2-Closure of $\frac{3}{2}$ -transitive permutation groups in polynomial time

Dmitry Churikov

Novosibirsk State University, Novosibirsk, Russia

$\frac{3}{2}$ -Transitive permutation groups

Definitions (Wielandt, 1964)

Permutation group on Ω is $\frac{1}{2}$ -transitive, if its orbits on Ω have the same size.

Permutation group on Ω is $\frac{3}{2}$ -transitive, if it is transitive, and stabilizer of point α is $\frac{1}{2}$ -transitive on $\Omega \setminus \{\alpha\}$.

Examples:

- 2-transitive groups,
- Frobenius groups.

$\frac{3}{2}$ -Transitive permutation groups

Definitions (Wielandt, 1964)

Permutation group on Ω is $\frac{1}{2}$ -transitive, if its orbits on Ω have the same size.

Permutation group on Ω is $\frac{3}{2}$ -transitive, if it is transitive, and stabilizer of point α is $\frac{1}{2}$ -transitive on $\Omega \setminus {\alpha}$.

Examples:

- 2-transitive groups,
- Frobenius groups.

Liebeck-Praeger-Saxl, 2015

The classification of $\frac{3}{2}\text{-transitive permutation groups and }\frac{1}{2}\text{-transitive linear groups.}$

2-Closure of permutation groups

Let G be a permutation group on Ω .

Action of G on Ω induces the action on Ω^2 : $(\alpha, \beta)^g = (\alpha^g, \beta^g)$.

Denote as $Orb_2(G)$ the set of orbits of its action (2-orbits).

Definitions (Wielandt, 1969) $G^{(2)} = \operatorname{Aut}(\operatorname{Orb}_2(G)) = \{g \in \operatorname{Sym}(\Omega) : O^g = O, O \in \operatorname{Orb}_2(G)\}$ is the 2-closure of G.

2-Closure of permutation groups

Let G be a permutation group on Ω .

Action of G on Ω induces the action on Ω^2 : $(\alpha, \beta)^g = (\alpha^g, \beta^g)$.

Denote as $Orb_2(G)$ the set of orbits of its action (2-orbits).

Definitions (Wielandt, 1969) $G^{(2)} = \operatorname{Aut}(\operatorname{Orb}_2(G)) = \{g \in \operatorname{Sym}(\Omega) : O^g = O, O \in \operatorname{Orb}_2(G)\}$ is the 2-closure of G.

2-Closure problem

Given a permutation group G, find a set of generators of $G^{(2)}$.

2-Closure problem can be reduced to the Graph Isomorphism Problem

Some results

Ponomarenko, 1994

The 2-closure problem for a nilpotent permutation group of degree n can be solved in time polynomial in n.

Evdokimov-Ponomarenko, 2001

The 2-closure problem for an <u>odd order</u> permutation group of degree n can be solved in time polynomial in n.

The key point is that $G^{(2)}$ must be solvable in both cases.

Some results

Ponomarenko, 1994

The 2-closure problem for a nilpotent permutation group of degree n can be solved in time polynomial in n.

Evdokimov-Ponomarenko, 2001

The 2-closure problem for an <u>odd order</u> permutation group of degree n can be solved in time polynomial in n.

The key point is that $G^{(2)}$ must be solvable in both cases.

Main result (Churikov-Vasil'ev)

The 2-closure problem for a $\frac{3}{2}$ -transitive permutation group of degree *n* can be solved in time polynomial in *n*.

The 2-closure problem for a $\frac{3}{2}$ -transitive group of degree *n* can be solved in time polynomial in *n*.

The 2-closure problem for a $\frac{3}{2}$ -transitive group of degree *n* can be solved in time polynomial in *n*.

Algorithm Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree n. Output: generators of $G^{(2)}$.

The 2-closure problem for a $\frac{3}{2}$ -transitive group of degree *n* can be solved in time polynomial in *n*.

Algorithm

Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree *n*.

- 0: if $n \leq 169$ then $G^{(2)}$ is found as a subgroup of Sym (Ω) ;
- 1: if G is 2-transitive then output $Sym(\Omega)$;

The 2-closure problem for a $\frac{3}{2}$ -transitive group of degree *n* can be solved in time polynomial in *n*.

Algorithm

Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree *n*.

- 0: if $n \leq 169$ then $G^{(2)}$ is found as a subgroup of Sym (Ω) ;
- 1: if G is 2-transitive then output $Sym(\Omega)$;
- 2: if G primitive and 3-generated then
- 3: if $G < A\Gamma L_1(\mathbb{F})$, then $G^{(2)}$ is found as a subgroup of $A\Gamma L_1(\mathbb{F})$;

The 2-closure problem for a $\frac{3}{2}$ -transitive group of degree *n* can be solved in time polynomial in *n*.

Algorithm

Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree *n*.

- 0: if $n \leq 169$ then $G^{(2)}$ is found as a subgroup of Sym (Ω) ;
- 1: if G is 2-transitive then output $Sym(\Omega)$;
- 2: if G primitive and 3-generated then
- 3: if $G < A\Gamma L_1(\mathbb{F})$, then $G^{(2)}$ is found as a subgroup of $A\Gamma L_1(\mathbb{F})$;
- 4: if $G = ASL_0(\mathbb{F})$, then output $AS_0(\mathbb{F})$;

$$\begin{split} \mathsf{ASL}_0(\mathbb{F}) &= \mathbb{Z}_p^d \rtimes \mathsf{SL}_0(\mathbb{F}) - \mathsf{small Passman group}, \\ \mathsf{SL}_0(\mathbb{F}) \text{ is the group of 2-dim. monomial matrices over } \mathbb{F} \text{ with det.1} \\ \mathsf{AS}_0(\mathbb{F}) &= \mathbb{Z}_p^d \rtimes \mathsf{S}_0(\mathbb{F}) - \mathsf{Passman group}, \\ \mathsf{SL}_p(\mathbb{F}) \text{ is the group of 2-dim ensured least increases} \\ \mathbb{F} \text{ is the group of 2-dim ensured least increases} \\ \mathsf{SL}_p(\mathbb{F}) \text{ is the group of 2-dim ensured least increases} \\ \mathbb{F} \text{ of } \mathbb{F} \text{$$

 $\mathsf{S}_0(\mathbb{F})$ is the group of 2-dim. monomial matrices over \mathbb{F} with det. ± 1

Algorithm

Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree *n*.

- 0: if $n \leq 169$ then $G^{(2)}$ is found as a subgroup of Sym (Ω) ;
- 1: if G is 2-transitive then output $Sym(\Omega)$;
- 2: if G primitive and 3-generated then
- 3: **if** $G < A\Gamma L_1(\mathbb{F})$, **then** $G^{(2)}$ is found as a subgroup of $A\Gamma L_1(\mathbb{F})$;
- 4: if $G = ASL_0(\mathbb{F})$, then output $AS_0(\mathbb{F})$;

$$\begin{split} \mathsf{ASL}_0(\mathbb{F}) &= \mathbb{Z}_p^d \rtimes \mathsf{SL}_0(\mathbb{F}) - \mathsf{small Passman group}, \\ \mathsf{SL}_0(\mathbb{F}) \text{ is the group of 2-dim. monomial matrices over } \mathbb{F} \text{ with det.1} \\ \mathsf{AS}_0(\mathbb{F}) &= \mathbb{Z}_p^d \rtimes \mathsf{S}_0(\mathbb{F}) - \mathsf{Passman group}, \\ \mathsf{SL}_p(\mathbb{F}) \text{ is the group of 2-dim group,} \end{split}$$

 $\mathsf{S}_0(\mathbb{F})$ is the group of 2-dim. monomial matrices over \mathbb{F} with det. ± 1

Algorithm

Input: SGS of $\frac{3}{2}$ -transitive permutation group $G \leq \text{Sym}(\Omega)$ of degree *n*.

Output: generators of $G^{(2)}$.

- 0: if $n \leq 169$ then $G^{(2)}$ is found as a subgroup of Sym (Ω) ;
- 1: if G is 2-transitive then output $Sym(\Omega)$;
- 2: if G primitive and 3-generated then
- 3: if $G < A\Gamma L_1(\mathbb{F})$, then $G^{(2)}$ is found as a subgroup of $A\Gamma L_1(\mathbb{F})$;
- 4: if $G = ASL_0(\mathbb{F})$, then output $AS_0(\mathbb{F})$;

5: **output** *G*.