Graphs and Groups

Rob Curtis

Pilsen July 2018

Some students of H.F.Baker (1866-1956)

Also Semple, Pedoe, Mordell and Bronowski among others

The synthematic totals preserved by the symmetric group S_{6}

$\infty 0.14 .23$	$\infty 0.12 .34$	$\infty 0.13 .42$
$\infty 1.20 .34$	$\infty 1.30 .42$	$\infty 1.40 .23$
$\infty 2.31 .40$	$\infty 3.41 .20$	$\infty 4.21 .30$
$\infty 3.42 .01$	$\infty 4.23 .01$	$\infty 2.34 .01$
$\infty 4.03 .12$	$\infty 2.04 .13$	$\infty 3.02 .14$
$(\infty / 01234)$	$(\infty / 01342)$	$(\infty / 01423)$
$\infty 0.14 .23$	$\infty 0.12 .34$	$\infty 0.13 .24$
$\infty 1.30 .42$	$\infty 1.40 .23$	$\infty 1.20 .43$
$\infty 3.21 .04$	$\infty 4.31 .02$	$\infty 2.41 .30$
$\infty 2.43 .10$	$\infty 3.24 .10$	$\infty 4.32 .01$
$\infty 4.02 .31$	$\infty 2.03 .41$	$\infty 3.04 .12$
$(\infty / 01324)$	$(\infty / 01432)$	$(\infty / 01243)$

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.
- The stabilizer of a point on one side remains transitive on the other ($\mathrm{S}_{5} \cong \mathrm{PGL}_{2}(5)$).

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.
- The stabilizer of a point on one side remains transitive on the other ($\mathrm{S}_{5} \cong \mathrm{PGL}_{2}(5)$).
- Transpositions on one side act as 2^{3} on the other; 3-cycles on one side act as 3^{2} elements on the other.

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.
- The stabilizer of a point on one side remains transitive on the other ($\mathrm{S}_{5} \cong \mathrm{PGL}_{2}(5)$).
- Transpositions on one side act as 2^{3} on the other; 3-cycles on one side act as 3^{2} elements on the other.
- $\mathrm{S}_{6}: 2$ on $(6+6)$ letters $\rightarrow \mathrm{S}(5,6,12) \rightarrow \mathrm{M}_{12}$.

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.
- The stabilizer of a point on one side remains transitive on the other ($\mathrm{S}_{5} \cong \mathrm{PGL}_{2}(5)$).
- Transpositions on one side act as 2^{3} on the other; 3-cycles on one side act as 3^{2} elements on the other.
- $\mathrm{S}_{6}: 2$ on $(6+6)$ letters $\rightarrow \mathrm{S}(5,6,12) \rightarrow \mathrm{M}_{12}$.
- $\mathrm{M}_{12}: 2$ on $(12+12)$ letters $\rightarrow S(5,8,24) \rightarrow M_{24}$.

From S_{6} to M_{12} to M_{24}

- Todd's Part III lectures in 1968.
- The stabilizer of a point on one side remains transitive on the other ($\mathrm{S}_{5} \cong \mathrm{PGL}_{2}(5)$).
- Transpositions on one side act as 2^{3} on the other; 3-cycles on one side act as 3^{2} elements on the other.
- $\mathrm{S}_{6}: 2$ on $(6+6)$ letters $\rightarrow \mathrm{S}(5,6,12) \rightarrow \mathrm{M}_{12}$.
- $\mathrm{M}_{12}: 2$ on $(12+12)$ letters $\rightarrow \mathrm{S}(5,8,24) \rightarrow \mathrm{M}_{24}$.
- Similar lectures were being given at the same time in Oxford by Graham Higman.

The Leech lattice and the Conway group

Three Johns: John Leech, John McKay and John Conway

Todd's 1966 paper on M_{24}

A representation of the Mathieu group $M_{2 t}$ as a collineation group.
by J. A. Tops (Cambridgs, Enginna)
\qquad

In memory of Ouddo Cadelnaovo, in the reccirrence of the first centemary of bis birth.

Sumnary. - The Mathieu group M_{34} can be represented as a collineation group in space of 11 dimensions over the fold of two dements. This paper diecusees the peometry associaled
will this representation.

Introduetion.

The quintuply transitive Mathiev group $M_{\text {ed }}$, of degree 24 and order $24.25 .22 .21 .20 .48=244,823,040$, is the atomorphism group of a Strineis systern $S(5,8,24)$, that 18, an arrangement of 24 objeots in sets of 8 , such that any 5 objects belong to exactly one set. It has been shown by WITr [0] that such a system is essentially unique. Some years ago I proved [4] that $M_{\text {st }}$ could be represented as a collineation group in a projective space of 11 dimensions over the field $G F^{\prime}(2)$. The object of this paper is to develop the properties of this representation in some detail, and in particular to show how a number of maximal sabgroups of M_{n} can be interpreted geometrically in a very simple mannen

In \& 1 below we describe the main propertles of the Stemner system $S\{5,8,24\}$ which will be used in the sequel. The projeotive space is introduced in $\% 2$. In \& 8 we deseribe the individual operations of the group, and their invariant subspaces when the group is represented as a collineation group. Finally, in 84 , we describe 8 maximal subgroups of M_{24}. In the ten tables whioh follow the paper we give, first, an explicit form of the Scriver system $S(5,8,24)$ and then the charaoter tables of M_{24} and the 8 maximal sabgroaps

§81. - The Steiner system $\$(5,8,24)$.

1.1. - The Steiner system $\$(5,8,24)$ is an arrangement of 24 elements in sets of 8 , such that any 5 of the elements belong to exaetly one set. We assame Wirr's result [5] that such a system is unique to withia isomorphism.

The Steiner system S(3,4,16)

- Fixing an octad O , the octads which intersect O in 4 points form a Steiner system $S(3,4,16)$ on the complementary 16-ad.

The Steiner system S(3,4,16)

- Fixing an octad O , the octads which intersect O in 4 points form a Steiner system $S(3,4,16)$ on the complementary 16 -ad.
- These form the cosets of 2-dimensional subspaces of a 4-dimensional space over \mathbb{Z}_{2}.

The Steiner system $\mathrm{S}(3,4,16)$

- Fixing an octad O , the octads which intersect O in 4 points form a Steiner system $S(3,4,16)$ on the complementary 16 -ad.
- These form the cosets of 2-dimensional subspaces of a 4-dimensional space over \mathbb{Z}_{2}.

showing the tetrad $\{\mathrm{w}, \mathrm{u}+\mathrm{w}+\mathrm{t}, \mathrm{v}+\mathrm{w}+\mathrm{t}, \mathrm{u}+\mathrm{v}+\mathrm{w}\}$

The Steiner system $\mathrm{S}(3,4,16)$

- Fixing an octad O , the octads which intersect O in 4 points form a Steiner system $S(3,4,16)$ on the complementary 16 -ad.
- These form the cosets of 2-dimensional subspaces of a 4-dimensional space over \mathbb{Z}_{2}.

showing the tetrad $\{\mathrm{w}, \mathrm{u}+\mathrm{w}+\mathrm{t}, \mathrm{v}+\mathrm{w}+\mathrm{t}, \mathrm{u}+\mathrm{v}+\mathrm{w}\}$
- These intersect columns with the same parity and rows with the same parity.

Correspondence with partitions of the octad into halves

- There are $\left(2^{4}-1\right)\left(2^{4}-2\right) /\left(2^{2}-1\right)\left(2^{2}-2\right)=35$ 2-dimensional subspaces of a 4-dimensional space over \mathbb{Z}_{2}, and $\frac{1}{2}\binom{8}{4}=35$ partitions of an octad into two tetrads.

Correspondence with partitions of the octad into halves

- There are $\left(2^{4}-1\right)\left(2^{4}-2\right) /\left(2^{2}-1\right)\left(2^{2}-2\right)=35$ 2-dimensional subspaces of a 4-dimensional space over \mathbb{Z}_{2}, and $\frac{1}{2}\binom{8}{4}=35$ partitions of an octad into two tetrads.
- In the $S(5,8,24)$ there is a (1-1) correspondence between them.

Correspondence with partitions of the octad into halves

- There are $\left(2^{4}-1\right)\left(2^{4}-2\right) /\left(2^{2}-1\right)\left(2^{2}-2\right)=35$ 2-dimensional subspaces of a 4 -dimensional space over \mathbb{Z}_{2}, and $\frac{1}{2}\binom{8}{4}=35$ partitions of an octad into two tetrads.
- In the $S(5,8,24)$ there is a (1-1) correspondence between them.
- I realised (in the Cricketers' Arms!) that the 24 points could be arranged into three disjoint 4×2 arrays known as bricks so that this correspondence is the same for each brick.

Correspondence with partitions of the octad into halves

- There are $\left(2^{4}-1\right)\left(2^{4}-2\right) /\left(2^{2}-1\right)\left(2^{2}-2\right)=35$ 2-dimensional subspaces of a 4 -dimensional space over \mathbb{Z}_{2}, and $\frac{1}{2}\binom{8}{4}=35$ partitions of an octad into two tetrads.
- In the $S(5,8,24)$ there is a (1-1) correspondence between them.
- I realised (in the Cricketers' Arms!) that the 24 points could be arranged into three disjoint 4×2 arrays known as bricks so that this correspondence is the same for each brick.
- Thus the partition into 3 bricks admits a full S_{3} of bodily permutations within M_{24}.

Correspondence with partitions of the octad into halves

- There are $\left(2^{4}-1\right)\left(2^{4}-2\right) /\left(2^{2}-1\right)\left(2^{2}-2\right)=35$ 2-dimensional subspaces of a 4 -dimensional space over \mathbb{Z}_{2}, and $\frac{1}{2}\binom{8}{4}=35$ partitions of an octad into two tetrads.
- In the $S(5,8,24)$ there is a (1-1) correspondence between them.
- I realised (in the Cricketers' Arms!) that the 24 points could be arranged into three disjoint 4×2 arrays known as bricks so that this correspondence is the same for each brick.
- Thus the partition into 3 bricks admits a full S_{3} of bodily permutations within M_{24}.
- The resulting 35 pictures exhibit all 759 octads in an instantly recognisable form.

The Miracle Octad Generator or MOG

Some elements of M_{24}

An innocent question

- Can two copies of $\mathrm{L}_{2}(7)$ in M_{24} intersect in an S_{4} ?

An innocent question

- Can two copies of $\mathrm{L}_{2}(7)$ in M_{24} intersect in an S_{4} ?

An innocent question

- Can two copies of $L_{2}(7)$ in M_{24} intersect in an S_{4} ?

- There exists an involution σ which interchanges the two copies of (maximal) $\mathrm{L}_{2}(7) \mathrm{s}$ whilst commuting with the S_{4} in which they intersect.

An innocent question

- Can two copies of $L_{2}(7)$ in M_{24} intersect in an S_{4} ?

- There exists an involution σ which interchanges the two copies of (maximal) $\mathrm{L}_{2}(7) \mathrm{s}$ whilst commuting with the S_{4} in which they intersect.
- The 7 images of σ under conjugation by one of the two copies of $\mathrm{L}_{2}(7)$ must generate M_{24}.

An innocent question

- Can two copies of $L_{2}(7)$ in M_{24} intersect in an S_{4} ?

- There exists an involution σ which interchanges the two copies of (maximal) $\mathrm{L}_{2}(7) \mathrm{s}$ whilst commuting with the S_{4} in which they intersect.
- The 7 images of σ under conjugation by one of the two copies of $\mathrm{L}_{2}(7)$ must generate M_{24}.
- Given $\mathrm{L}_{2}(7)$ acting on 24 letters we can immediately write down permutations which generate M_{24}.

A combinatorial interpretation

A combinatorial interpretation

- A class of 7 -cycles in $L \cong L_{3}(2), \Omega=\left\{\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 5\end{array}\right)^{L}\right\}$.

A combinatorial interpretation

- A class of 7-cycles in $L \cong L_{3}(2), \Omega=\left\{\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array} \mathrm{~S}_{6}\right)^{L}\right\}$.
- So $\Omega=\left\{\left(a_{0} a_{1} \ldots a_{6}\right) \mid\left\{a_{i}, a_{i+1}, a_{i+3}\right\}\right.$ is a line $\}$

A combinatorial interpretation

- A class of 7 -cycles in $L \cong L_{3}(2), \Omega=\left\{\left(\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right)^{L}\right\}$.
- So $\Omega=\left\{\left(a_{0} a_{1} \ldots a_{6}\right) \mid\left\{a_{i}, a_{i+1}, a_{i+3}\right\}\right.$ is a line $\}$
- Define

$$
t_{a}:(a u v w x y z) \mapsto(a u v w \times y z)^{(u w)(x y)}=(a w \vee u y \times z) .
$$

A combinatorial interpretation

- A class of 7 -cycles in $L \cong L_{3}(2), \Omega=\left\{\left(\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right)^{L}\right\}$.
- So $\Omega=\left\{\left(a_{0} a_{1} \ldots a_{6}\right) \mid\left\{a_{i}, a_{i+1}, a_{i+3}\right\}\right.$ is a line $\}$
- Define

$$
t_{a}:(a u v w x y z) \mapsto(a u v w \times y z)^{(u w)(x y)}=(a w \vee u y \times z) .
$$

- Then $\left\langle t_{a} \mid a \in\{0,1, \ldots, 6\}\right\rangle \cong \mathrm{M}_{24}$.

A geometric interpretation: M_{24} acting on the 24 faces of the Klein map

Rob Curtis, Birmingham

And so to graphs!

- We have seen that a homomorphism exists

$$
2^{\star 7}: \mathrm{L}_{2}(7) \rightarrow \mathrm{M}_{24}
$$

And so to graphs!

- We have seen that a homomorphism exists

$$
2^{\star 7}: \mathrm{L}_{2}(7) \rightarrow \mathrm{M}_{24}
$$

- Can extend this to $2^{\star n}: N$ where n is a permutation group of degree n acting on a graph Γ with n vertices, then seek suitable relations by which to factor.

And so to graphs!

- We have seen that a homomorphism exists

$$
2^{\star 7}: \mathrm{L}_{2}(7) \rightarrow \mathrm{M}_{24}
$$

- Can extend this to $2^{\star n}: N$ where n is a permutation group of degree n acting on a graph Γ with n vertices, then seek suitable relations by which to factor.
- Any relator has the form πw where $\pi \in N$ and w is word in the n symmetric generators.

And so to graphs!

- We have seen that a homomorphism exists

$$
2^{\star 7}: \mathrm{L}_{2}(7) \rightarrow \mathrm{M}_{24}
$$

- Can extend this to $2^{\star n}: N$ where n is a permutation group of degree n acting on a graph Γ with n vertices, then seek suitable relations by which to factor.
- Any relator has the form πw where $\pi \in N$ and w is word in the n symmetric generators.
- A simple lemma says which permutations of N may be expressed in terms of two involutory generators t_{1} and t_{2}

And so to graphs!

- We have seen that a homomorphism exists

$$
2^{\star 7}: \mathrm{L}_{2}(7) \rightarrow \mathrm{M}_{24}
$$

- Can extend this to $2^{\star n}: N$ where n is a permutation group of degree n acting on a graph Γ with n vertices, then seek suitable relations by which to factor.
- Any relator has the form πw where $\pi \in N$ and w is word in the n symmetric generators.
- A simple lemma says which permutations of N may be expressed in terms of two involutory generators t_{1} and t_{2}
- The Lemma: If $\pi=w\left(t_{1}, t_{2}\right)$ then $\pi \in \mathrm{C}_{N}\left(N_{12}\right)$, the centralizer in N of the stabilizer in N of points 1 and 2.

The Hoffman-Singleton graph

The Hoffman-Singleton graph

(35)

The Hoffman-Singleton graph

- So form $2^{\star 50}:\left(U_{3}(5): 2\right)$ and seek relator by which to factor.

The shortest possible relator

- There are two possible 2-point stabilizers N_{12} depending on whether points 1 and 2 are joined or not: (i) the stabilizer of an edge is S_{6} with trivial centralizer; (ii) the stabilizer of a non-edge is S_{5} which centralizes an involution.

The shortest possible relator

- There are two possible 2-point stabilizers N_{12} depending on whether points 1 and 2 are joined or not: (i) the stabilizer of an edge is S_{6} with trivial centralizer; (ii) the stabilizer of a non-edge is S_{5} which centralizes an involution.
- If $\mathbf{i}=\mathrm{j}-\mathrm{k}$ is a path of length 3, then
$\mathrm{C}_{N}\left(N_{i k}\right)=\langle(i, k)\rangle$, which fixes j and the other 5 points joined to j. Wish to write (i, k) as a word in t_{i}, t_{j} and t_{k}.

The shortest possible relator

- There are two possible 2-point stabilizers N_{12} depending on whether points 1 and 2 are joined or not: (i) the stabilizer of an edge is S_{6} with trivial centralizer; (ii) the stabilizer of a non-edge is S_{5} which centralizes an involution.
- If $\mathbf{i}=\mathrm{j}-\mathrm{k}$ is a path of length 3, then
$\mathrm{C}_{N}\left(N_{i k}\right)=\langle(i, k)\rangle$, which fixes j and the other 5 points joined to j. Wish to write (i, k) as a word in t_{i}, t_{j} and t_{k}.
- Shortest possibility is $(i, k)=t_{i} t_{k} t_{i} t_{j}$.

The shortest possible relator

- There are two possible 2-point stabilizers N_{12} depending on whether points 1 and 2 are joined or not: (i) the stabilizer of an edge is S_{6} with trivial centralizer; (ii) the stabilizer of a non-edge is S_{5} which centralizes an involution.
- If $\mathbf{i}=\mathrm{j}-\mathrm{k}$ is a path of length 3, then
$\mathrm{C}_{N}\left(N_{i k}\right)=\langle(i, k)\rangle$, which fixes j and the other 5 points joined to j. Wish to write (i, k) as a word in t_{i}, t_{j} and t_{k}.
- Shortest possibility is $(i, k)=t_{i} t_{k} t_{i} t_{j}$.
- Then

$$
\frac{2^{\star 50}:\left(\mathrm{U}_{3}(5): 2\right)}{(i, k)=t_{i} t_{k} t_{i} t_{j}} \cong \mathrm{HS}: 2
$$

the Higman-Sims sporadic simple group and its outer AM.

Graham Higman's geometry

- A manual double coset enumeration immediately produces the beautiful geometry found by Graham Higman.

Graham Higman's geometry

- A manual double coset enumeration immediately produces the beautiful geometry found by Graham Higman.

Bigger fish: using M_{24} as control subgroup

- We consider M_{24} acting on the $\binom{24}{4}$ tetrads of the 24 letters.

Bigger fish: using M_{24} as control subgroup

- We consider M_{24} acting on the $\binom{24}{4}$ tetrads of the 24 letters.
- Thus we consider

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24},
$$

and seek a suitable relator by which to factor.

Bigger fish: using M_{24} as control subgroup

- We consider M_{24} acting on the $\binom{24}{4}$ tetrads of the 24 letters.
- Thus we consider

$$
2^{\star\binom{(24}{4}}: \mathrm{M}_{24},
$$

and seek a suitable relator by which to factor.

- We take two tetrads which intersect in 2 points but lie together in an octad; thus

Bigger fish: using M_{24} as control subgroup

- We consider M_{24} acting on the $\binom{24}{4}$ tetrads of the 24 letters.
- Thus we consider

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24},
$$

and seek a suitable relator by which to factor.

- We take two tetrads which intersect in 2 points but lie together in an octad; thus

, $t_{V}=$

Two tetrads which lie in an octad and intersect in 2 points

Partition of an octad into 4 pairs, fixed by subgroup of order 2^{7}

Bigger fish：using M_{24} as control subgroup

－We consider M_{24} acting on the $\binom{24}{4}$ tetrads of the 24 letters．
－Thus we consider

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24},
$$

and seek a suitable relator by which to factor．
－We take two tetrads which intersect in 2 points but lie together in an octad；thus

Two tetrads which lie in an octad and intersect in 2 points

Partition of an octad into 4 pairs， fixed by subgroup of order 2^{7}
－We find $C_{N}\left(N_{U V}\right)=\left\langle{ }^{\nu=} \begin{array}{|ll} & \begin{array}{l}\text { 二 } \\ \text { 二 } \\ \text { 二 } \\ \\ \hline\end{array} \\ \hline\end{array}\right\rangle$ ．

Obtaining the Conway group O

- It turns out that

$$
\frac{2^{\star\binom{24}{4}}: \mathrm{M}_{24}}{\nu=t_{a b} t_{a c} t_{a d}} \cong \cdot \mathrm{O} .
$$

Obtaining the Conway group $\cdot 0$

- It turns out that

$$
\frac{2^{\star\binom{24}{4}}: \mathrm{M}_{24}}{\nu=t_{a b} t_{a c} t_{a d}} \cong \cdot \mathrm{O}
$$

- The lowest dimension in which such a configuration can exist is 24 , and we may readily construct 24×24 matrices satisfying the presentation. Coset enumeration shows the group has the right order.

Obtaining the Conway group O

- It turns out that

$$
\frac{2^{\star\binom{24}{4}}: \mathrm{M}_{24}}{\nu=t_{a b} t_{a c} t_{a d}} \cong \cdot \mathrm{O}
$$

- The lowest dimension in which such a configuration can exist is 24 , and we may readily construct 24×24 matrices satisfying the presentation. Coset enumeration shows the group has the right order.
- Allowing the group to act on the standard basis vectors produces a copy of the Leech lattice.

Obtaining the Conway group O

- It turns out that

$$
\frac{2^{\star\binom{24}{4}}: \mathrm{M}_{24}}{\nu=t_{a b} t_{a c} t_{a d}} \cong \cdot \mathrm{O}
$$

- The lowest dimension in which such a configuration can exist is 24 , and we may readily construct 24×24 matrices satisfying the presentation. Coset enumeration shows the group has the right order.
- Allowing the group to act on the standard basis vectors produces a copy of the Leech lattice.
- The generators t_{U} so obtained are essentially the Conway elements ζ_{T} which he used to show the lattice was preserved by more than just $2^{12}: \mathrm{M}_{24}$.

The action of M_{24} on trios.

- A trio is a partition of the 24 points into 3 disjoint octads, like the three bricks of the MOG; there are 3795 of them.

The action of M_{24} on trios.

- A trio is a partition of the 24 points into 3 disjoint octads, like the three bricks of the MOG; there are 3795 of them.

The relation for J_{4}.

The relation for J_{4}.

- We find that

$$
\frac{2^{\star 3795}: \mathrm{M}_{24}}{\nu_{2}=t_{A} t_{B} t_{A} t_{D}} \cong \mathrm{~J}_{4} \times 2
$$

