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Summary: "It is unknown whether two graphs can be tested for isomorphism in polynomial
time. A classical approach to the Graph Isomorphism Problem is the -dimensional Weisfeiler-
Lehman algorithm. The -dimensional WL-algorithm can distinguish many pairs of graphs, but
the pairs of non-isomorphic graphs constructed by Cai, Fürer and Immerman it cannot
distinguish. If  is fixed, then the WL-algorithm runs in polynomial time. We will formulate the
Graph Isomorphism Problem as an Orbit Problem: Given a representation  of an algebraic
group  and two elements , decide whether  and  lie in the same -orbit. Then
we attack the Orbit Problem by constructing certain approximate categories 

 whose objects include the elements of . We show that  and  are
not in the same orbit by showing that they are not isomorphic in the category  for some 

. For every  this gives us an algorithm for isomorphism testing. We will show that the
WL-algorithms reduce to our algorithms, but that our algorithms cannot be reduced to the
WL-algorithms. Unlike the Weisfeiler-Lehman algorithm, our algorithm can distinguish the Cai-
Fürer-Immerman graphs in polynomial time.''
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Orbit Problems

Orbit Problem

G group acting on k-vector space V
given v , v ′ ∈ V , does there exist g ∈ G with g · v = v ′?

Graph Isomorphism Problem (Hard)

Γ, Γ′ graphs with n vertices, A,A′ ∈ Matn,n adjacency matrices
G = {permutation matrices} acts on Matn,n by conjugation

does there exists a permutation matrix P with PAP−1 = A′?

Module Isomorphism Problem (Easy)

G = GLn acts on Matmn,n by simultaneous conjugation
A = (A1, . . . ,Am),A′ = (A′1, . . . ,A

′
m) ∈ Matmn,n

is there a P ∈ GLn with (PA1P
−1, . . . ,PAmP

−1) = (A′1, . . . ,A
′
m)?
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Module Isomorphism Problem (Easy)

R = k〈x1, . . . , xm〉 free associative algebra
(A1, . . . ,Am) ∈ Matmn,n corresponds to module M = kn,
where xi · v = Aiv for v ∈ M

(A′1, . . . ,A
′
m) ∈ Matmn,n corresponds to module M ′ = kn

HomR(M,M ′) = {P ∈ Matn,n | ∀i PAi = A′iP}

Probabilistic Module Isomorphism Algorithm

choose P ∈ HomR(M,M ′) ⊆ Matn,n at random
if P invertible, then M ∼= M ′

if P not invertible, then M 6∼= M ′ with high probability

polynomial time de-randomized algorithms for module isom.:
Chistov-Ivanyos-Karpinsky 1997, Brooksbank-Luks 2008
(for arbitrary finitely generated associative k-algebras)
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Graph Isomorphism by Solving Polynomial Equations

Γ, Γ′ graphs on n vertices with adjacency matrices
A = (ai ,j),A

′ = (a′i ,j)
does there exists a permutation n × n matrix X = (xi ,j) with
XAX−1 = A′?

We need to solve a system of polynomial equations:

X is a permutation matrix, means:
(1) xi ,jxi ,` = 0 = xj ,ix`,i for all i and all j 6= `
(2)

∑n
j=1 xi ,j − 1 =

∑n
j=1 xj ,i − 1 = 0 for all i

XA = A′X gives us the linear equations:
(3)

∑
j=1 xi ,jaj ,` −

∑
j=1 a

′
i ,jxj ,` = 0 for all i , `

system of linear and quadratic equations in n2 variables
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Gröbner Basis?

R = k[x1,1, x1,2, . . . , xn,n] polynomial ring in n2 variables
define Eq(Γ, Γ′) ⊂ R as the set of poly’s from our system of
equations (1)-(3)
let I = (Eq(Γ, Γ′)) ⊆ R be the ideal generated by Eq(Γ, Γ′)

Hilbert’s Nullstellensatz

1 ∈ I ⇔ Γ 6∼= Γ′

Algorithm 1, Gröbner basis (GB)

compute Gröbner basis G of I using Buchberger’s algorithm
then 1 ∈ G ⇔ 1 ∈ I ⇔ Γ 6∼= Γ′

Computing a Gröbner basis is known to be very slow
there is no reason to believe Algorithm 1 could be polynomial time
This is a stupid approach!
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Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Truncated Ideals

. . . or is it?

we restrict ourselves to computations in low degree
fix positive integer d ≥ 2

Rd = k[x1,1, x1,2, . . . , xn,n]≤d space of polynomials of degree ≤ d
dimRd is polynomial in n (for fixed d)

we construct subspaces I [0] ⊆ I [1] ⊆ · · · of Rd as follows:

I I [0] ⊆ Rd is the k-span of Eq(Γ, Γ′)
(Eq(Γ, Γ′) was the set of linear and quadratic equations)

I I [j+1] =
∑d

e=0(I [j] ∩ Re)Rd−e for all j

for some ` ≤ dimRd , I [`] = I [`+1] = I [`+2] = · · ·
Let (Eq(Γ, Γ′))d = I [`] be this limit
this is the d-truncated ideal generated by Eq(Γ, Γ′)

Harm Derksen Graph & Module Isomorphism



Comparison to the Weisfeiler-Leman Algorithm

a basis of (Eq(Γ, Γ′))d (as a k-vector space) can be computed with
a polynomial number of arithmetic operations in the field k

Algorithm 2, Truncated Ideals (TId)

compute (Eq(Γ, Γ′))d and test whether 1 ∈ (Eq(Γ, Γ′))d
if 1 ∈ (Eq(Γ, Γ′))d then Γ 6∼= Γ′

this algorithm is polynomial time if we work over a finite field
k = Fq and q = q(n) = 2O(poly(n))

Theorem

if q is a prime > n, k = Fq

if WLd distinguishes Γ and Γ′, then TI2d+2 distinguishes Γ and Γ′

so TI is as powerful as WL (but perhaps not more powerful)

but there is more structure . . .
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An Associative Algebra

recall R = k[x1,1, x1,2, . . . , xn,n] and Rd = k[x1,1, x1,2, . . . , xn,n]≤d
matrix multiplication gives a ring homomorphism

ϕ : R = k[x1,1, . . . , xn,n]→ k[y1,1, . . . , yn,n, z1,1, . . . , zn,n] ∼= R ⊗ R

defined by ϕ(xi ,j) =
∑n

`=1 yi ,`z`,j

this ring homomorphism restricts to a linear map Rd → Rd ⊗ Rd ,
which dualizes to a linear map R?

d ⊗ R?
d → R?

d ,
which defines a bilinear multiplication R?

d × R?
d → R?

d ,
which makes R?

d into an associative algebra
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The Category Cn,d

Definition (Approximate Category Cn,d)

objects of Cn,d are graphs on n vertices,

HomCn,d (Γ, Γ′) = (Rd/(Eq(Γ, Γ′))d)? ⊆ R?
d

multiplication R?
d × R?

d → R?
d restricts to a bilinear map

HomCn,d (Γ, Γ′)× HomCn,d (Γ′, Γ′′)→ HomCn,d (Γ, Γ′′)

if 1 ∈ (Eq(Γ, Γ′))d then (Eq(Γ, Γ′))d = Rd and HomCn,d (Γ, Γ′) = 0
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Properties of Cn,d
suppose Γ, Γ′ graphs on n vertices with adjacency matrices A,A′

if Γ ∼= Γ′ then there is a permutation matrix P with PA = A′P

if evP : Rd → k is evaluation at P, then evP ∈ HomCn,d (Γ, Γ′) ⊆ R?
d

and evP is an isomorphism in Cn,d (with inverse evP−1)

Theorem

let T = HomCn,d (Γ, Γ) (an associative k-algebra)
Γ, Γ′ are isomorphic in Cn,d ⇔ HomCn,d (Γ′, Γ) and HomCn,d (Γ, Γ)
are isomorphic T -modules

we can test whether Γ, Γ′ are isomorphic in Cn,d in polynomial time

Algorithm 3 (ACd)

test whether Γ, Γ′ are isomorphic in the category Cn,d for all fields
k = Fq with q a prime ≤ 2n
if not isomorphic for some k , then Γ and Γ′ are non-isomorphic
graphs

AC2d+2 is at least as powerful as WLd
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if V = {1, 2, . . . , n} is the set of vertices, then WLd−1 captures
reasoning on subsets of V d

it is as powerful as d-variable logic with counting (see
Cai-Fürer-Immerman)

if W = kV ∼= kn is the vector space whose basis is the set of
vertices, then AC2d captures reasoning with subspaces of
W⊗d = W ⊗ · · · ⊗W with operations such as tensor products,
sums, intersections, projections and dimension count.

Harm Derksen Graph & Module Isomorphism



Cai-Fürer-Immerman constructed families of pairs of nonisomorphic
graphs that cannot be distinguished by WLd for any fixed d
so WLd does not give a polynomial time algorithm

for a pair of CFI graphs (Γ, Γ′), we can construct matrices B and
B ′ from the adjacency matrices A and A′ such that B and B ′ do
not have the same rank if k = F2

AC3 can distinguish each pair of CFI-graphs (Γ, Γ′) if we work over
k = F2
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