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R. T. Curtis

Some students of H.F. Baker

Henry Frederick Baker was a hugely influential Cambridge geometer in the late 19th and
early 20th century. His students included Coxeter who went on to become one of the most
important geometers in the 20C; du Val and Edge, who were distinguished algebraic ge-
ometers; and Todd of the Todd-Coxeter coset enumeration algorithm. The eminent number
theorist Mordell was another student, as was Jacob Bronowski who wrote and presented
The Ascent of Man which in the 1960s was a popular television series about the rise of
civilization. Bronowski’s daughter Lisa (later Lisa Jardine) also studied Mathematics at
Cambridge in the year above me but changed to English in her third year and went on to
become Professor of Renaissance Studies at Queen Mary, University of London. This talk
will begin with the contribution of Todd.

The synthematic totals preserved by the symmetric group Sg

The 15 partitions of six letters into pairs are known as synthemes; a set of five synthemes
such that every pair appears is a synthematic total; there are just 6 of these totals, and
so the symmetric group Sg permutes both the original 6 letters and the 6 totals. Todd
wrote the totals on the board in his 1967 Cambridge Part III course which I attended, and
demonstrated important properties of these two non-permutation identical actions.

From 86 to M12 to M24

Todd’s lectures demonstrated an important method of constructing groups: Use a well-
known group to construct a new combinatorial or geometric structure; observe that the
new structure possesses more symmetries than just the group you used in its construction.



The Leech lattice and the Conway group

John Leech, a Cambridge mathematician turned computer scientist who became a professor
at the University of Sterling, discovered the lattice named after him in connection with
sphere-packing in 24 dimensions. Its construction ensured that it was preserved by the
Mathieu group May together with sign changes on the codewords of the binary Golay code.
He believed he knew the order of its group of symmetries to within a factor of 2, but could
not prove the three orbits on minimal vectors under this group of shape 212 : My, fused in a
larger group. John McKay suggested to John Conway, who at the time was predominantly
a number theorist and logician, that he work out its group of symmetries. The result was
three new sporadic simple groups.

Todd’s 1966 paper on My,

Todd’s paper concluded with a list several pages long of all 759 octads of the Steiner system
S(5,8,24). This list was used extensively at the time by people investigating the Leech lattice
and the Conway groups, but this method was laborious and unsatisfactory. I determined
to find a more revealing description of the system.

The Steiner system S(3,4,16)

I first fixed an octad and arranged the complementary 16-ad into a 4 x 4 array so that the
tetrads in which octads intersect it were plainly recognisable.

Correspondence with partitions of the octad into halves

This gave a correspondence between the 35 partitions of the fixed octad into two fours with
35 sets of four tetrads in the complementary 16-ad. The breakthrough was the realisa-
tion that the 24 points could be partitioned into three disjoint octads so that this visual
correspondence was the same whichever of the three octads we fix.

The Miracle Octad Generator or MOG

The resulting Miracle Octad Generator enables one instantly to recognise when an 8-element
subset is an octad; to complete any 5-element subset to the unique octad containing it; and
to write down elements of Moy having desired properties.



Some elements of My,

Many elements of Msy have a particularly simple and appealing form in the MOG. Here
the top row shows involutions of cycle shape 18.2% and 2!2; the second row gives generators
(of orders 2, 3 and 7 respectively) for the copy of La(7) which has the same action in each
of the three bricks, and thus commutes with the S3 bodily interchanging them.

An innocent question

Many years later Tony Gardiner, a colleague of mine at the University of Birmingham,
asked me whether two copies of Lo(7) in Mgy could intersect in a copy of Sy; he wanted
to use this to construct a certain distance transitive graph. I found that this was possible
using subgroups from the class of maximal Lo(7)s, which act transitively on the 24 points,
and that when this happens there is an involution ¢ interchanging the two copies of La(7)
and commuting with their intersection. It is easy to see that the 7 conjugates of o under
the action of one of the two La(7)s must generate M4, and moreover one can readily write
down these 7 elements given Ly(7) acting on 24 points.

A combinatorial interpretation

For instance one can take a class of 7-cycles in L3(2) as the set of 24 objects. Then there
are 6 different ways in which one can write down these generators of Moy, one of which is
shown in the slide. These give the six copies of Mgy which contain our original Ly(7) as a
maximal subgroup.

A geometric interpretation: My, acting on the 24 faces of the
Klein map

The Klein quartic is usually taken to be 23y + y3z + 232z = 0. In the associated Klein map
the 24 faces represent the points of inflexion; the 56 vertices represent the points where the
28 bitangents touch the curve; and the 84 edges represent the sextactic points, points at
which conics make 6-fold contact. The figure shows a 14-gon whose edges are identified in
pairs, so defining a surface of genus 3; thus if we leave on face 16 across boundary edge A
in the top right, we re-enter the map still on face 16 at face A on the base of the figure.
The curve is preserved by a copy of La(7) and so generators of Mgy will be visible on the
map. Explicitly, the 84 edges fall into 7 blocks of imprimitivity of size 12 under the action
of Ly(7); we have coloured these with 7 colours. Now choose a colour, red say, and define a
permutation of shape 2'2 which interchanges every pair of faces which have a red edge in



common; thus 4 <+ 12,10 <+ 14, .... Note that the central face should be labelled co and so
o0 ¢+ 8. The 7 involutions corresponding to the 7 colours generate May. The Mathieu group
Mayy and the Klein map were both discovered in the second half of the 19th century, but
there was no connection between them. It is a source of great delight to me that generators
of the former are readily observable on the edges of the latter.

And so to graphs!

The notation m*™ denotes a free product of n copies of the cyclic group C,,, thus Moy is
a homomorphic image of 2*7 : Ly(7). In a similar manner if the group N acts as auto-
morphisms of the graph I' of degree n, then we can interpret the vertices of the graph as
elements of order 2 and form the infinite semi-direct product 2*™ : N. Every element of
this group may be written as mw where 7 € N and w is a word in the n generators of the
free product; thus any relator by which we wish to factor to obtain a finite image has this
form. Effectively we are saying how a permutation of N can be written in terms of the 7
symmetric generators.

The Lemma tells us which permutations can possibly be written in terms of just two sym-
metric generators: simply consider the centralizers of the various 2-point stabilizers.

The Hoffman-Singleton graph

The beautiful Hoffman-Singleton graph is preserved by a group isomorphic to Us(5) : 2
with point stabilizer S;. Fixing one of the 50 vertices, x say, the remaining points fall into a
suborbit of length 7 labelled by Z7 and a suborbit of length 42 labelled (i,T") where i € Z7
and T is a synthematic total on Z7 \ i. The fixed point * is joined to i; 7 is joined to (i, 7T);
and (4, T) is joined to (j, T().

We may also see a copy of the graph in the MOG: The stabilizer of an octad in Moy is
isomorphic to 2% : Ag; fixing a point x outside the octad is a copy of Ag; and fixing a further
point y inside the octad is a group isomorphic to Ay acting transitively on the remaining
7 points of the octad and the 15 remaining points of the complementary 16-ad. Take as
vertices the 35 triples of elements of the 7-orbit together with the 15 orbit. Join two triples if
they are disjoint and join a triple to the three points outside the fixed octad which complete
the triple together with  and y to an octad.

We now apply the Lemma.



The shortest possible relator

According to the Lemma there is no non-trivial element of N = Us3(5) : 2 which can be
written in terms of generators t; and t; without causing collapse if ¢ and j are joined. If
i is not joined to k then there is a unique vertex j joined to both of them. The stabilizer
of ¢ and k is thus isomorphic to S5, the subgroup of the S; fixing j which also fixes ¢ and
k. Centralizing this 2-point stabilizer is ((i, k)) = Za, interchanging i and k and fixing the
other 5 points joined to j. Attempting to write (¢, k) in terms of ¢;,t; and t;, we find that
words of length 3 or less cause collapse and that all words of length 4 which do not lead to
collapse are equivalent to (i, k) = t;tit;t;.

Factoring by this relation leads to HS : 2, the automorphism group of the Higman-Sims
group.

Graham Higman’s geometry

The group is named after Donald Higman and Charles Sims, but this approach produces,
through a short manual double coset enumeration, the geometry of Graham Higman which
has 176 points, 176 quadrics with 50 points on each quadric and 50 quadrics through
each point. The group HS acts doubly transitively on points and quadrics and the outer
automorphism interchanges them.

Bigger fish: using My, as control subgroup

We now consider Moy acting on the (244) tetrads of the 24 points; note that this is not a

primitive action. As before we apply the Lemma and consider the various 2-point stabilizers
and their centralizers. With ¢y and ¢y as shown we again find that there is a unique
nontrivial element that can be written in terms of them, but also note that the 2-point
stabilizer fixes a further 4 tetrads. So we may attempt to write this involution v as a short
word in these 6 symmetric generators.

Obtaining the Conway group -O
Theoretical considerations show that there is a word of length 3 which does not lead to
collapse, and factoring by this relation yields the Conway group -O.

This approach may be used to obtain matrices generating the Conway group, together with
the Leech lattice on which they act.



The action of My, on trios.

My has a primitive action on the 3795 trios, partitions of the 24 points into 3 disjoint
octads.This action has rank 5 with suborbits as shown in the diagram and valence 42 if we
join two trios which have an octad in common. That is to say, if their intersection matrix

= ks O

8 0
is of form 0 4
0 4

The relation for J,.

We concentrate on the 1008-orbit which corresponds to trios having intersection matrix of

0 4 4
form | 4 2 2 | with the fixed trio. A and B in the diagram are so related, and their
4 2 2

stabilizer in Moy fixes the 3 further trios shown. Applying the Lemma tells us that the only
non-trivial element which can be written in terms of these 5 trios is v9 as shown.

In fact the shortest word which does not lead to collapse is vo = tatptatp, and factoring
by this relation gives us the largest Janko group direct product with Z.

Note that this relation could not have defined the simple group as the infinite group

2*3795 : Moy

possesses a subgroup of index 2, namely all elements 7w in which w has even length; our
additional relator lies in this subgroup.

In order to 7kill off” this redundant Zs we may factor by a second relation tatgtc = 1. 1
used both relations in my original work on this application but John Bray of Queen Mary,
University of London, produced a neat argument to show that the length 4 relation was
(almost) sufficient to define the group!



