{z : c(z,x) \neq c(z,y)\}$$

Fact. If $T \subset V$ intersects each D(x, y) then T base of $Aut(\mathfrak{X})$, i.e., $Aut(\mathfrak{X})_{(T)} = 1$ (pointwise stabilizer) and so $|Aut(\mathfrak{X})| < n^t$ (n = |V|, t = |T|)

So we need $|T| \leq \widetilde{O}(\sqrt{n})$.

Distinguishing number $D = D(\mathfrak{X}) = \min_{x \neq y} |D(x, y)|$

Fact. $T := O((n/D) \log n)$ random points work (whp)

Core technical result:

Theorem

 $(\forall x \neq y \in V)(|D(x,y)| \ge \sqrt{n}/2)$

Theorem (B 1981)

 $\begin{array}{l} \mathfrak{X} \text{ primitive coherent config of rank} \geq 3 \\ \Rightarrow |\operatorname{Aut}(\mathfrak{X})| \leq \exp(\widetilde{O}(n^{1/2})) \end{array}$

CHALLENGE: reduce bound WNE (with known exceptions)

Coherent configurations

John Wilmes

Xiaorui Sun

Theorem (Xiaorui Sun - John Wilmes 2015)

 $\begin{array}{l} \mathfrak{X} \text{ primitive coherent config of rank} \geq 3 \\ \Rightarrow |\operatorname{Aut}(\mathfrak{X})| \leq \exp(\widetilde{O}(n^{1/3})) \text{ WNE} \end{array}$

- developed structure theory for PCCs
- "clique geometry" separates exceptions

Primitive groups: $|G| \leq n^{O(\log n)}$ WNF [Cameron 1981, CFSG] $|G| \le n^{1 + \log_2 n}$ [Maróti 2010, CFSG] EXCEPTIONS: unique min normal subgroup (socle) Soc(G) = $A_m \times \cdots \times A_m$ product of induced A_m actions: $n = \binom{m}{k}^r$ "Cameron groups" acts on Cameron schemes: Johnson/Hamming hybrid

Primitive permutation groups vs. PCCs

Theorem (Cameron)

Primitive groups: $|G| \le n^{O(\log n)}$ WNE

Ultimate goal: combinatorial relaxation of this result

Conjecture

If X primitive coherent configuration not a Cameron scheme, then
(a) |Aut(X)| quasipolynomially bounded
(b) polylog individualizations + efficient canonical refinement completely split X

Conjecture

If X primitive coherent configuration not a Cameron scheme, then
(a) |Aut(X)| quasipolynomially bounded
(b) polylog individualizations + efficient canonical refinement completely split X

Confirmed

- with *n*^{1/2} indiv [B 1981]
- with n^{1/3} indiv [Sun Wilmes 2015]

Conjecture (B: quasipolynomial bound) With these exceptions, SR graphs satisfy $|\operatorname{Aut}(X)| \le \exp((\log n)^c)$

Maybe conjecture false.

Conjecture (B: quasipolynomial bound) With these exceptions, SR graphs satisfy $|\operatorname{Aut}(X)| \le \exp((\log n)^c)$

Maybe conjecture false.

But if not the log-order, something is *polylogarithmic* about $\overline{Aut(X)}$

Definition

Thickness of *G*: $\theta(G)$: largest *t* such that A_t is involved in *G* as quotient of subgroup

$$N \triangleleft H \leq G$$
 $H/N \cong A_t$

Example: X connected graph of degree $\leq d$ G = edge-stabilizer of Aut(X) $\Rightarrow \quad \theta(G) \leq d - 1$

 \rightarrow Luks's polynomial-time algorithm to test isomorphism of graphs of bounded degree.
Definition

Thickness of *G*: $\theta(G)$: largest *t* such that A_t is involved in *G* as quotient of subgroup

Theorem (B-Cameron-Pálfy 1982 & refinements by Pyber, Liebeck-Shalev)

 $G \leq S_n \text{ primitive, } \theta(G) = t \implies |G| \leq n^{O(t)}.$

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then

 $\theta(\operatorname{Aut}(X)) = O(\log n)$

If X graphic (Johnson or Hamming of rank 3) then $\theta(\operatorname{Aut}(X) = \Theta(\sqrt{n})$

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then

 $\theta(\operatorname{Aut}(X)) = O(\log n)$

If X graphic (Johnson or Hamming of rank 3) then $\theta(\operatorname{Aut}(X) = \Theta(\sqrt{n})$

[Pyber 2014] uses Thm for elementary proof of **quasipolynomial** bound on order of **rank-3 groups**

DEF Minimal degree of a perm group $G \le S_n$ is the min # elements moved by any nonidentity element of *G*.

DEF Minimal degree of a perm group $G \le S_n$ is the min # elements moved by any nonidentity element of *G*.

Theorem (Bochert 1892)

Min deg of doubly trans group $\neq A_n, S_n$ is $\geq (n-1)/4$.

DEF Minimal degree of a perm group $G \le S_n$ is the min # elements moved by any nonidentity element of *G*.

Theorem (Bochert 1892)

Min deg of doubly trans group $\neq A_n, S_n$ is $\geq (n-1)/4$.

Theorem (Liebeck 1984 (CFSG))

Min deg of primitive group $\Omega(n / \log n)$ WNE

Theorem (Wielandt, 1934)

If min degree of $G \leq S_n$ is $\Omega(n)$ then $\theta(G) = O(\log n)$.

Thickness of Aut(SRG)

Theorem

If X is a non-trivial, non-graphic SRG then

$$\theta(\operatorname{Aut}(X)) = O(\log n)$$

Theorem

If X is a non-trivial, non-graphic SRG then

 $\theta(\operatorname{Aut}(X)) = O(\log n)$

Follows by combining Wielandt's bound with

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then min degree of Aut(X) is $\ge n/8$.

Theorem (B 2014)

If X is a non-trivial, non-graphic SRG then min degree of Aut(X) is $\ge n/8$.

Conjecture (B)

If \mathfrak{X} is a primitive coherent configuration and not a Cameron scheme then min deg of Aut(X) is $\geq \Omega(n)$.

Verified for rank 3 above Verified for rank 4: Bohdan Kivva 2018 NEW!

Spectral bound on minimal degree

X: regular graph of degree k

adjacency matrix $A_X = (a_{ij})_{n \times n}$: $a_{ij} = 1$ if $i \sim j$; o/w $a_{ij} = 0$ adjacency eigenvalues $k = \lambda_1 \ge \cdots \ge \lambda_n$ $\sum \lambda_i = 0$

zero-weight spectral radius: $\xi = \max\{|\lambda_2|, |\lambda_n|\}$

- k degree
- ξ zero-weight spectral radius
- *q* max number of common neighbors of pairs of vertices

Theorem (B 2014)

Min degree of Aut(X) is at least

$$\left(1-rac{q+\xi}{k}
ight)\cdot n$$

Spectral separation of "bad" graphs from crowd

Union of cliques has $\lambda_n = -1$ Line graphs have $\lambda_n = -2$

Theorem (J. J. Seidel 1968)

If $n \ge 29$ and SRG X has least eigenvalue $\lambda_n \ge -2$ then X is trivial or graphic.

add to this:

Fact: if X SR and k < (n-1)/2 then all eigenvalues are **integers**

 $\therefore \lambda_n \leq -3$ in the cases of interest

Spectral separation of "bad" graphs from crowd

- ξ : zero-weight spectral radius
- q: max # common neighbors of pair of vertices
- k: degree

Theorem (B 2014)

Min degree of Aut(X) is at least

$$\left(1-\frac{q+\xi}{k}\right)\cdot n$$

For this to be useful, we need: $q + \xi \le 0.99k$

But for SRG:
$$\lambda_2|\lambda_n| = k - \mu < k$$

so if $\lambda_n \le -3$ then $\xi = \lambda_2 \le k/3$.
Bounding *q*: [B 1980]

For k = o(n) we have q = o(k) [Neumaier 1979, Spielman 1996]

Effect of small zero-weight spectral radius

X = (V, E) regular graph of degree k $k = \lambda_1 \ge \cdots \ge \lambda_n$ adjacency eigenvalues $\xi = \max\{|\lambda_i| : i \ge 2\}$ zero-weight spectral radius $S \subseteq V$ d(S) = average degree of subgraph induced by S

Expander Mixing Lemma (Alon, Chung 1988)

If ξ small then average degree in subset \approx proportional to size of subset:

 $|d(S) - (|S|/n)k| \le \xi$

- more/better examples of "regularity ⇒ symmetry" w/o classification
- distance-regular graphs of large diameter and many vertex orbits
- extend the Sun–Wilmes combinatorial structure theory of PCCs
- |Aut(*PCC*)| ≤ quasipoly WNE
- or at least same for SR graphs
- extend the Kivva theorem to bounded rank: min deg Aut(rank-4 PCC) ≥ Ω(n)
- |Aut(proj plane)| < n^C
- Steiner *t*-design $\implies n > C^t$ (Keevash 2014: $\forall t$)(\exists Steiner *t*-design) would imply $|\operatorname{Aut}(X)| \le n^{O(\log n)}$ for Steiner *t*-designs (B–Wilmes)