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Graph isomorphism

testing isomorphism of graphs with n vertices
moderately exponential exp(

√
n log n) Luks 1983

quasipolynomial exp((log n)c) B 2015+

divide-and-conquer algorithm
reduces instance of size n to q(n) instances of

significantly smaller size (≤ 0.9n)
q(n) – multiplicative cost (branching factor)

cost analysis: t(n) ≤ q(n)t(0.9n)

→ t(n) ≤ q(n)O(log n)

suffices to keep q(n) quasipolynomial
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Exposing irregularity: canonical coloring

Good coloring: no dominant color (90% of vertices)
Good equipartition: equipartition of dominant color

nontrivial partition into equal parts
Canonicity: preserved under isomorphisms

Why not consider
canonical partitions into unequal parts?

→ canonical coloring by size of block
each color equipartitioned
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Canonical assignment

Assignment x 7→ F (x) structures

E.g. x – graph, F (x) – coloring of vertices

F canonical if it also assigns
isomorphism 7→ isomorphism

x y

F (x) F (y)

σ

1

FUNCTOR between categories of isomorphisms
F (στ) = F (σ)F (τ)

e.g., F : Graphs→ ColoredSets
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Individualization/refinement: creating irregularity

individualize vertex, refine
individualize second vertex, refine
multiplicative cost of individualization

of k vertices: nk
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Cost of good partitioning

Given a nontrivial regular graph
can we find a canonical good coloring or equipartition
at modest multiplicative cost?

NO! Johnson graphs
resilient to good coloring/partition

DEF: J(k , t) Johnson graph t ≥ 1 k ≥ 2t + 1

vertex set V = {vT | T ⊆ ∆, |T | = t} where |∆| = k

|V | = (k
t )

adjacency: vT ∼ vS ⇐⇒ |T \ S| = 1

multiplicative cost of good coloring/partition exp(Ω(k/t))

important case: t = 2 so n = Θ(k2) cost exp(Ω(
√

n))
Graph Isomorphism bottleneck for three decades
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Split-or-Johnson

Johnson graphs are the only obstruction
to good partitioning

Theorem (Split-or-Johnson (abridged))
Given a nontrivial regular graph, at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical vertex-coloring, or
(b) a good canonical equipartition, or
(c) a canonically embedded Johnson graph on

dominant vertex-color class (≥ 90% of vertices)

quasipolynomial: exp(O((log n)c))
canonicity: functor: isomorphism of input graphs induces

isomorphism of embedded structures
efficiently: in quasipolynomial time
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Split-or-Johnson, inefficiently

What if we omit efficiency requirement?
→ assume Aut(X ) known

split into orbits; if no orbit dominant, done
let G := Aut(X ) restricted to dominant orbit C, |C| = m
G , Am,Sm by symmetry defect
if G t-trans =⇒ t = O(log2 n/ log log n) (Bochert 1892)

t = O(log n) (Wielandt 1934)
individualize t − 1 points =⇒ G trans, not doubly

if G imprimitive, pick max system of imprimitivity
(minimal domains of imprimitivity)
→ not canonical, but there are ≤ n − 1 of these

b/c blocks containing x ∈ Ω are disjoint outside x
→ individualize one of these systems of imprimitivity
remaining case: G uniprimitive
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Split-or-Johnson, inefficiently

remaining case: G uniprimitive
→ small or Cameron (CFSG)
if small, individualize polylog points→ fix all
else, if Cameron then socle (Ar )s

if s ≥ 2 individualize s objects to get imprimitive
else, if s = 1 =⇒ Johnson

Cameron’s classification of large primitive groups
has been used for decades to identify “Luks bottleneck”

for graph isomorphism testing
→ can be replaced by Split-or-Johnson
→ eliminates one application of CFSG used to justify

quasipolynomial ISO test
other appl of CFSG was eliminated by Pyber
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Twins, symmetry defect

X = (Γ,R) — structure

DEF: x , y ∈ Γ twins if transposition (x , y) ∈ Aut(X)
Fact: “twin or equal” — equivalence relation
DEF: ∆ ⊆ Γ set of twins: subset of equivalence class
Fact: ∆ ⊆ Γ set of twins ⇐⇒ Sym(∆) ≤ Aut(X)
DEF: Symmetricity of X:

relative size of largest twin equivalence class
DEF: Symmetry defect of X: 1− symmetricity(X)

Example: if Aut(X) = Sym(∆1) × Sym(∆2) where
Γ = ∆1 ∪∆2 then the defect of X is min{ |∆1|, |∆2| }

∆1 ∆2
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Split-or-Johnson

Exercise. If X is a nontrivial regular graph (not empty, not
complete) then defect(X ) ≥ 1/2.

Theorem (Split-or-Johnson (unabridged))
Given a graph X with defect(X ) ≥ 0.1, at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical vertex-coloring, or
(b) a good canonical equipartition, or
(c) a canonically embedded Johnson graph on

dominant vertex-color class (≥ 90% of vertices)

Why this is the real thing?
Symmetry defect condition obviously necessary
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Reducing k -ary to binary: Design Lemma

k -ary relation on V : R ⊆ V k

k -ary relational structure: X = (V ,R) where
R = (R1, . . . ,Rm) — k -ary relations

Theorem (Design Lemma)
Given a k-ary relational structure X with defect(X) ≥ 0.1,
one can individualize k − 1 vertices and find, in nO(k) time,
(a) a good canonical vertex-coloring, or
(b) a good canonical equipartition, or
(c) a canonically embedded regular graph on

dominant vertex-color class (≥ 90% of vertices)

Application to Graph Isomorphism: k = O(log n)
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Significance to Graph Isomorphism

Graph Isomorphism can be reduced ∗ via group theory to

Encasement problem
Given a k -ary relational structure X = (V ,R) with
k = O(log n) (where n = |V |) and defect(X) ≥ 0.1, find
G ≤ Sym(V ) (subgroup of the symmetric group) and
A ⊆ V such that
|A| = polylog(n)

Aut(X)(A) ≤ G (pointwise stabilizer of A)
|Sym(V ) : G | = exp(Ω(n))

Design lemma & Split-or-Johnson solve this in
quasipolynomial time.
———————-

∗ This reduction took 30 years to find; Split-or-Johnson, 3 weeks
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Significance to Graph Isomorphism
Encasement problem
Given a k -ary relational structure X = (V ,R) with
k = O(log n) (where n = |V |) and defect(X) ≥ 0.1, find
G ≤ Sym(V ) (subgroup of the symmetric group) and
A ⊆ V such that
|A| = polylog(n)

Aut(X )(A) ≤ G (pointwise stabilizer of A)
|Sym(V ) : G | = exp(Ω(n))

Design lemma & Split-ot-Johnson solve this in
quasipolynomial time:
good coloring: |Sn : Sk × Sn−k | = (n

k) > (n/k)k > 10n/10

good partition: even better; but what if Johnson found?

|Aut(J(k , t))| = k ! ≈ exp(n1/t) ≤ exp(
√

n)

– dramatic reduction, can only be repeated O(log log n) times
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Naive refinement

Input vertex-colored graph

Output refined coloring

c(x) — color of vertex x I – set of colors

di(x) := # neighbors of x of color i ∈ I

refinement step
for x ∈ V do simultaneously

c(x)← (c(x); di(x) | i ∈ I)
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Naive refinement

refinement step
for x ∈ V do simultaneously

c(x)← (c(x); di(x) | i ∈ I)

Repeat until coloring stable

Exercise stable iff “equitable partition,” i.e.,
(i) each color class induces regular subgraph
(ii) each pair of color classes induces

semiregular bipartite subgraph
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Naive refinement

If input: graph (just one color)

first round: color vertices by degree

regular graphs: stable, no refinement
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Naive refinement

complete split: each vertex gets different color
→ just 1 candidate isomorphism

Theorem (B – Erdös – Selkow, 1979)
For almost all graphs, complete split in 2 rounds.
∴ ISO test in linear time

Exercise ♥ (Abe Mowshovitz, ≈ 1970) If
characteristic polynomial of adjacency matrix
irreducible then

naive refinement→ complete split.
(Hint: Only equitable partition: discrete)
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Advanced refinement: Weisfeiler-Leman 1968

color all ordered pairs, refine by counting triples with
shared base and same color composition

x y

z1
z2 z3

coherent configurations: stable under WL
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Advanced refinement: Weisfeiler-Leman 1968

Input: graph→ rank 3 (3 colors):
diagonal {(x , x) | x ∈ V },
edge, edge of complement

strongly regular graphs: stable under WL
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Coherent configurations

Coherent configuration of rank r : partition of
V × V = R1∪̇ . . . ∪̇Rr

Ri — constituent (digraph) of color i
coloring: c(x , y) = i if (x , y) ∈ Ri

Axioms
1. diag colors , off-diag colors

diag(V ) = {(x , x) | x ∈ V }
2. color x→y determines color x←y
3. intersection numbers: for any (x , y) ∈ Rk

pk
ij : # z s.t. (x , z) ∈ Ri and (z, y) ∈ Rj

x y

z1
z2 z3

x ′ y ′

z′1
z′2 z′3
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Coherent configurations

Homogeneous CC: all vertices same color

Primitive CC: homogeneous and
every off-diagonal constituent (strongly) connected

Schurian case: G ≤ Sym(Ω)
X(G) = (Ω; orbitals) (orbits on Ω × Ω)

X(G) homogeneous iff G transitive
X(G) primitive iff G primitive
X(G) uniprimitive iff G primitive and not doubly transitive
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Primitice CCs: Johnson schemes

DEF: J(k , t) Johnson scheme t ≥ 1 k ≥ 2t + 1

vertex set V = {vT | T ⊆ ∆, |T | = t} where |∆| = k

|V | = (k
t )

colors: c(vT , vS) = |T \ S|

Example: J(5,2) ∼ Petersen’s graph

Much symmetry: Aut(J(k , t)) = Aut(J(k , t)) � Sk

k ! ≈ exp(n1/t) automorphisms
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Coherent configurations

Homogeneous CC: all vertices same color

Primitive CC: homogeneous and
every off-diagonal constituent (strongly)

connected

Uniprimitive CC (UPCC):
primitive of rank ≥ 3 (not a clique)
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Coherent configurations: a crash course

vertex-color: c(x) := c(x , x)

V = C1 ∪ · · · ∪ Cs vertex-color classes
Fact. Edge-color c(x , y) “aware of”

vertex colors c(x) and c(y) x→y
Corollary. (∀i)(∃j , k)(Ri ⊆ Cj × Ck )
constituent homogeneous (j = k) or bipartite (j , k)

Fact. Homogeneous constituent: biregular digraph

Fact. Bipartite constituent: semiregular bipartite graph
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Coherent configurations: a crash course

Notation. For R ⊆ V × V and x ∈ V
R(x) = {y ∈ V | x R

→ y }— set of out-neighbors

Def. Strong component of digraph:
equiv class of mutually accessible vertices

Weak component: component of its symmetrization
(ignore orientation)

Fact. The weak components of a homogeneous
constituent are its strong component.
Proof.
DEF: Eulerian digraph: (∀x ∈ V )(deg+(x) = deg−(x))

Lemma. Eulerian digraph weakly =⇒ strongly conn
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Coherent configurations: a crash course

Fact. The weak components of a constituent have equal
order (number of vertices).
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Coherent configurations: induced subconfigurations

X = (V ,E) digraph — E ⊆ V × V
X = (V , c) coherent configuration

Induced subgraph of digraph: for A ⊆ V
X [A] = (A,E ∩ (A × A))

Induced subconfiguration: for A ⊆ V
X[A] = (A, c |A×A)

Bipartite graph: (V1,V2; E) where E ⊆ V1 × V2

Induced bipartite subgraph of digraph:
for A,B ⊆ V , A ∩ B = ∅
X [A,B] = (A,B; E ∩ (A × B))

Induced bipartite subconfiguration:
for A,B ⊆ V , A ∩ B = ∅
X[A,B] = (A,B; c |A×B)

Fact. A ⊆ V union of color-classes =⇒ X[A] — CC
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Coherent configurations: the fix

Exercise. X CC, V1,V2 vertex-color classes, x ∈ V .
Claim. Rk [U,W ] semiregular (U = Ri(x), W = Rj(x))

x

V1

W := Rj(x)

V2

U := Ri(x)
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Coherent configurations: the fix
Theorem
Assume X2 := X[V2] UPCC, |V1| > |W | > |V1|/2, where
x ∈ V2, U := Ri(x) ⊆ V2, W = Rj(x) ⊆ V1.
Then Y := Rj [U,W ] nontrivial.

x u

w

V1

W := Rj(x)

V2X2

U := Ri(x)

x u

w
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Coherent configurations: the fix

Not empty: u ∈ V2 =⇒ |Rj(u)| = |Rj(x)| > |V1|/2
so (∃w ∈W )(c(u,w) = j) ∴ (u, v) ∈ E(Y )

x u

w

V1

W := Rj(x)

V2X2

U := Ri(x)

x u

w

Remains to show: not complete
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Coherent configurations: the fix

Lemma (Twin awareness)
A,B vertex-color classes in CC X = (V ; R1, . . . ,Rr ) and
Ri ⊆ A × B. Then for x , y ∈ A the color c(x , y)
determines whether or not x , y are twins for Ri
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Coherent configurations: the fix

Theorem
Assume X2 UPCC, x ∈ V2, U := Ri(x), W = Rj(x),
|W | < |V1|. Then Y := Rj [U ,W ] is not complete.

If complete =⇒ (∀u ∈ U)(Rj(u) ⊇W )
But |Rj(u)| = |Rj(x)| = |W | =⇒ Rj(u) = W

=⇒ x ,u twins =⇒ all pairs of color i are twins
but (V2; Ri) connected =⇒ all vertices in V2 twins
=⇒ (∀w ∈ V1 \W )(deg−i (w) = 0) →← QED(Thm)
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Split-or-Johnson

Dominant vertex-color: more than 90% of vertices
Good coloring: no dominant color
Good equipartition: dominant color nontriv equipartitioned

Theorem (Split-or-Johnson)
Given a graph with defect(X ) ≥ 0.1, at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical vertex-coloring, or
(b) a good canonical equipartition, or
(c) a canonically embedded Johnson graph on

dominant vertex-color class

canonicity: functor: isomorphism of input graphs induces
isomorphism of embedded structures

Reduces to “SoJ for UPCCs” via WL
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Split-or-Johnson for UPCCs

Theorem (Split-or-Johnson for UPCCs)
Given a UPCC on vertex-set V , at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical coloring of V , or
(b) a good canonical equipartition of V , or
(c) a canonically embedded Johnson graph on dominant

vertex-color class.

Reduces to “SoJ for bipartite graphs”
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SoJ for semiregular bipartite graphs

Bipartite graph (V1,V2; E) where E ⊆ V2 × V1
Notation: ni = |Vi |

Semiregular: all vertices in Vi have same degree (i = 1,2)
Trivial: complete or empty

Theorem (Split-or-Johnson for semireg bipartite graphs)
Given nontrivial semiregular bipartite graph
X = (V1,V2; E) such that n2 ≤ 0.9n1, at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical coloring of V1, or
(b) a good canonical equipartition of V1, or
(c) a canonically embedded Johnson graph on dominant

vertex-color class of V1
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Reduction: UPCC-SoJ to semiregular bipartite SoJ

x
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Twins, symmetry defect

Structure X = (V ,R)

Def: x , y ∈ V are twins if transposition
τ = (x , y) ∈ Aut(X)

Fact: “twin or equal” — equivalence relation

Def: Symmetry defect of X:

defect(X) = 1−
max |T |
|V |

where T — twin equivalence class

Fact: T twin equivalence class ⇐⇒ T ⊆ V maximal s.t.
Sym(T ) ≤ Aut(X)

Example. If Aut(X) = Sk × Sn−k where n = |V | and
k ≤ n/2 then defect(X) = k/n
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Twins, symmetry defect for bipartite graphs

Bipartite graph X = (V1,V2; E) where E ⊆ V1 × V2

X (v) – set of neighbors of v

Fact: x , y ∈ Vi twins ⇐⇒ X (x) = X (y)

Def: Symmetry defect of X in part V1:

defect1(X ) = 1−
max |T |
|V1|

where T ⊆ V1 — twin equiv class

Exercise: If X nontrivial (not empty or complete)
semiregular bipartite graph then defect1(X ) ≥ 1/2
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SoJ for bipartite graphs: unabridged

Theorem (Split-or-Johnson for bipartite graphs)
Given a bipartite graph X = (V1,V2; E) with symmetry
defect ≥ 0.1 such that n2 ≤ 0.9n1, then at quasipolynomial
multiplicative cost one can efficiently find either
(a) a good canonical coloring of V1, or
(b) a good canonical equipartition of V1, or
(c) a canonically embedded Johnson graph on dominant

vertex-color class of V1

Why this is the real thing?
Symmetry defect condition obviously necessary
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Proof of SoJ for bipartite graphs

Input: bipartite graph X = (V1,V2; E) where n2 ≤ 0.9n1,
defectX (V1) ≥ 0.1

Goal: good partition of V1 or
Johnson graph on > 90% of V1

Inductive goal: either achieve “goal”
or halve the size of V2

May assume defect1(X ) ≥ 0.9 – otherwise
twin equiv classes — good partition

Start: apply Weisfeiler–Leman to X , obtain CC X.
X1 := X[V1], X2 = X[V2]: CCs
Bipartite part of X: X21 := X[V2,V1] = {Ri | Ri ⊆ V2 × V1}.
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Proof of SoJ for bipartite graphs

X1 := X[V1], X2 = X[V2]: CCs
Bipartite part of X: X21 := X[V2,V1] = {Ri | Ri ⊆ V2 × V1}.

If X1 has no dominant color – goal achieved, exit
Otherwise, one can reduce to X← X[U ,W ] where

W ⊆ V1 dominant color class, U ⊆ V2 color class,
X21 not monochromatic

∴ X1,X2 homogeneous

May assume X1 primitive
otherwise equipartition→ goal achieved, exit

Update X ← one of the constituents in X21

So X is semiregular ∴ defecti(X ) ≥ 1/2
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Proof of SoJ for bipartite graphs

Input: CC X on V1 ∪ V2
where X1 primitive, X2 homogeneous,
X21 not monochromatic, X one of its constituents

Claim: no X -twins in V1

Proof. By twin-awareness and primitivity of X1
the alternative: V1 is a twin equivalence class
∴ X trivial, X21 monochromatic→← QED

Cases based on X2:
(1) X2 imprimitive
(2) X2 clique (rank-2 CC)
(3) X2 UPCC (uniprimitive coherent configuration)
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SoJ for bipartite graphs: imprimitive case

Case (1): X2 imprimitive: blocks V2 = B1∪̇ . . . ∪̇Bk

if defect1(X [Bi ,V1]) ≥ 1/2
return X ← X [Bi ,V1]
progress: |Bi | ≤ n2/2 — V2 halved

else (:(∀i)(defect1(X [Bi ,V1]) < 1/2):)Y ← contract each Bi to a vertex
return X ← Y

Lemma: Y semiregular, nontrivial ∴ defect1(Y ) ≥ 1/2
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Proof of SoJ for bipartite graphs

Input: CC X on V1 ∪ V2
where X1 primitive, X2 homogeneous,
X21 not monochromatic, X one of its constituents

Cases based on X2:
(1) X2 imprimitive X

(2) X2 clique (rank-2 CC)
(3) X2 UPCC (uniprimitive coherent configuration)
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SoJ for bipartite graphs: UPCC case

Case (3): X1 homogeneous,X2 UPCC
X21 not monochromatic

Recursive goal:
Either find good coloring/equipartition of V1
or halve V2

Algorithm. Individualize x ∈ V2, refine:
new color of v ∈ V1; c′(v) = c(x , v)

if there is no dominant color in X21,
this is a good coloring of V1, goal achieved, exit

else: Rj dominant color in X21
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SoJ for bipartite graphs: UPCC case

Situation: Rj dominant color in X21.
Let W = Rj(x), so |W | > 0.9n1.
Pick a color Ri in X2 such that |Ri(x)| < n2/2.
Such color exists b/c X2 is not a clique. Let U = Ri(x).

x

V1

W := Rj(x)

V2X2

U := Ri(x)

x
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SoJ for bipartite graphs: UPCC case

Let Y = Rj [U,W ]

return Y ← X . Progress: |U | < n2/2.

Y is semiregular and nontrivial by Theorem

x

V1

W := Rj(x)

V2X2

U := Ri(x)

x
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SoJ for bipartite graphs: UPCC case

Cost analysis

f (n,m) – cost of SoJ for bipartite graph n = |V1|, m = |V2|

reduced m← m/2 at a cost of 1 individualization

f (n,m) ≤ m · f (n,m/2)}

∴ f (n,m) = nO(log m) – quasipolynomial QED
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Proof of SoJ for bipartite graphs

Input: CC X on V1 ∪ V2
where X1 primitive, X2 homogeneous,
X21 not monochromatic, X one of its constituents

Cases based on X2:
(1) X2 imprimitive X

(2) X2 clique (rank-2 CC)
(3) X2 UPCC (uniprimitive CC) X
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Neighborhood hypergraph in bipartite graph

Case (2): X2 clique

Desired progress: move to Case (1) or Case (3)
without increasing the ni

Notation: X graph v vertex X (v): set of neighbors of v
May assume X semiregular: (∀v ∈ Vi)(deg(v) = di),

nontrivial
Neighborhood hypergraph: H = {X (v) | v ∈ V1}

d1-uniform d2-regular hypergraph on V2
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Neighborhood hypergraph in bipartite graph

· · ·H

X = (V1, V2;E)

V2

d1

· · · · · · V1

Q: What if H complete d1-uniform hypergraph?
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Neighborhood hypergraph in bipartite graph

Q: What if H complete d1-uniform hypergraph?

→ Johnson scheme J(n2,d1) canonically on V1

Canonical: for x , y ∈ V1 isomorphisms preserve
|X (x) ∩ X (y)|

This is exactly the case when V2 is a twin equivalence
class for H : Aut(H) = Sym(V2)

Same works for defect(H) ≤ 1/2. Assume
defect(H) > 1/2.

If d1 ≤ (7/3) log2 n1: apply Design Lemma to H
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class for H : Aut(H) = Sym(V2)

Same works for defect(H) ≤ 1/2. Assume
defect(H) > 1/2.

If d1 ≤ (7/3) log2 n1: apply Design Lemma to H

László Babai Hidden Irregularity vs. Hidden Structure



Neighborhood hypergraph in bipartite graph

If d1 > (7/3) log2 n1: let t = (7/4) log2 n1

Def. t-skeleton H (t) of hypergraph H : all t-subsets of
the edges of H .

Lemma (Skeleton defect lemma)
Let H be a nontrivial, regular, d-uniform hypergraph with
n vertices and m edges where d ≤ n/2. Let
(7/4) log2 m ≤ t ≤ (3/4)d. Then

defect(H (t)) ≥ 1/4

Now apply the Design Lemma to H (t).
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k -ary coherent configurations: definition

DEF: k -ary partition structure:
X = (V , c) where c : V k

→ {colors}
DEF: k -ary configuration:

color c(x1, . . . , xk ) determines equiv relation on [k ]
i ∼ j ⇐⇒ xi = xj

(∀f : [k ]→ [k ])
color c(x1, . . . , xk ) determines c(xf (1), . . . , xf (k))

DEF: k -ary coherent configuration:
(∀i1, . . . , ik ≤ k)(c(x1, . . . , xk ) determines
(#z ∈ V )(∀j ≤ k)(c(x1, . . . , zj-th position, . . . , xk ) = ij )

(r k+1 intersection numbers where r = |{colors}|)
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k -ary coherent configurations: restriction

DEF: k -ary partition structure:
X = (V , c) where c : V k

→ {colors}

DEF: (k − `)-ary restriction of
k -ary partition structure X = (V , c):

let ~x = (x1, . . . , x`) ∈ V `, V ′ = V \ {x1, . . . , x`}
X~x := (V ′, c′) where for ~y ∈ (V ′)k−` we set

c′(~y ) = c(~x~y )

Fact: Restriction of CCk is CCk−`
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k -ary coherent configurations: skeleton

DEF: k -ary partition structure:
X = (V , c) where c : V k

→ {colors}

DEF: `-ary skeleton of
k -ary partition structure X = (V , c):

`-ary partition structure X(`) = (V , c′) where

c′(x1, . . . , x`) = c(x1, . . . , x`, x`, . . . , x`︸    ︷︷    ︸
(k − `) times

)

Fact: `-skeleton on CCk is CC`
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Design Lemma

Theorem (Design Lemma)
Given a k-ary relational structure X with defect(X) ≥ 0.1,
one can individualize k − 1 vertices and find, in nO(k) time,
(a) a good canonical vertex-coloring, or
(b) a good canonical equipartition, or
(c) a canonically embedded regular graph on

dominant vertex-color class (≥ 90% of vertices)
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An application of Fisher’s inequality

Lemma (Large clique lemma)
X = (V , c) (classical) coherent configuration with
vertex-color classes W1, . . . ,Ws. Assume

W1 dominant: (∀i ≥ 2)(|W1| > |Wi |)

W1 induces a clique in X
Then W1 is a twin equivalence class in X.

Proof uses Fisher’s inequality for block design:
in a BIBD, # of blocks ≥ # of vertices
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Design Lemma: idea of proof

Let X be k -ary coherent, with defect ≥ 0.1.

If 2-skeleton X(2) has no dominant color class
DONE (good coloring)

Assume dominant vertex-color C ⊆ V (|C| > 0.9n)

If X(2)[C] imprimitive
DONE (good equipartition)

If X(2)[C] uniprimitive (primitive, not clique)
DONE (reduced to binary case→ SoJ)

If X(2)[C] clique
need to destroy it by individualizing (k − 1) points
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Design Lemma: idea of proof

Case: X(2)[C] is a clique

How do we guess the ≤ (k − 1) points to individualize?

C too large to be a twin equivalence class for X
∴ (∃u, v ∈ C)(τ := (u, v) < Aut(X))
∴ (∃~x ∈ V k )(c(~x τ ) , c(~x ))
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Design Lemma: idea of proof

~y : individualized prefix of ~x
Need to destroy clique on C \ supp(~y)

C V

c(u) , c(v) after individualizing tail
~y = (y1, . . . , yk−1)

∴ C \ {y1, . . . , yk−1} not homogeneous in X~y
c(u, v) , c(v ,u) after individualizing tail

~y = (y1, . . . , yk−2)

∴ C \ {y1, . . . , yk−2} not a clique in X(2)
~y
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The moral: Hidden irregularity or . . . ?

Split-or-Johnson dichotomy rephrased:

opposite of hidden irregularity is
not “hidden regularity” but

hidden robust symmetry

symmetry that can only be destroyed at high cost
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