WL50 * Pilsen * July 7, 2018

Permutation groups and Graph Isomorphism: Local certificates

László Babai University of Chicago

László Babai Graph Isomorphism: Local certificates

Graph Isomorphism: the most recent bounds

Input: graphs X, Y with *n* vertices **Question:** $X \cong Y$?

trivial bound *n*!

 $\exp(O(\sqrt{n \log n}))$ Luks 1983 moderately exponential

Graph Isomorphism: the most recent bounds

Input: graphs *X*, *Y* with *n* vertices **Question:** $X \cong Y$?

trivial bound *n*!

 $\exp(O(\sqrt{n \log n}))$ Luks 1983 moderately exponential

 $exp((\log n)^{O(1)})$ this talk

quasipolynomial

Graph Isomorphism is equivalent to finding orbits of automorphism group

Graph Isomorphism is equivalent to finding orbits of automorphism group

QUESTION Is there an efficiently computable relaxation of symmetry that is <u>complete</u> – implies symmetry?

Close the gap between

SYMMETRY and REGULARITY

Combinatorial relaxations do not suffice Cai, Furer, Immerman 1992

Ingredients: symmetry AND regularity

PART 1 — group theory (symmetry)

- finite permutation groups
- "local to global tool"

PART 2 — coherent configurations (regularity) "<u>divide</u>-and-conquer tool" (efficient recurrence)

Let $G \leq \text{Sym}(\Omega)$ be a **permutation group**, $|\Omega| = n$ **stabilizer** of $x \in \Omega$: $G_x = \{\sigma \in G \mid x^\sigma = x\}$ (fixes *x*)

DEF: Let $\varphi : G \rightarrow Alt(\Gamma)$ be a homomorphism **onto** the alternating group (even permutations) of a set Γ , $|\Gamma| = m x \in \Omega$ is **affected** by φ if $\varphi(G_x) \neq Alt(\Gamma)$

Let $G \leq \text{Sym}(\Omega)$ be a **permutation group**, $|\Omega| = n$ **stabilizer** of $x \in \Omega$: $G_x = \{\sigma \in G \mid x^\sigma = x\}$ (fixes x)

Theorem (Unaffected stabilizers lemma)

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > \max\{8, 2 + \log_2 n\}$ then

 $\varphi(G_{(U)}) = \operatorname{Alt}(\Gamma).$

László Babai Graph Isomorphism: Local certificates

László Babai Graph Isomorphism: Local certificates

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \operatorname{Alt}(\Gamma).$$

Corollary. At least one point is affected.

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \operatorname{Alt}(\Gamma).$$

Corollary. At least one point is affected.

Result **tight**: \exists infinitely many examples with $m = 2 + \log_2 n$ with **no affected points**.

Unaffected stabilizers lemma: tight

Corollary. At least one point is affected.

Result **tight**: \exists infinitely many examples with $m = 2 + \log_2 n$ with **no affected points**.

Unaffected stabilizers lemma: tight

Corollary. At least one point is affected.

Result **tight:** \exists infinitely many examples with $m = 2 + \log_2 n$ with **no affected points.**

Example

 $\begin{array}{ll} A_m \leq \operatorname{GL}(m,2) & -\operatorname{permute\ coordinates} \\ G := \mathbb{F}_2^m \rtimes A_m \leq \operatorname{AGL}(m,2) \\ \text{acting\ on\ } \mathbb{F}_2^m \text{ so\ } n = 2^m, \text{ i.e., } m = \log_2 n \\ G \twoheadrightarrow A_m \text{ and\ } G_0 \cong A_m \text{ and\ } (\forall x) (G_x \cong A_m) \\ \text{reduce\ dim\ by\ } 2 \\ \text{ take\ } A_m \leq \operatorname{GL}(m,2) \text{ restict\ to\ } \sum x_i = 0 \\ \text{ quotient\ by\ } x_1 = \cdots = x_m = 1 \\ \implies A_m \leq \operatorname{AGL}(m-2,2) \implies m = 2 + \log_2 n \end{array}$

DEF: Let $\varphi : G \twoheadrightarrow Alt(\Gamma)$ be a homomorphism **onto** the alternating group (even permutations) of a set Γ , $|\Gamma| = m x \in \Omega$ is **affected** by φ if $\varphi(G_x) \neq Alt(\Gamma)$

Theorem (Unaffected stabilizers lemma)

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, *i.e.*,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ *then*

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

DEF: Let $\varphi : G \twoheadrightarrow Alt(\Gamma)$ be a homomorphism **onto** the alternating group (even permutations) of a set Γ , $|\Gamma| = m x \in \Omega$ is **affected** by φ if $\varphi(G_x) \neq Alt(\Gamma)$

Theorem (Unaffected stabilizers lemma)

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, *i.e.*,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ *then*

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

Uses Classification of Finite Simple Groups (CFSG) through *Schreier's Hypothesis:* "The outer automorphism group of every finite simple group is solvable."

DEF: Let $\varphi : G \twoheadrightarrow Alt(\Gamma)$ be a homomorphism **onto** the alternating group (even permutations) of a set Γ , $|\Gamma| = m x \in \Omega$ is **affected** by φ if $\varphi(G_x) \neq Alt(\Gamma)$

Theorem (Unaffected stabilizers lemma)

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, *i.e.*,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

Uses Classification of Finite Simple Groups (CFSG) through *Schreier's Hypothesis:* "The outer automorphism group of every finite simple group is solvable."

Pyber recently removed CFSG assuming $m > (\log n)^c$.

DEF: Let $\varphi : G \twoheadrightarrow Alt(\Gamma)$ be a homomorphism **onto** the alternating group (even permutations) of a set Γ , $|\Gamma| = m x \in \Omega$ is <u>affected</u> by φ if $\varphi(G_x) \neq Alt(\Gamma)$

Theorem (Unaffected stabilizers lemma)

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

Proof: Induction. Base case: *G* – primitive group.

Lemma (Primitive case)

Let $G \leq S_n$ be a primitive group and $\varphi : G \twoheadrightarrow A_m$ for some $m > \max\{8, 2 + \log_2 n\}$. Then φ is an isomorphism.

Proof of lemma depends on Schreier's Hypothesis

Tool: O'Nan–Scott–Aschbacher Structure Thm for primitive groups

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

$$\varphi(G_{(U)}) = \operatorname{Alt}(\Gamma).$$

Let *U* be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of *U*, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ *then*

$$\varphi(G_{(U)}) = \mathsf{Alt}(\Gamma).$$

HOW IS THIS RELATED TO Graph Isomorphism ?

String Isomorphism: anagrams via a permutation group

string: $\mathbf{x} : \Omega \to ABC$ (Ω : set of positions)

 $\sigma \in Sym(\Omega)$ transforms strings $\mathbf{x} \mapsto \mathbf{x}^{\sigma}$

permutation group $G \leq Sym(\Omega)$ subgroup of the symmetric group acting on Ω G given by a list of generators

strings **x**, **y** are *G*-isomorphic: $\mathbf{x} \cong_G \mathbf{y}$ if $(\exists \sigma \in G)(\mathbf{x}^{\sigma} = \mathbf{y})$

String Isomorphism: anagrams via a permutation group

string: $\mathbf{x} : \Omega \to ABC$ (Ω : set of positions)

 $\sigma \in Sym(\Omega)$ transforms strings $\mathbf{x} \mapsto \mathbf{x}^{\sigma}$

permutation group $G \leq Sym(\Omega)$ subgroup of the symmetric group acting on Ω G given by a list of generators

strings **x**, **y** are *G*-isomorphic: $\mathbf{x} \cong_G \mathbf{y}$ if $(\exists \sigma \in G)(\mathbf{x}^{\sigma} = \mathbf{y})$

String Isomorphism problem (Luks 1980/82):

Given G, \mathbf{x}, \mathbf{y} decide: $\mathbf{x} \cong_G \mathbf{y}$?

String Isomorphism

Can a given coloring of Rubik's cube be transformed into another one via legal moves?

String Isomorphism: the main result

strings \mathbf{x} , \mathbf{y} are G-isomorphic: $\mathbf{x} \cong_G \mathbf{y}$ if $(\exists \sigma \in G)(\mathbf{x}^{\sigma} = \mathbf{y})$

String Isomorphism problem (Luks 1980/82):

Given G, \mathbf{x} , \mathbf{y} decide: $\mathbf{x} \cong_G \mathbf{y}$?

Theorem

String Isomorphism decidable in quasipolynomial time.

Previous best: $exp(\widetilde{O}(\sqrt{n}))$ (B 1983)

dead end

Reducing GI to SI

Graph X with n vertices encoded as (0, 1)-string $\mathbf{x}(X)$ of length $\binom{n}{2}$ edge-subset of the complete graph K_n $G = S_n^{(2)} \leq S_{\binom{n}{2}}$ $S_{p}^{(2)}$ — induced symmetric group on pairs $S_n^{(2)}$ — action of S_n on $E(K_n)$ $S_n^{(2)} \cong S_n$

Reducing GI to SI

Graph X with n vertices encoded as (0, 1)-string $\mathbf{x}(X)$ of length $\binom{n}{2}$ edge-subset of the complete graph K_n $G = S_n^{(2)} \leq S_{\binom{n}{2}}$ $S_{p}^{(2)}$ — induced symmetric group on pairs $S_n^{(2)}$ — action of S_n on $E(K_n)$ $S_n^{(2)} \cong S_n$

$$X \cong Y \iff \mathbf{x}(X) \cong_G \mathbf{x}(Y)$$

Hypergraphs to strings

t-uniform hypergraph X with *n* vertices encoded as (0, 1)-string $\mathbf{x}(X)$ of length $\binom{n}{t}$

 $G = S_n^{(t)} \le S_{\binom{n}{t}} \text{ induced symmetric group on } t\text{-tuples}$ $S_n^{(t)} - \text{"Johnson groups"}$ $S_n^{(t)} \cong S_n \quad \text{acts on } \binom{n}{t} \text{ } t\text{-tuples}$ X, Y t-uniform hypergraphs

$$X \cong Y \iff \mathbf{x}(X) \cong_G \mathbf{x}(Y)$$
The following decision problems are **equivalent** under Karp reductions (polynomial-time many-one reductions) to **String Isomorphism:**

INPUT: $G, H \leq Sym(\Omega)$ and $\sigma, \tau \in Sym(\Omega)$

Questions:

- **Coset intersection:** is $G\sigma \cap H\tau \neq \emptyset$?
- Centralizer in coset:
 Is the centralizer of τ in Gσ not empty?
- Double coset membership: is $\tau \in G\sigma H$?

The power of group theory

In-depth use of group theory

Eugene M. Luks

Isomorphism of graphs of bouded valence can be tested in polynomial time

FOCS 1980, JCSS 1982

single most important paper ever on GI

group theoretic divide-and-conquer method

The power of group theory

In-depth use of group theory

Eugene M. Luks

Isomorphism of graphs of bouded valence can be tested in polynomial time

FOCS 1980, JCSS 1982

single most important paper ever on GI

group theoretic divide-and-conquer method

What we don't use: Luks's result

The power of group theory

In-depth use of group theory

Eugene M. Luks

Isomorphism of graphs of bouded valence can be tested in polynomial time

FOCS 1980, JCSS 1982

single most important paper ever on GI

group theoretic divide-and-conquer method

What we don't use: Luks's **result** What we do use: Luks's **method** wired into the genes of the new algorithm

1. Group theory: "Unaffected stabilizers lemma" local-to-global tool ♡

2. Group theoretic algorithms

2a. "local certificates" ♡

2b. aggregation of the "fullness certificates"

3. Combinatorial algorithms

canonical partitioning/reduction procedures : combinatorial divide-and-conquer tools

- 3a. Design Lemma
- 3b. "Split-or-Johnson"

15-second overview of Luks's method

$$\mathsf{ISO}_G(\mathbf{x},\mathbf{y}) := \{ \sigma \in G \mid \mathbf{x}^\sigma = \mathbf{y} \}$$

Divide-and-Conquer strategy: recursion on G

- Reduce to orbits superfast recurrence
- Descend to subgroup
 - multiplicative cost: index of subgroup
- typically, descend to kernel of action on blocks of imprimitivity

Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ complexity: $m = |\Gamma|$ goes into exponent barrier case: m > polylog(n)

Proof by **Cameron's** classification of **large primitive groups:** $|G| > n^{1+\log_2 n}$ (1981) (heavily depends on CFSG)

Socle Soc(*G*): product of minimal normal subgroups

Theorem (Cameron (1981) as sharpened by Attila Maróti (2002))

If $G \leq S_n$ primitive, $|G| > n^{1+\log_2 n}$, then $Soc(G) \cong A_m^{\ell}$ acting as Johnson groups in the product action on $\binom{m}{t}^{\ell}$ and

$$(\boldsymbol{A}_m^{(t)})^\ell \leq \boldsymbol{G} \leq \boldsymbol{S}_m^{(t)} \wr \boldsymbol{S}_\ell$$

All we need from this is that

- $\operatorname{Soc}(G) \cong A_m^{\ell} \text{ and } |G : \operatorname{Soc}(G)| \le 2^{\ell} \ell! ;$
- $n \ge m^{\ell}$ and $(m!)^{\ell} \ell! > n^{1 + \log_2 n}$

Corollary (calculation): $|G : Soc(G)| \le n$ Luks descends to socle: multipl cost $\le n$ now $G \cong A_m^{\ell} \twoheadrightarrow A_m$ Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ complexity: $m = |\Gamma|$ goes into exponent barrier case: m > polylog(n)Ω actual domain Γ "ideal domain" Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ complexity: $m = |\Gamma|$ goes into exponent barrier case: m > polylog(n)Ω actual domain Γ "ideal domain"

Luks continues to CONQUER

Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ complexity: $m = |\Gamma|$ goes into exponent barrier case: m > polylog(n)

Ω actual domain Γ "ideal domain"

Luks continues to CONQUER

as long as *somebody* DIVIDES

Fact Either efficient Luks reduction found or epimorphism $G \rightarrow Alt(\Gamma)$ found for some large $m = |\Gamma|$ complexity: $m = |\Gamma|$ goes into exponent barrier case: m > polylog(n)

Ω actual domain Γ "ideal domain"

Luks continues to CONQUER

as long as *somebody* DIVIDES somebody ← new group theory + combinatorics **Overall strategy**

algorithmic GROUP THEORY (Luks+new) and COMBINATORICS (new) **DIVIDE**

algorithmic GROUP THEORY (Luks) CONQUERS

Strings

 Ω set of positions

Strings

Strings

string ignored, focus on $G \leq Sym(\Omega)$

 $\varphi: G \twoheadrightarrow Alt(\Gamma)$

Ω

AABADDDCBBBBBBBADCAA BAAAAAADACCCBDDACAAAA DDDDACBBBBBBBAAADDACC CABACC ACBBCADACCAA CCA ADAAAD DCCABAACCAABB BAC BDBBAA ACBBADCCADC AAA AAAAABBAAAABBBCAAAAA BBAAAAAABBCCCADD DDDABBBAAAAAAA ABA

F: ideal domain

 $\varphi: G \twoheadrightarrow Alt(\Gamma)$

Ω

AABADDDCBBBBBBBADCAA BAAAAAADACCCBDDACAAAA DDDDACBBBBBBBAAADDACC CABACC ACBBCADACCAA GCA ADAAAD DCCABAACCAABB BAC BDBBAA ACBBADCCADC AAA AAAAABBAAAABBBCAAAAA BBAAAAAAABCCCADD DDDABBBAAAAAAA ABA

F: ideal domain

 $\varphi: G \twoheadrightarrow Alt(\Gamma)$

Ω

AABADDDCBBBBBBBADCAA BAAAAAADACCCBDDACAAAA DDDDACBBBBBBBAAADDACC CABACC ACBBCADACCAA CCA ADAAAD DCCABAACCAABB BAC BDBBAA ACBBADCCADC AAA AAAAAABAAAABBBCAAAAA BBAAAAAABBCCCADD DDDABBBAAAAAAA ABA

F: ideal domain

Plato

Barrier situation: $G \xrightarrow{\phi} Alt(\Gamma)$

Goal: either

(i) confirm: $\operatorname{Aut}_{G}(\mathbf{x}) \xrightarrow{\varphi} \operatorname{Alt}(\Gamma)$, or

(ii) break symmetry of Γ:

Barrier situation: $G \xrightarrow{\phi} Alt(\Gamma)$

Goal: either

(i) confirm: $\operatorname{Aut}_{G}(\mathbf{x}) \xrightarrow{\varphi} \operatorname{Alt}(\Gamma)$, or

(ii) break symmetry of Γ:
 find M ≤ Sym(Γ)
 M much smaller than Sym(Γ)
 s.t. φ(Aut_G(**x**)) ≤ M ("encasing group")
 reduce G to φ⁻¹(M), recurse

Def: Giant(Γ) = Sym(Γ) or Alt(Γ)

Recall **Goal:** (i) confirm $\operatorname{Aut}_G(\mathbf{x}) \xrightarrow{\varphi} \operatorname{Alt}(\Gamma)$ or at least $\operatorname{Aut}_G(\mathbf{x}) \xrightarrow{\varphi'} \operatorname{Giant}(\Gamma')$ for some $\Gamma' \subset \Gamma$, $|\Gamma'| \ge 0.9|\Gamma|$

if "yes," all of $ISO_G(\mathbf{x}, \mathbf{y})$ is found

idea: condition verifiable: lift 3-cycles on Γ to $\operatorname{Aut}_G(\mathbf{x})$ (efficient Luks reduction) once verified, \approx every bijection $\operatorname{supp}(\varphi(F_{\mathbf{x}})) \rightarrow \operatorname{supp}(\varphi(F_{\mathbf{y}}))$ lifts to $\mathbf{x} \rightarrow \mathbf{y}$ isomorphism (again, efficient Luks reduction)

else Goal (ii): break symmetry of Г

find "encasing group" M

 $\operatorname{Aut}_{G}(\mathbf{x}) \xrightarrow{\varphi} M \ll \operatorname{Sym}(\Gamma)$

else Goal (ii): break symmetry of Г

find "encasing group" M

 $\operatorname{Aut}_G(\mathbf{x}) \xrightarrow{\varphi} M \ll \operatorname{Sym}(\Gamma)$

HOW ?

canonical coloring of Γ:

preserved under G-isomorphisms

canonical partition of Γ defined analogously

and any other canonical structure on Г

CANONICITY of assignment of objects: a **functor** from the category of *G*-isomorphisms

Canonical assignment

Assignment $\mathbf{x} \mapsto F(\mathbf{x})$ structures

E.g., \mathbf{x} – graph, $F(\mathbf{x})$ – coloring of vertices

F canonical if it also assigns isomorphism → isomorphism

Canonical assignment

Assignment $\mathbf{x} \mapsto F(\mathbf{x})$ structures

E.g., \mathbf{x} – graph, $F(\mathbf{x})$ – coloring of vertices

F canonical if it also assigns isomorphism → isomorphism

FUNCTOR between categories of isomorphisms $F(\sigma\tau) = F(\sigma)F(\tau)$ e.g., F: Graphs \rightarrow ColoredSets

Canonical coloring

Given a graph *X*, vertex-coloring by degree is **canonical** What if *X* is *regular*?

Example: color each vertex by number of triangles attached

Canonical coloring

Given a graph *X*, vertex-coloring by degree is **canonical** What if *X* is *regular*?

Example: color each vertex by number of triangles attached

Canonical coloring

Given a graph *X*, vertex-coloring by degree is **canonical** What if *X* is *regular*?

Example: color each vertex by number of triangles attached

Break symmetry? How?

- find good canonical coloring: every color class ≤ 0.9 fraction of Γ, or
- find canonical coloring with nontrivial canonical equipartition of dominant color class

Complexity:
$$g(n,m)$$
 $n = |\Omega|$ $m = |\Gamma| \le n$
 $f(n) = g(n, n)$
 $g(n,m) \le q(n)g(n, 0.9m)$
 $g(n,m_0) \le f(0.9n)$
 m_0 cutoff point (polylog(n))
Solution: $f(n) = q(n)^{O(\log^2 n)}$

Breaking symmetry on ideal domain

Goal break symmetry

Intermediate goal Find canonically embedded nontrivial regular graph on \geq 0.9 fraction of Γ

Breaking symmetry of regular graph?

Given a nontrivial regular graph X on Γ can we find an X-canonical good coloring or equipartition at modest multiplicative cost?

Breaking symmetry of regular graph?

Given a nontrivial regular graph X on Γ can we find an X-canonical good coloring or equipartition at modest multiplicative cost?

Breaking symmetry of regular graph?

Given a nontrivial regular graph X on Γ can we find an X-canonical good coloring or equipartition at modest multiplicative cost?

Breaking symmetry of regular graph?

Given a nontrivial regular graph X on Γ can we find an X-canonical good coloring or equipartition at modest multiplicative cost?

NO: Johnson graphs resilient to good coloring/partition

DEF: J(k, t) Johnson graph $t \ge 1$ $k \ge 2t + 1$

vertex set
$$V = \{v_T \mid T \subseteq \Delta, |T| = t\}$$
 where $|\Delta| = k$

$$|V| = \binom{k}{t}$$

adjacency: $v_T \sim v_S \iff |T \setminus S| = 1$

multiplicative cost of good coloring/partition $\exp(\Omega(k/t))$

Johnson graphs are the only obstructions to good partitioning

Theorem (Split-or-Johnson)

Given a nontrivial regular graph on Γ , one can individualize a polylog number of vertices and find

- (a) a good canonical coloring (\forall color class \leq 0.9), or
- (b) a canonical equipartition of the dominant color class (> 0.9), or
- (c) a canonically embedded Johnson graph on the dominant color class

Canonicity: relative to the choice of the polylog vertices

Johnson graph J(m', t) on Γ

$$\Gamma = \binom{\Gamma'}{t}$$
 $t \ge 2$

$$m={m' \choose t}$$
 so $m'<1+\sqrt{2m}$

Reduce $\varphi(G)$ from Sym(Γ) to Aut(J(m', t)) $\cong S_{m'}$

m dramatically reduced recurrence bottoms out in log log *n* rounds

We don't immediately find a canonical regular graph First, a **canonical** *k*-ary relation for $k = O(\log n)$ $\mathfrak{X} = (\Gamma, R)$ where $R \subseteq \Gamma^k$ *k*-ary relation

Twins, symmetry defect

 $\mathfrak{X} = (\Gamma, \mathcal{R})$ — structure

DEF: $x \neq y \in \Gamma$ twins if transposition $(x, y) \in Aut(\mathfrak{X})$

Fact: "twin or equal" — equivalence relation

DEF: $\Delta \subseteq \Gamma$ set of twins: subset of equivalence class Fact: $\Delta \subseteq \Gamma$ set of twins \iff Sym $(\Delta) \leq$ Aut (\mathfrak{X}) **DEF:** Symmetricity of \mathfrak{X} :

relative size of largest twin equivalence class **DEF: Symmetry defect** of \mathfrak{X} : 1- symmetricity(\mathfrak{X})

Example: if Aut(\mathfrak{X}) = Sym(Δ_1) × Sym(Δ_2) where $\Gamma = \Delta_1 \cup \Delta_2$ then the defect of \mathfrak{X} is min{ $|\Delta_1|, |\Delta_2|}/|\Gamma|$

$$\Delta_1 \quad \Delta_2$$

Design Lemma: k-ary to binary

Theorem (Design Lemma)

Given a k-ary relation on Γ with symmetry defect $\geq 1/10$, one can individualize k - 1 vertices and find

- (a) a good canonical coloring (\forall color class \leq 0.9), or
- (b) a canonical equipartition of the dominant color class (> 0.9), or
- (c) a canonically embedded nontrivial regular graph on the dominant color class
- in time $m^{O(k)}$.

Canonicity: relative to the choice of the k - 1 vertices

Design Lemma: k-ary to binary

Theorem (Design Lemma)

Given a k-ary relation on Γ with symmetry defect $\geq 1/10$, one can individualize k - 1 vertices and find

- (a) a good canonical coloring (\forall color class \leq 0.9), or
- (b) a canonical equipartition of the dominant color class (> 0.9), or
- (c) a canonically embedded nontrivial regular graph on the dominant color class
- in time $m^{O(k)}$.

Canonicity: relative to the choice of the k - 1 vertices

How do we obtain canonical *k*-ary relation?

Design Lemma: k-ary to binary

Theorem (Design Lemma)

Given a k-ary relation on Γ with symmetry defect $\geq 1/10$, one can individualize k - 1 vertices and find

- (a) a good canonical coloring (\forall color class \leq 0.9), or
- (b) a canonical equipartition of the dominant color class (> 0.9), or
- (c) a canonically embedded nontrivial regular graph on the dominant color class
- in time $m^{O(k)}$.

Canonicity: relative to the choice of the k - 1 vertices

How do we obtain canonical k-ary relation?

GROUP THEORY $k = O(\log n)$

Overall plan

- Luks works until barrier encountered
- Luks + Cameron construct ideal domain Γ giant homomorphism G → Alt(Γ)
- construct "Local certificates"
- aggregation of Local certificates: constructs canonical *k*-ary relation on Γ k = O(log n) with large symmetry defect
- Design Lemma reduces *k*-ary to binary → regular graph method: *k*-ary WL
- Split-or-Johnson significantly reduces |Γ| method: (classical) coherent configurations (k = 2)
- return "divided" domain to Luks to "conquer"

To construct **"local certificates"** on Γ from which **canonical** *k***-ary relation** is derived

Key difficulty:

"Global automorphisms from local information"

Let $G \leq \text{Sym}(\Omega)$ and $\varphi : G \twoheadrightarrow \text{Giant}(\Gamma)$. G_x : stabilizer of $x \in \Omega$ in G (subgroup that fixes x).

DEF: $x \in \Omega$ is affected by φ if $\varphi(G_x)$ is NOT a giant in Sym(Γ)

Theorem (Unaffected stabilizers lemma)

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then

 $\varphi(G_{(U)})$ is a giant in Sym(Γ).

László Babai Graph Isomorphism: Local certificates

László Babai Graph Isomorphism: Local certificates

Let $G \leq \text{Sym}(\Omega)$ and $\varphi : G \twoheadrightarrow \text{Giant}(\Gamma)$. G_x : stabilizer of $x \in \Omega$ in G (subgroup that fixes x).

DEF:
$$x \in \Omega$$
 is **affected** by φ if $\varphi(G_x)$ is NOT a giant in Sym(Γ).

Theorem (Unaffected stabilizers lemma)

Let U be the set of unaffected elements of Ω and $G_{(U)}$ the pointwise stabilizer of U, i.e.,

$$G_{(U)} = \bigcap_{x \in U} G_x$$

If $m > 2 + \log_2 n$ then $\varphi(G_{(U)})$ is a giant in Sym(Γ).

Let $K \to G \xrightarrow{\varphi}$ Giant(Γ). Let Δ be an affected orbit.

Proposition (Affected orbit lemma)

If $m \ge 5$ then K is not transitive on Δ ; each K-orbit on Δ has length $\le |\Delta|/m$.

This will allow efficient Luks-recurrence

$$\begin{split} &|\Omega| = n \quad |\Gamma| = m \\ &G \leq \operatorname{Sym}(\Omega) \quad \varphi : G \twoheadrightarrow \operatorname{Giant}(\Gamma) \\ &\text{Test set: } T \subset \Gamma \quad |T| = t \quad t > 2 + \log_2 n \\ &G_T \quad \text{setwise stabilizer of } T \text{ in } G \\ &\psi_T \quad \text{composition of } G_T \xrightarrow{\varphi} \operatorname{Sym}(\Gamma)_T \to \operatorname{Sym}(T) \end{split}$$

Selecting a test set $T \subset \Gamma$

Restricting *G* to G_T and φ to $\psi_T : G_T \to \text{Sym}(T)$

 $T \text{ test set:} \quad T \subset \Gamma \quad |T| = t > 2 + \log_2 n$ $DEF: \quad ``T \text{ is full''} \quad \text{if } \operatorname{Aut}_{G_T}(\mathbf{x}) \xrightarrow{\psi_T} \operatorname{Giant}(T)$ $Fullness \ certificate: \quad K(T) \leq \operatorname{Aut}_{G_T}(\mathbf{x}) \text{ such that}$ $K(T) \xrightarrow{\psi_T} \operatorname{Giant}(T) \qquad K(T) \text{ global object}$ $Non-fullness \ certificate: \quad M(T) \leq \operatorname{Sym}(T), \text{ not giant, s.t.}$ $\psi_T(\operatorname{Aut}_{G_T}(\mathbf{x})) \leq M(T) \qquad M(T) \text{ local object}$

Theorem

We can decide by efficient recursion whether or not T is full, and find certificates for each outcome.

Windows, partial strings

Windows, partial strings

 $\mathbf{x}^{W} : W \to ABC$ partial string: restriction of \mathbf{x} to window $A(G, W) := \operatorname{Aut}_{G}^{W}(\mathbf{x})$ aut group of partial string \mathbf{x}^{W} (fixes W setwise)

W: current window $A(G_T, W) := \operatorname{Aut}_{G_T}^W(\mathbf{x})$ aut group of partial string \mathbf{x}^W

Procedure Local Certificates

initialize: $W \leftarrow \emptyset$ (: $A(G_T, \emptyset) = G_T$:)

while (condition) $W \leftarrow Aff(A(G_T, W))$ points affected by current $A(G_T, W)$ update $A(G_T, W)$ end(while) produce certificate

Note: $H \leq G \implies Aff(H) \supseteq Aff(G)$ so the window *W* keeps growing

W: points affected by G_T

partial string \mathbf{x}^{W} uncovered, its aut group $A(G_{T}, W)$ updated

László Babai Graph Isomorphism: Local certificates

W updated: new layer added to the window

partial string \mathbf{x}^{W} and its aut group $A(G_T, W)$ updated

László Babai Graph Isomorphism: Local certificates

W updated; another layer added to the window

partial string \mathbf{x}^{W} and its aut group $A(G_T, W)$ updated

László Babai Graph Isomorphism: Local certificates

Ω

while loop ended

How does the while loop end?

- (A) $A(G_T, W)$ became too small, it does not map onto Giant(*T*), or
- (B) window stopped growing

Which case corresponds to what type of certificate?
How does the while loop end?

(A) $A(G_T, W)$ became too small, it does not map onto Giant(*T*), or

(B) window stopped growing

Which case corresponds to what type of certificate?

(A):
$$M(T) := \psi_T(A(G_T, W))$$
 non-fullness

(B): need
$$K(T) \le \operatorname{Aut}_{G_T}(\mathbf{x})$$
 that maps onto $\operatorname{Giant}(T)$
 $A(G_T, W)$ does map onto $\operatorname{Giant}(T)$
but only respects \mathbf{x}^W

How does the while loop end?

(A) $A(G_T, W)$ became too small, it does not map onto Giant(*T*), or

(B) window stopped growing

Which case corresponds to what type of certificate?

(A):
$$M(T) := \psi_T(A(G_T, W))$$
 non-fullness

(B): need
$$K(T) \le \operatorname{Aut}_{G_T}(\mathbf{x})$$
 that maps onto $\operatorname{Giant}(T)$
 $A(G_T, W)$ does map onto $\operatorname{Giant}(T)$
but only respects \mathbf{x}^W

$$K(T) := (A(G_T, W))_{(U)}$$
 where $U = \Omega \setminus W$

 $K(T) := (A(G_T, W))_{(U)}$ where $U = \Omega \setminus W$ maps onto Giant(T) by "Unaffected stabilizers lemma" Why does it consist of (global) automorphisms?

Why is this letter B respected?

Why is this letter *B* respected? Because it is fixed

Why is this letter *B* respected? Because it is fixed

So all letters are respected: global automorphisms from local information

Aggregation of certificates: sketch

 If <u>fullness certificates</u> dominate: rich set of (global!) G-automorphisms found

→ use group theory to split Γ (orbits, bounds on multiple transitivity) or reduce to Johnson group

- If <u>non-fullness certificates</u> dominate: large set of (local!) obstacles to equivalence of ordered *t*-tuples found
 - \rightarrow they define a canonical *t*-ary relation on Γ
 - $t = \text{size of test sets} \approx \log_2 n$

 $F := \langle K(T) \mid T \text{ full } \rangle \leq \text{Aut}_G(\mathbf{x})$ (group generated by fullness certificates)

 $s := |\operatorname{supp}(\varphi(F))|$ number of points in Γ not fixed by F

Case A: $m/10 \le s \le 9m/10 \rightarrow$ (supp, $\Gamma \setminus$ supp) good coloring (end Case A)

Case B: s > 9m/10 group acts on 90% of Γ if no $\varphi(F)$ -orbit dominant (> 9m/10) \rightarrow good partition else $\Gamma \leftarrow$ dominant orbit (efficient Luks-reduction)

$F := \langle K(T) | T \text{ full } \rangle \leq \text{Aut}_G(\mathbf{x})$

(group generated by fullness certificates)

Case B continued: $\varphi(F)$ transitive on Γ **if** $\varphi(F)$ -action on Γ giant easy case, already dealt with: ISO(**x**, **y**) via efficient Luks reduction

 $F := \langle K(T) \mid T \text{ full } \rangle \leq \operatorname{Aut}_G(\mathbf{x})$

(group generated by fullness certificates)

Case B continued: $\varphi(F)$ transitive but not giant on Γ

t := degree of transitivity of $\varphi(F)$: $t \ge 1$

(: $t \le 5$ (CFSG) or $t < \log^2 n$ (Bochert 1896) :)

individualize t - 1 points

(: $\varphi(F)_{(T)}$ transitive but not doubly transitive

on $\Gamma \setminus T$ where |T| = t - 1 :)

individualize one of the orbitals (orbits on pairs)

(: multipl cost = # orbitals $\leq n - 1$:)

.: canonical biregular digraph found

 \rightarrow Split-or-Johnson

(end Case B)

 $F := \langle K(T) \mid T \text{ full } \rangle \leq \operatorname{Aut}_{G}(\mathbf{x})$

(group generated by fullness certificates)

Case C: $| supp(\varphi(F)) | < m/10$:

(: 90% of Γ has non-fullness certificates only :)

infer canonical *t*-ary relation with large symmetry defect

 \rightarrow Design Lemma \rightarrow Split-or-Johnson

 $\Gamma' := \Gamma \setminus \operatorname{supp}(\varphi(F))$

 $|\Gamma'| \geq 0.9 |\Gamma|$

GOAL:

canonical *t*-ary relational structure on Γ' with large symmetry defect

Ideal domain **F**

László Babai Graph Isomorphism: Local certificates

Test set

László Babai Graph Isomorphism: Local certificates

Inequivalent orderings of test set

Another test set

Equivalent orderings of test sets

Third test set: not equivalent with first two

Ideal domains for two input strings x, y

Identification of ordered *t*-tuples across inputs

More test sets

László Babai Graph Isomorphism: Local certificates

Equivalent ordered *t*-tuples

Equivalent ordered *t*-tuples

OBTAINED: canonical *t*-ary relational structure on Γ' with large symmetry defect: symmetricity < relative size of test set because Sym(*T*) cannot act on **non-full** test set *T* apply Luks's group theoretic divide-and-conquer when Luks barrier encountered:

find **local certificates** using affected/unaffected dichotomy

aggregate local certificates

split Γ by group theory or by combinatorial partitioning or reduce Sym(Γ) to Sym(Γ') = Aut(Johnson)

recurse (Γ significantly reduced)

	GraphIso	factoring
in practice	easy	hard
hard instances	?	abound
average case	easy	presumed hard
worst case	quasipoly	moderately exp

	Graphiso	factoring		
in practice	easy	hard		
hard instances	?	abound		
average case	easy	presumed hard		
worst case	quasipoly	moderately exp		
in coNP?	?	yes		
quantum	?	BQP (q-poly-time)		
no quantum advantage				

	Graphiso	factoring
in practice	easy	hard
hard instances	?	abound
average case	easy	presumed hard
worst case	quasipoly	moderately exp
in coNP?	?	yes
quantum	?	BQP (q-poly-time)
no q	uantum advant	age

	GraphIso	factoring
in practice	easy	hard
hard instances	?	abound
average case	easy	presumed hard
worst case	quasipoly	moderately exp
in coNP?	?	yes
quantum	?	BQP (q-poly-time)
no qua	antum advantag	ge
provable hardness	hard for semi-algebraic proof systems	?

GI algorithmically easier

structurally harder than factoring

László Babai Graph Isomorphism: Local certificates