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Abstract I

This talk has two beginnings, both in the 1930s.

I. Schur considered the orbits, of a transitive permutation
group, on ordered pairs of points. The partition into orbits is
very natural, and properties of the partition are helpful in
understanding the groups. This is one fore-runner of coherent
configurations.

R. C. Bose and his collaborators and students generalized
earlier work of F. Yates by introducing partially balanced
incomplete-block designs for parameters where no balanced
incomplete-block design exists. The condition of partial
balance ensures that the relevant matrices can be easily
inverted by hand, which was important for data analysis in the
pre-computer age. This condition relies on the existence of a
(symmetric) association scheme.
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Abstract II

In the 1950s, D. Mesner worked on association schemes as a
PhD student, later combining with Bose to present what is now
called the Bose–Mesner algebra.

He also devised a new type of association scheme, which he
called negative Latin square type. He found one on 100 points.

In the 1960s Bose made the topic interesting to pure
mathematicians by naming strongly regular graphs.
These proved fruitful in the search for sporadic simple groups,
with the result that D. G. Higman and C. C. Sims rediscovered
Mesner’s association scheme on 100 points in 1968.

Meanwhile, other collaborators of Bose’s, including C. R. Nair
and J. N. Srivastava, were generalizing association schemes in
different ways that now fit within the framework of coherent
configurations.
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Abstract III

I will conclude by mentioning the series of lectures on
coherent configurations that D. G. Higman gave to
research students in group theory at Oxford (including me).

It is a shame that some of the people that I mention died before
all the connections were understood and acknowledged.
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Schur rings

Given a finite group G, its corresponding group ring ZG
consists of all formal sums ∑

g∈G
ngg with coefficients ng in Z.

Addition and multiplication in this ring are done in the
obvious way.

Suppose that G is partitioned into subsets ∆0, ∆1, . . . , ∆s.
Put χi = ∑

g∈∆i

g for i = 0, . . . , s. If

(i) ∆0 consists just of the identity element of G,
(ii) if ∆i is one of the subsets then so is {g−1 : g ∈ ∆i},
(iii) χiχj is a linear combination of χ0, . . . , χs for all i and j,
then the subring of ZG generated by {χ0, . . . , χs} is called a
Schur ring.

Schur (1933) used this idea to prove various results about
permutation groups.
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Permutation groups

Wielandt’s influential book Finite Permutation Groups was
published in 1964, based on a German version of 1959.
Chapter IV explains Schur rings.

Chapter III explains how to obtain information about a
permutation group G on a set Ω by examining the partition of
Ω×Ω into orbits of G: sets of the form {(αg, βg) : g ∈ G}.
If G is transitive then {(α, α) : α ∈ Ω} is one such orbit.
If G has rank r then it has r orbits on Ω×Ω.

Suppose that |Ω| = n and Γi is one of these orbits.
Its adjacency matrix Ai is the n× n matrix with rows and
columns indexed by Ω and entries

Ai(α, β) =

{
1 if (α, β) ∈ Γi

0 otherwise.

Chapter V investigates these matrices.
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Properties of the adjacency matrices

Let A0, . . . , Ar−1 be the adjacency matrices for the orbits of G on
Ω×Ω. These satisfy the following conditions.

(i) A0 = I if G is transitive on Ω;
if G has s orbits on Ω then
I is a sum of s adjacency matrices.

(ii) ∑i Ai = J (all-1 matrix).
(iii) If Ai is an adjacency matrix then so is its transpose A>i .
(iv) If Ai and Aj are adjacency matrices then their product is an

integer-linear-combination of adjacency matrices.

(The collection A of n× n matrices (over some field) which
commute with the permutation matrix Pg for every g in G
is closed under addition, scalar multiplication and
matrix multiplication, so it forms an algebra,
the centralizer algebra of G.)
G is called generously transitive (Neumann, 1975)
if A0 = I and every Ai is symmetric.
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Charles Sims and Donald Higman

These two group theorists independently continued the
technique of considering the orbits of G on Ω×Ω to find out
more about G.

If Ai is symmetric then the corresponding orbit is self-paired.
Its pairs (α, β) can be considered as the edges of an undirected
graph Γ on which G acts as a group of automorphisms.
Sims (1967, 1968) used this idea to forge an interplay between
graph theory and group theory.
On the other hand, Higman thought about the whole partition
of Ω×Ω, starting with groups of rank 3 in 1964, then
concentrating on the matrices in 1967.
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Pause

I will leave the group theory there for the moment,
and start the story again in experimental design.
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Experimental design

Delhi, December 1988:
R. C. Bose Memorial Conference (Statistics)
Słupia Wielka, June 2018:
11th Working Seminar on Statistical Methods in Variety Testing
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Blocking

Suppose that I want to do an experiment to compare 8 varieties
of wheat. My field has room for 56 plots, so I can grow each
variety on 7 plots.

There may be differences between different parts of the field.
Some plots may be close to the edge of a forest; some may be
close to a stream. Some may be at the top of the hill; some at
the bottom. Some may be more fertile in dry years, but less so
in wet years.

We partition the set of plots into blocks, in such a way that
I within each block, all plots are reasonably alike;
I all blocks contain the same number of plots.

If there are 7 blocks of 8 plots each, then I can grow each variety
on one plot per block. This is called a complete-block design.
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Incomplete blocks

I still have 8 varieties and 56 plots,
but now I have to group them into 14 blocks of size 4.
These blocks must be incomplete, because 4 < 8.

1 2 4 8 3 5 6 7 2 3 5 8 1 4 6 7

3 4 6 8 1 2 5 7 4 5 7 8 1 2 3 6

1 5 6 8 2 3 4 7 2 6 7 8 1 3 4 5

1 3 7 8 2 4 5 6

Every pair of distinct varieties occur together in the same
number of blocks, so this block design is balanced.

Balanced incomplete-block designs were introduced by Yates
(1936).
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Concurrence matrix and information matrix

Given an incomplete-block design for a set T of v varieties
in which all blocks have size k and all treatments occur r times,

the T × T concurrence matrix Λ has (i, j)-entry equal to the
number of blocks in which treatments i and j both occur
(this number is the concurrence of i and j),
and the information matrix is rI− k−1Λ.
In order to analyse the data from such an experiment,
and also in order to compare potential designs,
we need to invert the information matrix.
The constant vectors are in the null space of the information
matrix, so we cannot actually invert it.
If M is the information matrix then we calculate(

M + v−1J
)−1
− v−1J,

where J is the v× v matrix with every entry 1.
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Suppose that balance is not possible?

Yates (1935, 1936, 1937) also considered various cases where
balance cannot be achieved.

Suppose that I have 8 varieties but only 24 plots.

I If there are 3 blocks of size 8 then I can use a
complete-block design.

I If there are 6 blocks of a size 4 then I can use the 6 faces of a
2× 2× 2 cube (concurrence is 2 for an edge,
1 for a face-diagonal, 0 for antipode).

I If there are 8 blocks of size 3 then I can develop {1, 2, 4}
modulo 8
(concurrence is 0 if the difference is ±4, otherwise is 1).
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Square lattice designs

If the number of varieties is m2 and
there are g− 2 mutually orthogonal Latin squares of order m,
then a design with gm blocks of size m can be made as follows.

1. Write the varieties in an m×m square array.
2. The first m blocks are given by the rows;

the next m blocks are given by the columns.
3. If g = 2 then STOP.
4. Otherwise, write down g− 2 mutually orthogonal Latin

squares of order m.
5. For i = 3 to g, the next m blocks correspond to the letters in

Latin square i− 2.

If g = m + 1 then the block design is balanced.
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Partially balanced incomplete-block designs

Bose and Nair (1939) set up a general framework to include
Yates’s examples, defining them to be partially balanced
incomplete-block designs.

If the distinct concurrences are λ1, . . . , λs, they defined a pair of
distinct varieties to be i-th associates if they concur in λi blocks.

The v× v matrix Ai has
(t, u)-entry equal to 1 if varieties t and u are i-th associates,
and other entries equal to 0.
The v× v matrix A0 is just I.

They insisted that each product AiAj be a linear combination of
A0, . . . , As in order that the information matrix can be easily
inverted by hand.
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Definition of association scheme

Bose and Shimamoto (1952) relaxed the condition that different
associate classes must have different concurrences. They also
gave the first formal definition of an association scheme.

Definition
An association scheme of rank r on a finite set Ω
is a partition of Ω×Ω into subsets Γ0, . . . , Γr−1
whose adjacency matrices A0, . . . , Ar−1 satisfy the following.

(i) A0 = I.
(ii) ∑i Ai = J (obviously!).
(iii) A>i = Ai for i = 0, 1, . . . , r− 1.
(iv) There are integers pk

ij such that if Ai and Aj are adjacency
matrices then

AiAj =
r−1

∑
k=0

pk
ijAk.
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Association schemes of rank 3

Bose and Shimamoto classified association schemes of rank 3 as
group-divisible GD(m, n): the nm varieties are
partitioned into n subsets of size m,
and first associates are those in the same subset;

Latin square type Lg(m): the m2 varieties have
concurrence 0 or 1 as per a square lattice design;
triangular Tm: the m(m− 1)/2 varieties are
identified with unordered pairs from {1, . . . , m},
which can overlap in either 1 or 2 elements;
cyclic: the varieties are identified with Zv
where v is a prime congruent to 1 modulo 4,
and the associate class of (i, j) depends on
whether or not i− j is a square;
miscellaneous: they hoped that there were not
many more.
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Dale Mesner

Dale Mesner was a PhD student at Michican State College
(later renamed Michigan State University) from 1950 to 1956,
supervised by Leo Katz.
His thesis was called “An investigation of certain combinatorial
properties of partially balanced incomplete-block experimental
designs and association schemes, with a detailed study of
designs of Latin squares and related types”.

One important part of this was the development of the algebra
generated by the adjacency matrices of an association scheme.
He did not know that R. C. Bose had assigned this topic to one
of his own PhD students. When Bose heard about Mesner’s
work, he suggested collaboration, resulting in the important
paper “On linear associative algebras corresponding to
association schemes of partially balanced designs”
in Annals of Mathematical Statistics 30 in 1959.
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The Bose–Mesner algebra

The set A of real linear combinations of the adjacency matrices
is called the Bose–Mesner algebra.
It consists of real symmetric matrices, is commutative, and has
dimension r, where r is the rank of the association scheme.

So there are mutually orthogonal subspaces W0, . . . , Wr−1
of RΩ such that if M ∈ A then each eigenspace of M is either
one of the Wi or the direct sum of two or more of W0, . . . , Wr−1.
We can always take W0 to be the 1-dimensional space spanned
by the all-1 vector.

Let Qi be the matrix of orthogonal projection onto Wi.
These eigenprojectors are the minimal idempotents of A.

So we have two natural bases for A:
{A0, . . . , Ar−1} is good for doing addition;
{Q0, . . . , Qr−1} is good for doing multiplication.
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Character table and pseudo-inverses

Let λij be the eigenvalue of Ai on Wj. Then

Ai =
r−1

∑
j=0

λijQj for i = 0, . . . , r− 1.

The r× r matrix with entries λij is called the character table of
the association scheme. Its columns are called the characters of
the association scheme.

(The conventions are slightly different from those in group
theory.)

If M = θ1Q1 + · · ·+ θr−1Qr−1
(with θi non-zero for 1 ≤ i ≤ r− 1)
then the pseudo-inverse of M is θ−1

1 Q1 + · · ·+ θ−1
r−1Qr−1.
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(The conventions are slightly different from those in group
theory.)

If M = θ1Q1 + · · ·+ θr−1Qr−1
(with θi non-zero for 1 ≤ i ≤ r− 1)
then the pseudo-inverse of M is θ−1

1 Q1 + · · ·+ θ−1
r−1Qr−1.
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What else came out of Mesner’s thesis?

He was at the University of North Carolina at Chapel Hill
(where R. C. Bose worked) from 1964 to 1966.

While there, he wrote “Negative Latin square designs”,
which was published in 1964 as number 410
in the NC Mimeo series of the Institute of Statistics at UNC.
It was common to publish preprints in this way at UNC at the
time.
The Bose–Mesner paper had been published as number 188 in
1958.

Mesner himself also published
I A note on parameters of PBIB association schemes,

number 375, in 1963 (this became a paper in Annals of
Mathematical Statistics in 1965)

I Sets of disjoint lines in PG(3, q), number 409, in 1964
I On the block structure of certain PBIB designs of partial

geometry type, number 457, in 1966.
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Negative Latin square type of association scheme

Dale M. Mesner published “A new family of partially balanced
incomplete block designs with some Latin square design
properties” in Annals of Mathematical Statistics 38 in April 1967.
It had been submitted in July 1964, then revised in August 1966.

A 2-class association scheme made from g− 2 mutually
orthogonal Latin squares of order m (where 2 ≤ g ≤ m) has

vertices valency triangles per edge
n = m2 a1 = g(m− 1) p1

11 = g2 − 3g + m

Mesner’s idea was to replace m and g by −m and −g to get
an association scheme of negative Latin square type, NLg(m).

vertices valency triangles per edge
n = m2 a1 = g(m + 1) p1

11 = g2 + 3g−m
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Promise in the Introduction

vertices valency triangles per edge
n = m2 a1 = g(m + 1) p1

11 = g2 + 3g−m

A new method of construction in Section 4 will provide
solutions for NL1(4), NL2(8) and NL2(9). Methods to be
presented in later papers give solutions for some of the
foregoing as well as for NL3(9) and NL2(10).

All of these had been done in his 1956 PhD thesis, and in that
1964 number 410 in the NC Mimeo Series.
The first lot were done in Section 3, not Section 4.
NL2(10) has 100 vertices, valency 22 and no triangles.
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Strongly regular graphs

In a 1963 paper in Pacific Journal of Mathematics, R. C. Bose
coined the term strongly regular graph to denote the graph
corresponding to one associate class of a two-class association
scheme.

The time was ripe to capture the interest of pure
combinatorialists and algebraists. Hoffman and Singleton had
defined Moore graphs in 1960.
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Finite simple groups

In the 1960s there was an explosion in the discovery of finite
simple groups. Such a group is called sporadic if it does not
belong to one of the well-known infinite families, such as the
alternating groups.

Automorphism groups of highly symmetric combinatorial
structures proved a fruitful source.

The non-trivial orbits (on ordered pairs of vertices) of any
generously transitive permutation group of rank three are a
complementary pair of strongly regular graphs.
D. G. Higman developed an extensive theory of such
permutation groups.
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1967 conference in Oxford

In 1967 a conference on
“Computational Problems
in Abstract Algebra” was
held in Oxford. At this,
Marshall Hall gave a lecture
about how the Hall–Janko
sporadic simple group had
been constructed as (a sub-
group of) the automorphism
group of a strongly regular
graph on 100 vertices with
valency 36 and 14 triangles
per edge.
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Higman–Sims graph and Higman–Sims group

Don Higman and Charles Sims were at this conference, and
were inspired by this talk. Sims (Bannai et al., 2009) said that
they discussed ideas before, during and after the conference
dinner, and by the early hours of the next morning had soon
constructed a new sporadic simple group, now called the
Higman–Sims group, as a subgroup of index 2 in the
automorphism group of a strongly regular graph on
100 vertices with valency 22 and no triangles. They were able
to construct this by starting with the Steiner system S(3, 6, 22),
so they did it with less effort than Mesner.

The vertices are ∞, the 22 points and the 77 blocks.
∞ is joined to the 22 points.
Each point is joined to ∞ and the 21 blocks containing it.
Each block is joined to the 6 points it contains and the 16 blocks
disjoint from it.
If two blocks are disjoint then no block is disjoint from both.
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New group; apparently new graph

Higman and Sims published their results in Mathematische
Zeitschrift in 1968.

Many people now call this strongly regular graph the
Higman–Sims graph.

Higman first referred to strongly regular graphs in a 1970
paper, submitted in July 1969.

However, in recent years, it seems that more online references
are also crediting Dale Mesner with this graph.

Thanks to Edmund Robertson for showing me his article about
this which will appear in Mactutor,
and to Colin Campbell for showing me his hard copy of the
proceedings of that conference.
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Who knew about this part of Mesner’s work?

According to Jajcayová and Jajcay (2002),
J. J. Seidel at Eindhoven saw the thesis in 1968.

Goethals and Seidel (1970) mention negative-Latin-square
graphs, referring to Mesner’s 1967 paper but not apparently
noticing his claim to have constructed NL2(10).

Cameron, Goethals and Seidel (1978) include negative Latin
square graphs in their classification of strongly regular graphs
with strongly regular subconstituents.

Mesner visited Eindhoven in 1983–1984.
One outcome was a joint paper with A. E. Brouwer on strongly
regular graphs in 1985.

The “bible” on Distance-Regular Graphs by Brouwer, Cohen and
Neumaier, was published in 1989. It refers to Mesner’s 1967
paper, but does not associate him with the Higman-Sims graph.
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J. J. Seidel at Eindhoven saw the thesis in 1968.

Goethals and Seidel (1970) mention negative-Latin-square
graphs, referring to Mesner’s 1967 paper but not apparently
noticing his claim to have constructed NL2(10).

Cameron, Goethals and Seidel (1978) include negative Latin
square graphs in their classification of strongly regular graphs
with strongly regular subconstituents.

Mesner visited Eindhoven in 1983–1984.
One outcome was a joint paper with A. E. Brouwer on strongly
regular graphs in 1985.

The “bible” on Distance-Regular Graphs by Brouwer, Cohen and
Neumaier, was published in 1989. It refers to Mesner’s 1967
paper, but does not associate him with the Higman-Sims graph.

Bailey How group theory and statistics met in association schemes 30/43



Who knew about this part of Mesner’s work?

According to Jajcayová and Jajcay (2002),
J. J. Seidel at Eindhoven saw the thesis in 1968.

Goethals and Seidel (1970) mention negative-Latin-square
graphs, referring to Mesner’s 1967 paper but not apparently
noticing his claim to have constructed NL2(10).

Cameron, Goethals and Seidel (1978) include negative Latin
square graphs in their classification of strongly regular graphs
with strongly regular subconstituents.

Mesner visited Eindhoven in 1983–1984.
One outcome was a joint paper with A. E. Brouwer on strongly
regular graphs in 1985.

The “bible” on Distance-Regular Graphs by Brouwer, Cohen and
Neumaier, was published in 1989. It refers to Mesner’s 1967
paper, but does not associate him with the Higman-Sims graph.

Bailey How group theory and statistics met in association schemes 30/43



More details about what Dale Mesner did, and his later life

I T. B. Jajcayová and R. Jajcay: On the contributions of Dale
Marsh Mesner. Bulletin of the Institute of Combinatorics and
its Applications 36 (2002), 46–52.

I T. B. Jajcayová, R. Jajcay and E .S. Kramer: The Life and
Mathematics of Dale Marsh Mesner 1923–2009. Bulletin of
the Institute of Combinatorics and its Applications 59 (2010),
9–30.

I Eiichi Bannai, Robert L. Griess, Jr., Cheryl E. Praeger and
Leonard Scott: The Mathematics of Donald Gordon
Higman. Michigan Mathematical Journal 58 (2009), 3–30.

I Mikhail H. Klin and Andrew J. Woldar: The strongly
regular graph with parameters (100, 22, 0, 6): Hidden
history and beyond. Dedicated to the memory of Dale
Marsh Mesner (1923–2009). Acta Universitatis Matthiae Belii,
series Mathematics, 2017, 19–76.
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Don Higman and coherent configurations

If you allow the group G not to be transitive on Ω,
then I is a sum of two or more adjacency matrices,
and some of the non-diagonal adjacency matrices are not
symmetric.

Higman decided to extend the basic combinatorial ideas to
such a set of matrices, irrespective of group actions.
He called this a coherent configuration.
If the diagonal is a single class, then it is a homogeneous
coherent configuration.
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Don Higman’s lecture notes

I was a DPhil student in group theory at Oxford from 1969 to
1972. Don Higman visited for the academic year 1970–1971. He
gave a series of lectures on his current thinking on coherent
configurations. Peter Cameron and Susannah Howard took
notes, which were approved by DGH before being typed up
and published as “Combinatorial Considerations about
Permutation Groups” in the Mathematical Institute series of
lecture notes in 1971.

These notes were extraordinarily influential on that cohort of
DPhil students.

Later, DGH developed them into two papers on coherent
configurations (1975, 1976).
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and published as “Combinatorial Considerations about
Permutation Groups” in the Mathematical Institute series of
lecture notes in 1971.
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Did statisticians also go as far as coherent configurations?

In 1964, C. R. Nair generalized association schemes
by dropping the requirement for symmetry.

He insisted that if Ai is an adjacency matrix then so is A>i ;
and that the Bose–Mesner algebra is commutative.

Since concurrence matrices of incomplete-block designs are
symmetric, this does not change the concept of a partially
balanced incomplete-block design.
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Multidimensional partial balance

In 1963, Bose and Srivastava started a different generalization,
which Srivastava continued for many years.
Suppose that I want to experiment on combinations of
v varieties with n quantities of fertilizer.
Let N12 be the v× n matrix whose (i, j)-entry is the number of
plots which have variety i with amount j of fertilizer.
Let N11 be the v× v diagonal matrix whose (i, i)-entry is the
number of plots with variety i. Define N21 and N22 similarly.

The information matrix for varieties is a linear combination of
N11 and N12N21. The information matrix for fertilizer quantities
is a linear combination of N22 and N21N12.

If these matrices are in the algebra of a coherent configuration
with diagonal classes {varieties} and {fertilizer quantities}
then the information matrices can be (pseudo-)inverted easily.

Bose and Srivastava called these multidimensional partial
balance schemes. They generalize to 3 or more diagonal classes.

Bailey How group theory and statistics met in association schemes 35/43



Multidimensional partial balance

In 1963, Bose and Srivastava started a different generalization,
which Srivastava continued for many years.
Suppose that I want to experiment on combinations of
v varieties with n quantities of fertilizer.
Let N12 be the v× n matrix whose (i, j)-entry is the number of
plots which have variety i with amount j of fertilizer.
Let N11 be the v× v diagonal matrix whose (i, i)-entry is the
number of plots with variety i. Define N21 and N22 similarly.

The information matrix for varieties is a linear combination of
N11 and N12N21.

The information matrix for fertilizer quantities
is a linear combination of N22 and N21N12.

If these matrices are in the algebra of a coherent configuration
with diagonal classes {varieties} and {fertilizer quantities}
then the information matrices can be (pseudo-)inverted easily.

Bose and Srivastava called these multidimensional partial
balance schemes. They generalize to 3 or more diagonal classes.

Bailey How group theory and statistics met in association schemes 35/43



Multidimensional partial balance

In 1963, Bose and Srivastava started a different generalization,
which Srivastava continued for many years.
Suppose that I want to experiment on combinations of
v varieties with n quantities of fertilizer.
Let N12 be the v× n matrix whose (i, j)-entry is the number of
plots which have variety i with amount j of fertilizer.
Let N11 be the v× v diagonal matrix whose (i, i)-entry is the
number of plots with variety i. Define N21 and N22 similarly.

The information matrix for varieties is a linear combination of
N11 and N12N21. The information matrix for fertilizer quantities
is a linear combination of N22 and N21N12.

If these matrices are in the algebra of a coherent configuration
with diagonal classes {varieties} and {fertilizer quantities}
then the information matrices can be (pseudo-)inverted easily.

Bose and Srivastava called these multidimensional partial
balance schemes. They generalize to 3 or more diagonal classes.

Bailey How group theory and statistics met in association schemes 35/43



Multidimensional partial balance

In 1963, Bose and Srivastava started a different generalization,
which Srivastava continued for many years.
Suppose that I want to experiment on combinations of
v varieties with n quantities of fertilizer.
Let N12 be the v× n matrix whose (i, j)-entry is the number of
plots which have variety i with amount j of fertilizer.
Let N11 be the v× v diagonal matrix whose (i, i)-entry is the
number of plots with variety i. Define N21 and N22 similarly.

The information matrix for varieties is a linear combination of
N11 and N12N21. The information matrix for fertilizer quantities
is a linear combination of N22 and N21N12.

If these matrices are in the algebra of a coherent configuration
with diagonal classes {varieties} and {fertilizer quantities}
then the information matrices can be (pseudo-)inverted easily.

Bose and Srivastava called these multidimensional partial
balance schemes. They generalize to 3 or more diagonal classes.

Bailey How group theory and statistics met in association schemes 35/43



Multidimensional partial balance

In 1963, Bose and Srivastava started a different generalization,
which Srivastava continued for many years.
Suppose that I want to experiment on combinations of
v varieties with n quantities of fertilizer.
Let N12 be the v× n matrix whose (i, j)-entry is the number of
plots which have variety i with amount j of fertilizer.
Let N11 be the v× v diagonal matrix whose (i, i)-entry is the
number of plots with variety i. Define N21 and N22 similarly.

The information matrix for varieties is a linear combination of
N11 and N12N21. The information matrix for fertilizer quantities
is a linear combination of N22 and N21N12.

If these matrices are in the algebra of a coherent configuration
with diagonal classes {varieties} and {fertilizer quantities}
then the information matrices can be (pseudo-)inverted easily.

Bose and Srivastava called these multidimensional partial
balance schemes. They generalize to 3 or more diagonal classes.

Bailey How group theory and statistics met in association schemes 35/43



Who knew what?

D. G. Higman died on 13 February 2006.
J. N. Srivastava died on 18 November 2010.
It seems that neither of them knew of each other’s work.

Bailey How group theory and statistics met in association schemes 36/43



References: Groups I

I I. Schur: Zur Theorie der einfach transitive
Permutationsgruppen. Sitzungberichte der Preussischen
Akademie der Wissenschaften, Physikalische-Mathemetische
Klasse 18/20 (1933), 598–623.

I H. Wielandt: Finite Permutation Groups, Academic Press,
New York, 1964.

I P. M. Neumann: Generosity and characters of multiply
transitive permutation groups. Proceedings of the London
Mathematical Society 31 (1975), 457–481.

I C. C. Sims: Graphs and finite permutation groups.
Mathematische Zeitschrift 95 (1967), 76–82.

I C. C. Sims: Graphs and finite permutation groups. II.
Mathematische Zeitschrift 103 (1968), 276–281.

I D. G. Higman: Finite permutation groups of rank 3.
Mathematische Zeitschrift 86 (1964), 145–156.

I D. G. Higman: Intersection matrices for finite permutation
groups. Journal of Algebra 6 (1967), 22–42.

Bailey How group theory and statistics met in association schemes 37/43



References: Groups II

I D. G. Higman and C. C. Sims: A simple group of order
44,352,000. Mathematische Zeitschrift, 105 (1968), 110–113.

I D. G. Higman: Characterization of families of rank 3
permutation groups by the subdegrees. I. Archiv der
Mathematik (Basel) 21 (1970), 151–156.

Bailey How group theory and statistics met in association schemes 38/43



References: Experimental design I

I F. Yates: Complex experiments. Journal of the Royal
Statistical Society, Supplement 2 (1935), 181–247.

I F. Yates: Incomplete randomized blocks. Annals of Eugenics
7 (1936), 121–140.

I F. Yates: A new method for arranging variety trials
involving a large number of varieties. Journal of
Agricultural Science 26 (1936), 424–455.

I F. Yates: The Design and Analysis of Factorial Experiments,
Technical Communication 35, Imperial Bureau of Soil
Science, Harpenden, 1937.

Bailey How group theory and statistics met in association schemes 39/43



References: Experimental design II

I R. C. Bose and K. R. Nair: Partially balanced incomplete
block designs. Sankhā 4 (1939), 337–372.
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