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Some students of H.F.Baker (1866-1956)

, , ,
Coxeter (1907-2003), du Val (1903-1987), Edge (1904-1997) and Todd (1908-1994).

Also Semple, Pedoe, Mordell and Bronowski among others
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The synthematic totals preserved by the symmetric group
S6

∞0.14.23
∞1.20.34
∞2.31.40
∞3.42.01
∞4.03.12
(∞/01234)

∞0.12.34
∞1.30.42
∞3.41.20
∞4.23.01
∞2.04.13
(∞/01342)

∞0.13.42
∞1.40.23
∞4.21.30
∞2.34.01
∞3.02.14
(∞/01423)

∞0.14.23
∞1.30.42
∞3.21.04
∞2.43.10
∞4.02.31
(∞/01324)

∞0.12.34
∞1.40.23
∞4.31.02
∞3.24.10
∞2.03.41
(∞/01432)

∞0.13.24
∞1.20.43
∞2.41.30
∞4.32.01
∞3.04.12
(∞/01243)
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From S6 to M12 to M24

I Todd’s Part III lectures in 1968.

I The stabilizer of a point on one side remains transitive on the
other (S5 ∼= PGL2(5)).

I Transpositions on one side act as 23 on the other; 3-cycles on
one side act as 32 elements on the other.

I S6 :2 on (6+6) letters →S(5,6,12) → M12.

I M12 :2 on (12+12) letters → S(5, 8, 24)→ M24.

I Similar lectures were being given at the same time in Oxford
by Graham Higman.
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The Leech lattice and the Conway group

, ,
Three Johns: John Leech, John McKay and John Conway
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Todd’s 1966 paper on M24

M24 001.jpg
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The Steiner system S(3,4,16)

I Fixing an octad O, the octads which intersect O in 4 points
form a Steiner system S(3,4,16) on the complementary 16-ad.

I These form the cosets of 2-dimensional subspaces of a
4-dimensional space over Z2.

I

I These intersect columns with the same parity and rows with
the same parity.
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Correspondence with partitions of the octad into halves

I There are (24 − 1)(24 − 2)/(22 − 1)(22 − 2) = 35
2-dimensional subspaces of a 4-dimensional space over Z2,
and 1

2

(8
4

)
= 35 partitions of an octad into two tetrads.

I In the S(5,8,24) there is a (1-1) correspondence between
them.

I I realised (in the Cricketers’ Arms!) that the 24 points could
be arranged into three disjoint 4× 2 arrays known as bricks so
that this correspondence is the same for each brick.

I Thus the partition into 3 bricks admits a full S3 of bodily
permutations within M24.

I The resulting 35 pictures exhibit all 759 octads in an instantly
recognisable form.
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The Miracle Octad Generator or MOG
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Some elements of M24

.
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An innocent question

I Can two copies of L2(7) in M24 intersect in an S4?

I

I There exists an involution σ which interchanges the two
copies of (maximal) L2(7)s whilst commuting with the S4 in
which they intersect.

I The 7 images of σ under conjugation by one of the two copies
of L2(7) must generate M24.

I Given L2(7) acting on 24 letters we can immediately write
down permutations which generate M24.
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A combinatorial interpretation

I

I A class of 7-cycles in L ∼= L3(2), Ω = {(0 1 2 3 4 5 6)L}.
I So Ω = {(a0 a1 . . . a6) | {ai , ai+1, ai+3} is a line}
I Define

ta : (a u v w x y z) 7→ (a u v w x y z)(u w)(x y) = (a w v u y x z).

I Then 〈ta | a ∈ {0, 1, . . . , 6}〉 ∼= M24.
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A geometric interpretation: M24 acting on the 24 faces of
the Klein map
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And so to graphs!

I We have seen that a homomorphism exists

2?7 : L2(7)→ M24.

I Can extend this to 2?n : N where n is a permutation group of
degree n acting on a graph Γ with n vertices, then seek
suitable relations by which to factor.

I Any relator has the form πw where π ∈ N and w is word in
the n symmetric generators.

I A simple lemma says which permutations of N may be
expressed in terms of two involutory generators t1 and t2

I The Lemma: If π = w(t1, t2) then π ∈ CN(N12), the
centralizer in N of the stabilizer in N of points 1 and 2.
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The Hoffman-Singleton graph

I

I

I So form 2?50 : (U3(5) : 2) and seek relator by which to factor.
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The shortest possible relator

I There are two possible 2-point stabilizers N12 depending on
whether points 1 and 2 are joined or not: (i) the stabilizer of
an edge is S6 with trivial centralizer; (ii) the stabilizer of a
non-edge is S5 which centralizes an involution.

I If is a path of length 3, then
CN(Nik) = 〈(i , k)〉, which fixes j and the other 5 points joined
to j . Wish to write (i , k) as a word in ti , tj and tk .

I Shortest possibility is (i , k) = ti tkti tj .

I Then
2?50 : (U3(5) : 2)

(i , k) = ti tkti tj
∼= HS : 2.

the Higman-Sims sporadic simple group and its outer AM.
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Graham Higman’s geometry

I A manual double coset enumeration immediately produces the
beautiful geometry found by Graham Higman.

I
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Bigger fish: using M24 as control subgroup

I We consider M24 acting on the
(24
4

)
tetrads of the 24 letters.

I Thus we consider
2?(

24
4 ) : M24,

and seek a suitable relator by which to factor.
I We take two tetrads which intersect in 2 points but lie

together in an octad; thus

I

I We find CN(NUV ) = 〈 〉.
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Obtaining the Conway group ·O

I It turns out that

2?(
24
4 ) : M24

ν = tabtactad
∼= ·O.

I The lowest dimension in which such a configuration can exist
is 24, and we may readily construct 24× 24 matrices
satisfying the presentation. Coset enumeration shows the
group has the right order.

I Allowing the group to act on the standard basis vectors
produces a copy of the Leech lattice.

I The generators tU so obtained are essentially the Conway
elements ζT which he used to show the lattice was preserved
by more than just 212 : M24.
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The action of M24 on trios.

I A trio is a partition of the 24 points into 3 disjoint octads, like
the three bricks of the MOG; there are 3795 of them.

I
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The relation for J4.

I

I We find that
2?3795 : M24

ν2 = tAtBtAtD
∼= J4 × 2.
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