WL50 6 July 2018

Coherent Configurations and Graph Isomorphism: The emergence of the Johnson graphs

László Babai University of Chicago

testing isomorphism of graphs with *n* vertices moderately exponential $\exp(\sqrt{n \log n})$ Luks 1983 quasipolynomial $\exp((\log n)^c)$ B 2015+ testing isomorphism of graphs with *n* vertices moderately exponential $\exp(\sqrt{n \log n})$ Luks 1983 quasipolynomial $\exp((\log n)^c)$ B 2015+

divide-and-conquer algorithm

reduces instance of size *n* to q(n) instances of significantly smaller size ($\leq 0.9n$) q(n) – **multiplicative cost** (branching factor) testing isomorphism of graphs with *n* vertices moderately exponential $\exp(\sqrt{n \log n})$ Luks 1983 quasipolynomial $\exp((\log n)^c)$ B 2015+

divide-and-conquer algorithm

reduces instance of size *n* to q(n) instances of significantly smaller size ($\leq 0.9n$) q(n) – **multiplicative cost** (branching factor)

cost analysis:
$$t(n) \le q(n)t(0.9n)$$

 $\rightarrow t(n) \le q(n)^{O(\log n)}$

suffices to keep q(n) quasipolynomial

Good coloring: no dominant color (90% of vertices)
 Good equipartition: equipartition of dominant color nontrivial partition into equal parts
 Canonicity: preserved under isomorphisms

Good coloring: no dominant color (90% of vertices)
 Good equipartition: equipartition of dominant color nontrivial partition into equal parts
 Canonicity: preserved under isomorphisms
 Why not consider

Why not consider canonical partitions into unequal parts? Good coloring: no dominant color (90% of vertices)Good equipartition: equipartition of dominant color nontrivial partition into equal parts

Canonicity: preserved under isomorphisms

Why not consider

canonical partitions into unequal parts?

 \rightarrow canonical coloring by size of block each color equipartitioned

Good coloring: no dominant color (90% of vertices)

Good equipartition: equipartition of dominant color nontrivial partition into equal parts

Canonicity: preserved under isomorphisms

Why not consider

canonical partitions into unequal parts?

→ canonical coloring by size of block each color equipartitioned

Good coloring: no dominant color (90% of vertices)

Good equipartition: equipartition of dominant color nontrivial partition into equal parts

Canonicity: preserved under isomorphisms

Why not consider

canonical partitions into unequal parts?

→ canonical coloring by size of block each color equipartitioned

Good coloring: no dominant color (90% of vertices)

Good equipartition: equipartition of dominant color nontrivial partition into equal parts

Canonicity: preserved under isomorphisms

Why not consider

canonical partitions into unequal parts?

→ canonical coloring by size of block each color equipartitioned

Canonical assignment

Assignment $\mathbf{x} \mapsto F(\mathbf{x})$ structures

E.g. \mathbf{x} – graph, $F(\mathbf{x})$ – coloring of vertices

F canonical if it also assigns isomorphism → isomorphism

Canonical assignment

Assignment $\mathbf{x} \mapsto F(\mathbf{x})$ structures

E.g. \mathbf{x} – graph, $F(\mathbf{x})$ – coloring of vertices

F canonical if it also assigns isomorphism → isomorphism

FUNCTOR between categories of isomorphisms $F(\sigma\tau) = F(\sigma)F(\tau)$

e.g., F : Graphs \rightarrow ColoredSets

individualize vertex

individualize vertex, refine

individualize vertex, refine individualize second vertex

individualize vertex, refine individualize second vertex, refine

individualize vertex, refine individualize second vertex, refine

individualize vertex, refine individualize second vertex, refine

individualize vertex, refine individualize second vertex, refine **multiplicative cost** of individualization of *k* vertices: **n**^k

Cost of good partitioning

Given a nontrivial regular graph can we find a <u>canonical</u> good coloring or equipartition at modest multiplicative cost?

Cost of good partitioning

Given a nontrivial regular graph can we find a <u>canonical</u> good coloring or equipartition at modest multiplicative cost?

- NO! Johnson graphs resilient to good coloring/partition
- **DEF:** J(k, t) Johnson graph $t \ge 1$ $k \ge 2t + 1$

vertex set $V = \{v_T \mid T \subseteq \Delta, |T| = t\}$ where $|\Delta| = k$ $|V| = {k \choose t}$

adjacency: $v_T \sim v_S \iff |T \setminus S| = 1$

multiplicative cost of good coloring/partition $\exp(\Omega(k/t))$ important case: t = 2 so $n = \Theta(k^2) \cos t \exp(\Omega(\sqrt{n}))$ Graph Isomorphism **bottleneck** for three decades

Split-or-Johnson

Johnson graphs are the *only* obstruction to good partitioning

Johnson graphs are the *only* obstruction to good partitioning

Theorem (Split-or-Johnson (abridged))

Given a nontrivial regular graph, at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical vertex-coloring, or
- (b) a good canonical equipartition, or
- (c) a canonically embedded Johnson graph on dominant vertex-color class (≥ 90% of vertices)

quasipolynomial: exp(O((log n)^c))
canonicity: functor: isomorphism of input graphs induces
 isomorphism of embedded structures
efficiently: in quasipolynomial time

What if we omit efficiency requirement? \rightarrow assume Aut(X) known

split into orbits; if no orbit dominant, done let G := Aut(X) restricted to dominant orbit C, |C| = m $G \neq A_m$, S_m by symmetry defect if G t-trans $\implies t = O(\log^2 n / \log \log n)$ (Bochert 1892)

 $t = O(\log n)$ (Wielandt 1934)

individualize t - 1 points \implies *G* trans, not doubly if *G* imprimitive, pick max system of imprimitivity (minimal domains of imprimitivity)

→ not canonical, but there are $\leq n - 1$ of these b/c blocks containing $x \in \Omega$ are disjoint outside x

 \rightarrow individualize one of these systems of imprimitivity remaining case: *G* uniprimitive

Split-or-Johnson, inefficiently

remaining case: *G* uniprimitive \rightarrow small or Cameron (CFSG) if small, individualize polylog points \rightarrow fix all else, if Cameron then socle $(A_r)^s$ if $s \ge 2$ individualize *s* objects to get imprimitive else, if $s = 1 \implies$ Johnson

Cameron's classification of large primitive groups has been used for decades to identify "Luks bottleneck" for graph isomorphism testing → can be replaced by Split-or-Johnson → eliminates one application of CFSG used to justify quasipolynomial ISO test

other appl of CFSG was eliminated by Pyber

Twins, symmetry defect

 $\mathfrak{X} = (\Gamma, \mathcal{R})$ — structure

DEF: $x \neq y \in \Gamma$ twins if transposition $(x, y) \in Aut(\mathfrak{X})$

Fact: "twin or equal" — equivalence relation

DEF: $\Delta \subseteq \Gamma$ set of twins: subset of equivalence class Fact: $\Delta \subseteq \Gamma$ set of twins \iff Sym $(\Delta) \leq$ Aut (\mathfrak{X}) **DEF:** Symmetricity of \mathfrak{X} :

relative size of largest twin equivalence class **DEF: Symmetry defect** of \mathfrak{X} : 1- symmetricity(\mathfrak{X})

Example: if Aut(\mathfrak{X}) = Sym(Δ_1) × Sym(Δ_2) where $\Gamma = \Delta_1 \cup \Delta_2$ then the defect of \mathfrak{X} is min{ $|\Delta_1|, |\Delta_2|$ }

$$\Delta_1 \quad \Delta_2$$

Split-or-Johnson

Exercise. If X is a nontrivial regular graph (not empty, not complete) then defect(X) $\ge 1/2$.

Exercise. If X is a nontrivial regular graph (not empty, not complete) then defect(X) $\ge 1/2$.

Theorem (Split-or-Johnson (unabridged))

Given a graph X with defect(X) \ge 0.1, at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical vertex-coloring, or
- (b) a good canonical equipartition, or
- (c) a canonically embedded Johnson graph on dominant vertex-color class (≥ 90% of vertices)

Why this is the real thing? Symmetry defect condition obviously necessary *k*-ary relation on *V*: $R \subseteq V^k$ *k*-ary relational structure: $\mathfrak{X} = (V, \mathcal{R})$ where $\mathcal{R} = (R_1, \dots, R_m) - k$ -ary relations

Theorem (Design Lemma)

Given a k-ary relational structure \mathfrak{X} with defect(\mathfrak{X}) \geq 0.1, one can individualize k – 1 vertices and find, in $n^{O(k)}$ time,

- (a) a good canonical vertex-coloring, or
- (b) a good canonical equipartition, or
- (c) a canonically embedded regular graph on dominant vertex-color class (≥ 90% of vertices)

Application to Graph Isomorphism: $k = O(\log n)$

Significance to Graph Isomorphism

Graph Isomorphism can be reduced * via group theory to

Encasement problem

Given a *k*-ary relational structure $\mathfrak{X} = (V, \mathcal{R})$ with $k = O(\log n)$ (where n = |V|) and defect(\mathfrak{X}) ≥ 0.1 , find $G \le \text{Sym}(V)$ (subgroup of the symmetric group) and $A \subseteq V$ such that

- |*A*| = polylog(*n*)
- $Aut(\mathfrak{X})_{(A)} \leq G$ (pointwise stabilizer of A)

•
$$|\operatorname{Sym}(V) : G| = \exp(\Omega(n))$$

Design lemma & Split-or-Johnson solve this in quasipolynomial time.

Significance to Graph Isomorphism

Graph Isomorphism can be reduced * via group theory to

Encasement problem

Given a *k*-ary relational structure $\mathfrak{X} = (V, \mathcal{R})$ with $k = O(\log n)$ (where n = |V|) and defect(\mathfrak{X}) ≥ 0.1 , find $G \le \text{Sym}(V)$ (subgroup of the symmetric group) and $A \subseteq V$ such that

- |*A*| = polylog(*n*)
- $Aut(\mathfrak{X})_{(A)} \leq G$ (pointwise stabilizer of A)
- $|\operatorname{Sym}(V) : G| = \exp(\Omega(n))$

Design lemma & Split-or-Johnson solve this in quasipolynomial time.

^{*} This reduction took 30 years to find; Split-or-Johnson, 3 weeks

Significance to Graph Isomorphism

Encasement problem

Given a *k*-ary relational structure $\mathfrak{X} = (V, \mathcal{R})$ with $k = O(\log n)$ (where n = |V|) and defect(\mathfrak{X}) ≥ 0.1 , find $G \le \text{Sym}(V)$ (subgroup of the symmetric group) and $A \subseteq V$ such that

- |*A*| = polylog(*n*)
- $\operatorname{Aut}(X)_{(A)} \leq G$ (pointwise stabilizer of A)

•
$$|\operatorname{Sym}(V) : G| = \exp(\Omega(n))$$

Design lemma & Split-ot-Johnson solve this in quasipolynomial time:

good coloring: $|S_n : S_k \times S_{n-k}| = {n \choose k} > (n/k)^k > 10^{n/10}$ good partition: even better; but what if Johnson found?
Significance to Graph Isomorphism

Encasement problem

Given a *k*-ary relational structure $\mathfrak{X} = (V, \mathcal{R})$ with $k = O(\log n)$ (where n = |V|) and defect(\mathfrak{X}) ≥ 0.1 , find $G \le \text{Sym}(V)$ (subgroup of the symmetric group) and $A \subseteq V$ such that

- |*A*| = polylog(*n*)
- $Aut(X)_{(A)} \leq G$ (pointwise stabilizer of A)

•
$$|\operatorname{Sym}(V) : G| = \exp(\Omega(n))$$

Design lemma & Split-ot-Johnson solve this in quasipolynomial time:

good coloring: $|S_n : S_k \times S_{n-k}| = {n \choose k} > (n/k)^k > 10^{n/10}$ good partition: even better; but what if Johnson found?

$$|\operatorname{Aut}(J(k,t))| = k! \approx \exp(n^{1/t}) \le \exp(\sqrt{n})$$

- dramatic reduction, can only be repeated $O(\log \log n)$ times

Input vertex-colored graph

Output refined coloring

c(x) — color of vertex x I – set of colors

 $d_i(x) := \#$ neighbors of x of color $i \in I$

refinement step for $x \in V$ do simultaneously

$$c(x) \leftarrow (c(x); d_i(x) \mid i \in I)$$

refinement step for $x \in V$ do simultaneously

 $c(x) \leftarrow (c(x); d_i(x) \mid i \in I)$

Repeat until coloring stable

Exercise stable iff "equitable partition," i.e., (i) each color class induces regular subgraph (ii) each pair of color classes induces semiregular bipartite subgraph

If input: graph (just one color)

- first round: color vertices by degree
- regular graphs: stable, no refinement

Naive refinement

complete split: each vertex gets different color \rightarrow just 1 candidate isomorphism

Naive refinement

complete split: each vertex gets different color \rightarrow just 1 candidate isomorphism

Theorem (B – Erdös – Selkow, 1979)

For almost all graphs, complete split in 2 rounds.

:. ISO test in linear time

Exercise \heartsuit (Abe Mowshovitz, \approx 1970) If characteristic polynomial of adjacency matrix **irreducible** then

naive refinement \rightarrow complete split.

(Hint: Only equitable partition: discrete)

color all ordered pairs, refine by counting triples with shared base and same color composition

coherent configurations: stable under WL

Advanced refinement: Weisfeiler-Leman 1968

Input: graph \rightarrow rank 3 (3 colors): diagonal { $(x, x) | x \in V$ }, edge, edge of complement

strongly regular graphs: stable under WL

Coherent configurations

Coherent configuration of rank r: partition of

 $V \times V = R_1 \dot{\cup} \dots \dot{\cup} R_r$

 R_i — constituent (digraph) of color *i* coloring: c(x, y) = i if $(x, y) \in R_i$

Axioms

- 1. diag colors \neq off-diag colors diag(V) = {(x, x) | x \in V}
- 2. color $x \rightarrow y$ determines color $x \leftarrow y$
- 3. **intersection numbers:** for any $(x, y) \in R_k$ $p_{ij}^k : \# z \text{ s.t. } (x, z) \in R_i \text{ and } (z, y) \in R_j$

Homogeneous CC: all vertices same color

Primitive CC: homogeneous and every off-diagonal constituent (strongly) connected

Schurian case: $G \leq \text{Sym}(\Omega)$ $\mathfrak{X}(G) = (\Omega; \text{ orbitals}) \text{ (orbits on } \Omega \times \Omega)$

 $\mathfrak{X}(G)$ homogeneous iff *G* transitive $\mathfrak{X}(G)$ primitive iff *G* primitive $\mathfrak{X}(G)$ uniprimitive iff *G* primitive and not doubly transitive

Primitice CCs: Johnson schemes

DEF: $\Im(k, t)$ Johnson scheme $t \ge 1$ $k \ge 2t + 1$ vertex set $V = \{v_T \mid T \subseteq \Delta, |T| = t\}$ where $|\Delta| = k$ $|V| = {k \choose t}$ colors: $c(v_T, v_S) = |T \setminus S|$ Example: $\Im(5, 2) \sim$ Petersen's graph Much symmetry: $\operatorname{Aut}(\Im(k, t)) = \operatorname{Aut}(J(k, t)) \cong S_k$

 $k! \approx \exp(n^{1/t})$ automorphisms

Homogeneous CC: all vertices same color Primitive CC: homogeneous and every off-diagonal constituent (strongly) connected

 $\frac{\text{Uniprimitive CC (UPCC):}}{\text{primitive of rank} \ge 3 \text{ (not a clique)}}$

vertex-color: c(x) := c(x, x) $V = C_1 \cup \cdots \cup C_s$ vertex-color classes **Fact.** Edge-color c(x, y) "aware of" vertex colors c(x) and $c(y) \xrightarrow{x \to y}$ **Corollary.** $(\forall i)(\exists j, k)(R_i \subseteq C_j \times C_k)$ constituent homogeneous (j = k) or bipartite $(j \neq k)$ **Fact.** Homogeneous constituent: biregular digraph **Fact.** Bipartite constituent: semiregular bipartite graph

Coherent configurations: a crash course

Notation. For $R \subseteq V \times V$ and $x \in V$ $R(x) = \{y \in V \mid x \xrightarrow{R} y\}$ — set of **out-neighbors**

Def. Strong component of digraph: equiv class of mutually accessible vertices Weak component: component of its symmetrization (ignore orientation)

Fact. The weak components of a *homogeneous* constituent are its strong component. Proof. **DEF: Eulerian digraph:** $(\forall x \in V)(\deg^+(x) = \deg^-(x))$

Lemma. Eulerian digraph weakly \implies strongly conn

Fact. The weak components of a constituent have equal order (number of vertices).

Coherent configurations: induced subconfigurations

$$X = (V, E)$$
 digraph — $E \subseteq V \times V$
 $\mathfrak{X} = (V, c)$ coherent configuration

Induced subgraph of digraph: for $A \subseteq V$ $X[A] = (A, E \cap (A \times A))$

Induced subconfiguration: for $A \subseteq V$ $\mathfrak{X}[A] = (A, c_{|A \times A})$

Bipartite graph: $(V_1, V_2; E)$ where $E \subseteq V_1 \times V_2$

Induced bipartite subgraph of digraph:

for
$$A, B \subseteq V, A \cap B = \emptyset$$

 $X[A, B] = (A, B; E \cap (A \times B))$

Induced bipartite subconfiguration:

for
$$A, B \subseteq V, A \cap B = \emptyset$$

 $\mathfrak{X}[A, B] = (A, B; c_{|A \times B})$

Fact. $A \subseteq V$ union of color-classes $\implies \mathfrak{X}[A] - CC$

Exercise. \mathfrak{X} CC, V_1 , V_2 vertex-color classes, $x \in V$. Claim. $R_k[U, W]$ semiregular ($U = R_i(x), W = R_j(x)$)

László Babai Hidden Irregularity vs. Hidden Structure

Exercise. \mathfrak{X} CC, V_1 , V_2 vertex-color classes, $x \in V$. Claim. $R_k[U, W]$ semiregular ($U = R_i(x), W = R_j(x)$)

Exercise. \mathfrak{X} CC, V_1 , V_2 vertex-color classes, $x \in V$. Claim. $R_k[U, W]$ semiregular ($U = R_i(x)$, $W = R_j(x)$)

Exercise. \mathfrak{X} CC, V_1 , V_2 vertex-color classes, $x \in V$. Claim. $R_k[U, W]$ semiregular ($U = R_i(x), W = R_j(x)$)

Theorem

Assume $\mathfrak{X}_2 := \mathfrak{X}[V_2]$ UPCC, $|V_1| > |W| > |V_1|/2$, where $x \in V_2$, $U := R_i(x) \subseteq V_2$, $W = R_j(x) \subseteq V_1$. Then $Y := R_j[U, W]$ nontrivial.

Theorem

Assume $\mathfrak{X}_2 := \mathfrak{X}[V_2]$ UPCC, $|V_1| > |W| > |V_1|/2$, where $x \in V_2$, $U := R_i(x) \subseteq V_2$, $W = R_j(x) \subseteq V_1$. Then $Y := R_j[U, W]$ nontrivial.

Theorem

Assume $\mathfrak{X}_{2} := \mathfrak{X}[V_{2}] \ UPCC, |V_{1}| > |W| > |V_{1}|/2$, where $x \in V_{2}, U := R_{i}(x) \subseteq V_{2}, W = R_{j}(x) \subseteq V_{1}$. Then $Y := R_{j}[U, W]$ nontrivial.

Theorem

Assume $\mathfrak{X}_{2} := \mathfrak{X}[V_{2}] \ UPCC, |V_{1}| > |W| > |V_{1}|/2$, where $x \in V_{2}, U := R_{i}(x) \subseteq V_{2}, W = R_{j}(x) \subseteq V_{1}$. Then $Y := R_{j}[U, W]$ nontrivial.

Remains to show: not complete

Lemma (Twin awareness)

A, B vertex-color classes in CC $\mathfrak{X} = (V; R_1, ..., R_r)$ and $R_i \subseteq A \times B$. Then for $x \neq y \in A$ the color c(x, y) determines whether or not x, y are twins for R_i

Lemma (Twin awareness)

A, B vertex-color classes in CC $\mathfrak{X} = (V; R_1, ..., R_r)$ and $R_i \subseteq A \times B$. Then for $x \neq y \in A$ the color c(x, y) determines whether or not x, y are twins for R_i

Lemma (Twin awareness)

A, B vertex-color classes in CC $\mathfrak{X} = (V; R_1, ..., R_r)$ and $R_i \subseteq A \times B$. Then for $x \neq y \in A$ the color c(x, y) determines whether or not x, y are twins for R_i

Theorem

Assume \mathfrak{X}_2 UPCC, $x \in V_2$, $U := R_i(x)$, $W = R_j(x)$, $|W| < |V_1|$. Then $Y := R_j[U, W]$ is not complete.

If complete \implies $(\forall u \in U)(R_i(u) \supseteq W)$ But $|R_i(u)| = |R_i(x)| = |W| \implies R_i(u) = W$ \implies x, u twins \implies all pairs of color i are twins but $(V_2; R_i)$ connected \implies all vertices in V_2 twins \implies $(\forall w \in V_1 \setminus W)(deg_i^-(w) = 0) \rightarrow \leftarrow$ QED(Thm) $W := R_i(x)$ V_1 \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet V_2 \mathfrak{X}_2 \boldsymbol{x} 11 $U := R_i(x)$

If complete \implies $(\forall u \in U)(R_i(u) \supseteq W)$ But $|R_i(u)| = |R_i(x)| = |W| \implies R_i(u) = W$ \implies x, u twins \implies all pairs of color i are twins but $(V_2; R_i)$ connected \implies all vertices in V_2 twins \implies $(\forall w \in V_1 \setminus W)(deg_i^-(w) = 0) \rightarrow \leftarrow$ QED(Thm) $W := R_i(x)$ V_1 V_2 \mathfrak{X}_2 \boldsymbol{x} 11 $U := R_i(x)$

Split-or-Johnson

Dominant vertex-color: more than 90% of vertices **Good coloring:** no dominant color **Good equipartition:** dominant color nontriv equipartitioned

Theorem (Split-or-Johnson)

Given a graph with defect(X) \ge 0.1, at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical vertex-coloring, or
- (b) a good canonical equipartition, or
- (c) a canonically embedded Johnson graph on dominant vertex-color class

canonicity: <u>functor</u>: isomorphism of input graphs induces isomorphism of embedded structures

Reduces to "SoJ for UPCCs" via WL

Theorem (Split-or-Johnson for UPCCs)

Given a UPCC on vertex-set V, at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical coloring of V, or
- (b) a good canonical equipartition of V, or
- (c) a canonically embedded Johnson graph on dominant vertex-color class.

Reduces to "SoJ for bipartite graphs"

Bipartite graph (V_1 , V_2 ; E) where $E \subseteq V_2 \times V_1$ Notation: $n_i = |V_i|$ Semiregular: all vertices in V_i have same degree (i = 1, 2) Trivial: complete or empty

Theorem (Split-or-Johnson for semireg bipartite graphs)

Given nontrivial semiregular bipartite graph $X = (V_1, V_2; E)$ such that $n_2 \le 0.9n_1$, at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical coloring of V_1 , or
- (b) a good canonical equipartition of V_1 , or
- (c) a canonically embedded Johnson graph on dominant vertex-color class of V₁

Twins, symmetry defect

Structure $\mathfrak{X} = (V, \mathcal{R})$ **Def:** $x \neq y \in V$ are **twins** if transposition $\tau = (x, y) \in \operatorname{Aut}(\mathfrak{X})$

Fact: "twin or equal" — equivalence relation

Def: Symmetry defect of \mathfrak{X} :

defect(\mathfrak{X}) = $1 - \frac{\max |T|}{|V|}$ where T — twin equivalence class

Fact: *T* twin equivalence class $\iff T \subseteq V$ maximal s.t. $Sym(T) \leq Aut(\mathfrak{X})$

Example. If $\operatorname{Aut}(\mathfrak{X}) = S_k \times S_{n-k}$ where n = |V| and $k \le n/2$ then defect $(\mathfrak{X}) = k/n$

Bipartite graph $X = (V_1, V_2; E)$ where $E \subseteq V_1 \times V_2$ X(v) – set of neighbors of v**Fact:** $x \neq y \in V_i$ twins $\iff X(x) = X(y)$ **Def:** Symmetry defect of X in part V_1 :

defect₁(X) = 1 – $\frac{\max |T|}{|V_1|}$ where $T \subseteq V_1$ — twin equiv class

Exercise: If X nontrivial (not empty or complete) semiregular bipartite graph then defect₁(X) \ge 1/2

Theorem (Split-or-Johnson for bipartite graphs)

Given a bipartite graph $X = (V_1, V_2; E)$ with symmetry defect ≥ 0.1 such that $n_2 \le 0.9n_1$, then at quasipolynomial multiplicative cost one can efficiently find either

- (a) a good canonical coloring of V_1 , or
- (b) a good canonical equipartition of V_1 , or
- (c) a canonically embedded Johnson graph on dominant vertex-color class of V₁

Why this is the real thing? Symmetry defect condition obviously necessary

Input: bipartite graph $X = (V_1, V_2; E)$ where $n_2 \le 0.9n_1$, defect_X(V_1) ≥ 0.1 **Goal:** good partition of V_1 or Johnson graph on > 90% of V_1 Inductive goal: either achieve "goal" or halve the size of V_2 **May assume** defect₁(X) \geq 0.9 – otherwise twin equiv classes — good partition **Start:** apply Weisfeiler–Leman to X, obtain CC \mathfrak{X} . $\mathfrak{X}_1 := \mathfrak{X}[V_1], \quad \mathfrak{X}_2 = \mathfrak{X}[V_2]: \quad CCs$ Bipartite part of \mathfrak{X} : $\mathfrak{X}_{21} := \mathfrak{X}[V_2, V_1] = \{R_i \mid R_i \subseteq V_2 \times V_1\}.$

Proof of SoJ for bipartite graphs

 $\mathfrak{X}_1 := \mathfrak{X}[V_1], \quad \mathfrak{X}_2 = \mathfrak{X}[V_2]: \quad CCs$

Bipartite part of \mathfrak{X} : $\mathfrak{X}_{21} := \mathfrak{X}[V_2, V_1] = \{R_i \mid R_i \subseteq V_2 \times V_1\}.$

If \mathfrak{X}_1 has no dominant color – goal achieved, exit

Otherwise, one can reduce to $\mathfrak{X} \leftarrow \mathfrak{X}[U, W]$ where $W \subseteq V_1$ dominant color class, $U \subseteq V_2$ color class, \mathfrak{X}_{21} not monochromatic

 $\therefore \mathfrak{X}_1, \mathfrak{X}_2$ homogeneous

May assume \mathfrak{X}_1 primitive

otherwise equipartition \rightarrow goal achieved, exit

Update $X \leftarrow$ one of the constituents in \mathfrak{X}_{21} So X is **semiregular** \therefore defect_i(X) $\ge 1/2$ **Input:** CC \mathfrak{X} on $V_1 \cup V_2$ where \mathfrak{X}_1 primitive, \mathfrak{X}_2 homogeneous, \mathfrak{X}_{21} not monochromatic, *X* one of its constituents

Claim: no X-twins in V_1

Proof. By twin-awareness and primitivity of \mathfrak{X}_1 the alternative: *V*₁ is a twin equivalence class ∴ *X* trivial, \mathfrak{X}_{21} monochromatic → ← QED

Cases based on \mathfrak{X}_2 :

(1) \mathfrak{X}_2 imprimitive

- (2) \mathfrak{X}_2 clique (rank-2 CC)
- (3) \mathfrak{X}_2 UPCC (uniprimitive coherent configuration)

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Case (1): \mathfrak{X}_2 imprimitive: blocks $V_2 = B_1 \dot{\cup} \dots \dot{\cup} B_k$

Input: CC \mathfrak{X} on $V_1 \cup V_2$ where \mathfrak{X}_1 primitive, \mathfrak{X}_2 homogeneous, \mathfrak{X}_{21} not monochromatic, *X* one of its constituents

Cases based on \mathfrak{X}_2 :

- (1) \mathfrak{X}_2 imprimitive \checkmark
- (2) \mathfrak{X}_2 clique (rank-2 CC)
- (3) \mathfrak{X}_2 UPCC (uniprimitive coherent configuration)

SoJ for bipartite graphs: UPCC case

Case (3): \mathfrak{X}_1 homogeneous, \mathfrak{X}_2 UPCC \mathfrak{X}_{21} not monochromatic

Recursive goal:

Either find good coloring/equipartition of V_1 or halve V_2 Case (3): \mathfrak{X}_1 homogeneous, \mathfrak{X}_2 UPCC \mathfrak{X}_{21} not monochromatic

Recursive goal:

Either find good coloring/equipartition of V_1 or halve V_2

Algorithm. Individualize $x \in V_2$, refine: new color of $v \in V_1$; c'(v) = c(x, v)

if there is no dominant color in \mathfrak{X}_{21} , this is a good coloring of V_1 , goal achieved, **exit**

else: R_j dominant color in \mathfrak{X}_{21}

SoJ for bipartite graphs: UPCC case

Situation: R_j dominant color in \mathfrak{X}_{21} . Let $W = R_i(x)$, so $|W| > 0.9n_1$.

Pick a color R_i in \mathfrak{X}_2 such that $|R_i(x)| < n_2/2$. Such color exists b/c \mathfrak{X}_2 is not a clique. Let $U = R_i(x)$.

SoJ for bipartite graphs: UPCC case

Let
$$Y = R_j[U, W]$$

return $Y \leftarrow X$. Progress: $|U| < n_2/2$.

Y is semiregular and nontrivial by Theorem

Cost analysis

f(n, m) – cost of SoJ for bipartite graph $n = |V_1|, m = |V_2|$ reduced $m \leftarrow m/2$ at a cost of 1 individualization $f(n, m) \le m \cdot f(n, m/2)$ } $\therefore f(n, m) = n^{O(\log m)}$ – quasipolynomial QED **Input:** CC \mathfrak{X} on $V_1 \cup V_2$ where \mathfrak{X}_1 primitive, \mathfrak{X}_2 homogeneous, \mathfrak{X}_{21} not monochromatic, *X* one of its constituents

Cases based on \mathfrak{X}_2 :

- (1) \mathfrak{X}_2 imprimitive \checkmark
- (2) \mathfrak{X}_2 clique (rank-2 CC)
- (3) \mathfrak{X}_2 UPCC (uniprimitive CC) \checkmark

Case (2): \mathfrak{X}_2 clique

Desired progress: move to Case (1) or Case (3) without increasing the n_i

Notation: X graph v vertex X(v): set of neighbors of v May assume X semiregular: $(\forall v \in V_i)(\deg(v) = d_i)$, nontrivial

Neighborhood hypergraph: $\mathcal{H} = \{X(v) \mid v \in V_1\}$

 d_1 -uniform d_2 -regular hypergraph on V_2

Q: What if \mathcal{H} complete d_1 -uniform hypergraph?

Q: What if \mathcal{H} complete d_1 -uniform hypergraph?

Q: What if \mathcal{H} complete d_1 -uniform hypergraph?

 \rightarrow **Johnson scheme** $\mathfrak{J}(n_2, d_1)$ canonically on V_1

Canonical: for $x, y \in V_1$ isomorphisms preserve $|X(x) \cap X(y)|$

This is exactly the case when V_2 is a twin equivalence class for \mathcal{H} : Aut $(\mathcal{H}) = \text{Sym}(V_2)$

Same works for defect(\mathcal{H}) $\leq 1/2$. Assume defect(\mathcal{H}) > 1/2.

If $d_1 \leq (7/3) \log_2 n_1$: apply **Design Lemma** to \mathcal{H}

If $d_1 > (7/3) \log_2 n_1$: let $t = (7/4) \log_2 n_1$

Def. *t*-skeleton $\mathcal{H}^{(t)}$ of hypergraph \mathcal{H} : all *t*-subsets of the edges of \mathcal{H} .

Lemma (Skeleton defect lemma)

Let \mathcal{H} be a nontrivial, regular, d-uniform hypergraph with n vertices and m edges where $d \le n/2$. Let $(7/4) \log_2 m \le t \le (3/4)d$. Then

 $defect(\mathcal{H}^{(t)}) \geq 1/4$

Now apply the Design Lemma to $\mathcal{H}^{(t)}$.

k-ary coherent configurations: definition

DEF: k-ary partition structure: $\mathfrak{X} = (V, c)$ where $c : V^k \rightarrow \{colors\}$ DEF: k-ary configuration: • color $c(x_1, \dots, x_k)$ determines equiv relation on [k] $i \sim j \iff x_i = x_j$ • $(\forall f : [k] \rightarrow [k])$ color $c(x_1, \dots, x_k)$ determines $c(x_{f(1)}, \dots, x_{f(k)})$ DEF: k-ary coherent configuration:

 $(\forall i_1, \ldots, i_k \leq k)(c(x_1, \ldots, x_k) \text{ determines})$ $(\#z \in V)(\forall j \leq k)(c(x_1, \ldots, z_{j-\text{th position}}, \ldots, x_k) = i_j)$ $(r^{k+1} \text{ intersection numbers where } r = |\{\text{colors}\}|)$

k-ary coherent configurations: restriction

DEF: k-ary partition structure: $\mathfrak{X} = (V, c)$ where $c: V^k \rightarrow \{colors\}$ DEF: $(k - \ell)$ -ary restriction of k-ary partition structure $\mathfrak{X} = (V, c)$: let $\vec{x} = (x_1, \dots, x_\ell) \in V^\ell$, $V' = V \setminus \{x_1, \dots, x_\ell\}$ $\mathfrak{X}_{\vec{x}} := (V', c')$ where for $\vec{y} \in (V')^{k-\ell}$ we set $c'(\vec{y}) = c(\vec{x}\vec{y})$

Fact: Restriction of CC_k is $CC_{k-\ell}$

k-ary coherent configurations: skeleton

DEF: *k*-ary **partition structure:** $\mathfrak{X} = (V, c)$ where $c : V^k \rightarrow \{\text{colors}\}$

DEF: ℓ -ary skeleton of *k*-ary partition structure $\mathfrak{X} = (V, c)$: ℓ -ary partition structure $\mathfrak{X}^{(\ell)} = (V, c')$ where

$$C'(X_1,\ldots,X_\ell) = C(X_1,\ldots,X_\ell,\underbrace{X_\ell,\ldots,X_\ell}_{(k-\ell) \text{ times}})$$

Fact: ℓ -skeleton on CC_k is CC_{ℓ}

Theorem (Design Lemma)

Given a k-ary relational structure \mathfrak{X} with defect(\mathfrak{X}) \geq 0.1, one can individualize k - 1 vertices and find, in $n^{O(k)}$ time,

- (a) a good canonical vertex-coloring, or
- (b) a good canonical equipartition, or
- (c) a canonically embedded regular graph on dominant vertex-color class (≥ 90% of vertices)

Lemma (Large clique lemma)

 $\mathfrak{X} = (V, c)$ (classical) coherent configuration with vertex-color classes W_1, \ldots, W_s . Assume

- W_1 dominant: $(\forall i \ge 2)(|W_1| > |W_i|)$
- W₁ induces a clique in \mathfrak{X}

Then W_1 is a twin equivalence class in \mathfrak{X} .

Proof uses Fisher's inequality for block design:

in a BIBD, # of blocks $\ge \#$ of vertices

Let \mathfrak{X} be *k*-ary coherent, with defect ≥ 0.1 .

If 2-skeleton $\mathfrak{X}^{(2)}$ has no dominant color class DONE (good coloring)

Assume dominant vertex-color $C \subseteq V$ (|C| > 0.9n)

If $\mathfrak{X}^{(2)}[C]$ imprimitive

DONE (good equipartition)

If $\mathfrak{X}^{(2)}[C]$ **uniprimitive** (primitive, not clique) DONE (reduced to binary case \rightarrow SoJ)

If $\mathfrak{X}^{(2)}[C]$ clique need to destroy it by individualizing (k-1) points

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin \operatorname{Aut}(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

Case: $\mathfrak{X}^{(2)}[C]$ is a clique

How do we guess the $\leq (k - 1)$ points to individualize?

$$\therefore \quad (\exists u, v \in C)(\tau := (u, v) \notin Aut(\mathfrak{X}))$$

$$\therefore \quad (\exists \vec{x} \in V^k) (c(\vec{x}^{\tau}) \neq c(\vec{x}))$$

 \vec{y} : individualized prefix of \vec{x} Need to destroy clique on $C \setminus \text{supp}(\vec{y})$

 \vec{y} : individualized prefix of \vec{x} Need to destroy clique on $C \setminus \text{supp}(\vec{y})$

 $c(u) \neq c(v)$ after individualizing tail $\vec{y} = (y_1, \dots, y_{k-1})$ $\therefore C \setminus \{y_1, \dots, y_{k-1}\}$ not homogeneous in $\mathfrak{X}_{\vec{y}}$

 \vec{y} : individualized prefix of \vec{x} Need to destroy clique on $C \setminus \text{supp}(\vec{y})$

 $c(u, v) \neq c(v, u) \text{ after individualizing tail}$ $\vec{y} = (y_1, \dots, y_{k-2})$ $\therefore C \setminus \{y_1, \dots, y_{k-2}\} \text{ not a clique in } \mathfrak{X}_{\vec{y}}^{(2)}$
Split-or-Johnson dichotomy rephrased:

opposite of hidden irregularity is not "hidden regularity" but

Split-or-Johnson dichotomy rephrased:

opposite of hidden irregularity is not "hidden regularity" but

hidden robust symmetry

symmetry that can only be destroyed at high cost

László Babai Hidden Irregularity vs. Hidden Structure