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Association schemes
Adjacency matrices of a (symmetric) association scheme S:

A0(= I),A1, . . . ,AD ∈ RV×V

Eigenspaces:

RV = W0 ⊕ W1 ⊕ . . .⊕ WD

A0 P00 P01 . . . P0D

A1 P10 P11 . . . P1D

. . . . . . . . . Pij . . .
AD PD0 PD1 . . . PDD︸ ︷︷ ︸

The first eigenmatrix P
Orthogonal projections:

Ej : RV 7→Wj
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Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Association schemes
Two bases of the Bose-Mesner algebra:

〈A0,A1, . . . ,AD〉 = 〈E0,E1, . . . ,ED〉

Ej =
1

|V |

D∑
i=0

QjiAi

A0 A1 . . . AD
E0 Q00 Q01 . . . Q0D

E1 Q10 Q11 . . . Q1D

. . . . . . . . . Qji . . .
ED QD0 QD1 . . . QDD︸ ︷︷ ︸

The second eigenmatrix Q

PQ = |V | · I



Automorphisms
G ≤ Aut(S): permutations on V that preserve the relations
g ∈ G → a permutation matrix Xg ∈ RV×V :

XTg = X−1g and Xng = I with n = |g|, the order of g,

XgAiX
−1
g = Ai, i.e., XgAi = AiXg for all i = 0, 1, . . . , D

Every eigenspace Wj is G-invariant:

Ai(Xgw) = Xg(Aiw) = Pij · Xgw for w ∈Wj

in particular:

XgEjX
−1
g =

1

|V |

D∑
i=0

Qji (XgAiX
−1
g )︸ ︷︷ ︸ = Ej

Ai

and so XgEj = EjXg
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Higman’s observation

Ej is a projection matrix ⇒ E2
j = Ej, and so the eigenvalues

of Ej are only 1’s and 0’s. Now:

(XgEj)
|g| = (Xg)

|g|(Ej)
|g| (by XgEj = EjXg)

= (Ej)
|g| (by X|g|g = I)

= Ej

⇒

non-zero eigenvalues of XgEj are roots of unity of order |g|︸ ︷︷ ︸.
the sum of eigenvalues︸ ︷︷ ︸ ∈ algebraic integers

‖

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)
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Higman’s observation

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

is an algebraic integer, and

Trace(XgAi) = #{v ∈ V | (v, vg) ∈ Ri}

In particular, if all the eigenvalues Pij are integers:
I all Qji are rational by PQ = |V |I,
I Trace(XgAi) is an integer by definition,

and thus

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

must be an integer.



Higman’s observation

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

is an algebraic integer, and

Trace(XgAi) = #{v ∈ V | (v, vg) ∈ Ri}

In particular, if all the eigenvalues Pij are integers:
I all Qji are rational by PQ = |V |I,
I Trace(XgAi) is an integer by definition,

and thus

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

must be an integer.



Higman’s observation

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

is an algebraic integer, and

Trace(XgAi) = #{v ∈ V | (v, vg) ∈ Ri}

In particular, if all the eigenvalues Pij are integers:
I all Qji are rational by PQ = |V |I,
I Trace(XgAi) is an integer by definition,

and thus

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

must be an integer.



Higman’s observation

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

is an algebraic integer, and

Trace(XgAi) = #{v ∈ V | (v, vg) ∈ Ri}

In particular, if all the eigenvalues Pij are integers:
I all Qji are rational by PQ = |V |I,
I Trace(XgAi) is an integer by definition,

and thus

Trace(XgEj) =
1

|V |

D∑
i=0

QjiTrace(XgAi)

must be an integer.



Moore graphs
Let Γ be a (undirected) graph:

I regular of valency k,
I of diameter D,
I of (odd) girth γ,
I on N vertices,

then (Hoffman&Singleton, 1960)

N ≤ 1 + k + k(k − 1) + . . .+ k(k − 1)D−1,

N ≥ 1 + k + k(k − 1) + . . .+ k(k − 1)
γ−3
2 .

If any of these bounds is attained (Damerell, Bannai&Ito):

Diameter Valency Moore graph Transitivity
1 k Kk+1

√

D 2 C2D+1

√

2 3 Petersen
√

2 7 Hoffman-Singleton
√

2 57 ? ��ZZ
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A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

Step 5. Suppose g fixes 56 vertices ⇒ |StabG(x)| is even
⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
Then |H| is even and so g ∈ H ⊆ Alt3250. But g has 56
fixed points and 3250−56

2
= 1597 transpositions.



A Moore graph of valency 57

Theorem (G. Higman, unpublished)
A Moore graph M of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so M admits
an involution g, and let Fix(g) be the set of its fixed points.

Step 1. Fix(g) induces either a star or a Moore subgraph.

Step 2. If x ∼ xg for some vertex x then |Fix(g)| = 56.

Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).
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⇒ |G| is divisible by 4. Let H denote G ∩ Alt3250.
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. . .
Step 3. If x 6∼ xg for any vertex x then |Fix(g)| = 58.

Step 4. |Fix(g)| 6= 58 (by Higman’s observation).

A Moore graph of diameter 2 is strongly regular.

P =

 1 1 1
57 −8 7

3192 7 −8

 ,Q =

 1 1 1
1520 −640

3
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
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D∑
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Q1iTrace(XgAi) =
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3250

(
1520 · Trace(XgA0)︸ ︷︷ ︸−640

3
Trace(XgA1)︸ ︷︷ ︸+
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3
Trace(XgA2)︸ ︷︷ ︸ )

58 0 3192

αi(g) := Trace(XgAi) = #{v ∈ V | (v, vg) ∈ Ri}
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The Higman method
“. . . The method has not been widely applied, since
knowledge of the numbers αi(g) is not easy to come by.”

P. Cameron, “Permutation groups” (1999)

Objectives:

I to prove non-existence of DRGs Γ with given
intersection numbers and prescribed symmetries,

I to construct / find all DRGs with prescribed
symmetries.

Recipe:

I determine g ∈ Aut(Γ) of prime order with Fix(g) = ∅,
I study g ∈ Aut(Γ) of prime order and the subgraphs

induced by Fix(g) with Fix(g) 6= ∅,
I determine possible automorphisms of order pq, p2, etc.

I recognize Aut(Γ).
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Generalized polygons

The incidence graph of a point-line incidence structure:

. . .
pi
. . .

`j
. . .
`k

Points Lines pi
`j

`k

Generalized polygons (Tits, 1959):

I the girth is twice the diameter n (a generalized n-gon);

I generalize Moore graphs (the case of even girth);

I of order (s, t) if ∀ line has s+ 1 points and ∀ point is
on t+ 1 lines ⇒ n ∈ {2, 3, 4, 6, 8} if s ≥ 2, t ≥ 2;

(Feit-Higman, 1964)

I the collinearity graph is distance-regular if n > 2;
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Benson’s theorem

Theorem (C.T. Benson, 1970)
Let g be an automorphism of a GQ(s, t) with α0 fixed
points and α1 points x such that x is collinear to xg. Then

1
s+t

((t+ 1)α0 + α1 − (1 + s)(1 + t))

is an integer.

“. . . a method of Feit and Higman is extended to provide

restrictions on s and t when certain natural automorphisms are

present.”

Benson, “On the structure of Generalized Quadrangles” (1970)

This result has been generalized by Temmermans, Thas,
Van Maldeghem (2009) in “On collineations and dualities
of finite generalized polygons”.
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Various applications of Higman’s observation

Theorem (Makhnev, Paduchikh, 2001, 2009)
Let Γ be a Moore graph of valency 57, and G = Aut(Γ).
Then |G| ≤ 550 if |G| is even.

Theorem (Makhnev, Belousov, 2009)
Let Γ be a DRG with intersection array {84, 81, 81; 1, 1, 28},
and let Aut(Γ) act transitively on the vertex set of Γ. Then
Γ ∼= GH(3, 27) with Aut(Γ) ∼= 3D4(3).

Theorem (Makhnev, Belousov, 2008)
Let Γ be a DRG with intersection array
{10, 8, 8, 8; 1, 1, 1, 5}, and let Aut(Γ) act transitively on the
vertex set of Γ. Then Γ ∼= GO(2, 4) with Aut(Γ) ∼= 2F4(2)′.
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Higman’s observation via the character theory

g 7→ Xg is a linear representation ρ of G in RV with the
(permutation) character π(g) = Trace(Xg).

As every eigenspace Wj is G-invariant, the restriction

ρ|Wj
: G→ GL(Wj)

is a linear representation of G in Wj

with the character given by

χj(g) = Trace(XgEj),

which thus must be an algebraic integer for any g ∈ G.
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Rational representations

Mačaj and Širáň (2010) further developed this observation:

I if the eigenvalue corresponding to Wj is integer, then
Wj has a basis over Q;

I A linear representation in Wj is thus rational;

I Q has characteristic 0, and by Maschke’s Theorem
ρ|Wj

is decomposed into rational representations that
are irreducible over Q;

I elements x, y of a group H are in the same Q-class of
H ⇔ 〈x〉, 〈y〉 are conjugate subgroups of H;

I the number of irreducible Q-representations of H =
the number of Q-classes of H.

I a rational character is constant on rational classes.
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Rational representations
For a finite group H, let:

I x1, x2, . . . , xu be representatives of the Q-classes of H,
I R1, R2, . . . , Ru be the irreducible Q-representations of
H with characters σ1, σ2, . . . , σu.

Then, for any rational representation of H with character
χ, the system of linear equation with the matrix σ1(x1) . . . σu(x1) χ(x1)

. . . . . . . . . . . .
σ1(xu) . . . σu(xu) χ(xu)


has a solution in non-negative integers c1, c2, . . . , cu:

χ = c1σ1 + . . .+ cuσu.

For example, if |g| = p and mj = Rank(Ej) = χj(1):(
1 p− 1 mj

1 −1 χj(g)

)
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Update on the Moore valency 57 graph problem

χj(g) = Trace(XgEj) =
1

|V |

D∑
i=0

Qjiαi(g)

so

(χ0(g), χ1(g), . . . , χD(g))T =
1

|V |
Q·(α0(g), α1(g), . . . , αD(g))T

Corollary (Mačaj and Širáň, 2010)
If all eigenvalues of an association scheme are integral, then
the functions αi(g) are constant on rational classes. In
particular, αi(g) = αi(g

2) = . . . = αi(g
|g|−1) if |g| is a prime.

Theorem (Mačaj and Širáň, 2010)
Let Γ be a Moore graph of valency 57, and G = Aut(Γ).
Then |G| ≤ 375, and |G| ≤ 110 if |G| is even.



Update on the Moore valency 57 graph problem

χj(g) = Trace(XgEj) =
1

|V |

D∑
i=0

Qjiαi(g)

so

(χ0(g), χ1(g), . . . , χD(g))T =
1

|V |
Q·(α0(g), α1(g), . . . , αD(g))T
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More recent results: antipodal covers
In 1998, Godsil, Liebler, Praeger classified antipodal
distance-transitive covers of complete graphs. Their key
observation was that Aut(Γ) of such a graph Γ induces a
2-transitive action on the set of fibres.

Tsiovkina noticed that it is enough to assume that Aut(Γ)
acts transitively on arcs of Γ.

In a series of papers (2013-2017), Makhnev, Paduchikh and
Tsiovkina classified arc-transitive distance-regular covers of
complete graphs.

Besides distance-transitive graphs, they found several new
examples including three infinite series related to Sz(q),
SU3(q) and 2G2(q).

I L. Tsiovkina, Arc-transitive antipodal distance-regular
covers of complete graphs related to SU3(q), Discrete
Math. (2017)
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More recent results: partial difference sets
Theorem (De Winter, Kamischke, Wang, 2014)
Let Γ be an SRG on v vertices whose adjacency matrix has
integer eigenvalues k, ν2 and ν3. Let g be an automorphism
of order n of Γ, and let µ() be the Möbius function. Then
for every integer r and all positive divisors d of n, there are
non-negative integers ad and bd such that

k−r+
∑
d|n

adµ(d)(ν2−r)+
∑
d|n

bdµ(d)(ν3−r) = −rα0(g)+α1(g)

Moreover, a1 + b1 = c− 1, where c is the number of cycles in
the disjoint cycle decomposition of g, and ad + bd =

∑
d|` c`,

d 6= 1, where c` is the number of cycles of length ` of g.

Using this, they ruled out several open cases of partial
difference sets in abelian groups (from the list of feasible
parameters by S.L. Ma).
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One more Moore graphs problem

The Moore bounds

N ≤ 1 + k + k(k − 1) + . . .+ k(k − 1)D−1,

N ≥ 1 + k + k(k − 1) + . . .+ k(k − 1)
γ−3
2 .

can be generalized to the cases of directed (arcs only) and
mixed (with both edges and arcs) graphs.

I the only Moore digraph of diameter > 1 is
−→
C3;

Plesnik, Znám (1974)

I no mixed Moore graph can exist for diameters > 2
Nguyen, Miller, Gimbert (2007)

I mixed Moore graphs of diameter 2 are directed SRGs
introduced by Duval (1988).
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Directed (mixed?) strongly regular graphs
DSRG(v, k, t, λ, µ):

I the total vertex degree is k = t+ z:
I every vertex is incident to t edges;
I every vertex is incident to z in-arcs and z out-arcs;

I for every arc/edge a ⇀ b there exist λ vertices c such
that a ⇀ c ⇀ b;

I for every non-arc a9 b there exist µ vertices c such
that a ⇀ c ⇀ b;

The adjacency matrix A defined by (A)a,b = 1 if a ⇀ b:

A2 = tI + λA + µ(J− I− A),
AJ = JA = kJ.

A is diagonalizable with 3 eigenspaces:

A ∈ 〈E0,E1,E2〉 and Ej ∈ 〈A, I, J〉

J�orgensen (2003); Godsil, Hobart, Martin (2007)
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Mixed Moore graphs
A mixed Moore graph ( 6' C5 or

−→
C3) is a DSRG(v, k, t, 0, 1),

t = c2+3
4

for an odd integer c > 0 with c|(4z − 3)(4z + 5).
Bosák (1979)

(For every pair of vertices a, b, there is a unique path
a ⇀ . . . ⇀ b of length at most 2.)

The known Mixed Moore graphs:

I t = 1: the Kautz digraphs;
Gimbert (2001)

I t > 1: only three graphs are known:
I the Bosák graph (18, 4, 3, 0, 1);
I the two J�orgensen graphs (108, 10, 3, 0, 1) (2015).

I All three known graphs with t > 1 are Cayley graphs;

I There are no other mixed Moore-Cayley graphs with
v ≤ 485.

Erskine (2017)
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Mixed Moore-Cayley graphs

A ∈ 〈E0,E1,E2〉 and Ej ∈ 〈A, I, J〉

Re-define:

α0(g) := Trace(XgI) = #{x ∈ V | x = xg},
α1(g) := Trace(XgA) = #{x ∈ V | x ⇀ xg},

so that Trace(XgEj) is a linear combination of α0(g), α1(g).

The eigenvalues of DSRGs are always integral, so by
applying Q-representation theory we obtain that the
functions αi(g) are constant on rational classes.



Mixed Moore-Cayley graphs

A ∈ 〈E0,E1,E2〉 and Ej ∈ 〈A, I, J〉

Re-define:

α0(g) := Trace(XgI) = #{x ∈ V | x = xg},
α1(g) := Trace(XgA) = #{x ∈ V | x ⇀ xg},

so that Trace(XgEj) is a linear combination of α0(g), α1(g).

The eigenvalues of DSRGs are always integral, so by
applying Q-representation theory we obtain that the
functions αi(g) are constant on rational classes.



Mixed Moore-Cayley graphs

A ∈ 〈E0,E1,E2〉 and Ej ∈ 〈A, I, J〉

Re-define:

α0(g) := Trace(XgI) = #{x ∈ V | x = xg},
α1(g) := Trace(XgA) = #{x ∈ V | x ⇀ xg},

so that Trace(XgEj) is a linear combination of α0(g), α1(g).

The eigenvalues of DSRGs are always integral, so by
applying Q-representation theory we obtain that the
functions αi(g) are constant on rational classes.



Mixed Moore-Cayley graphs

Example:
suppose that a DSRG(88, 9, 3, 0, 1) is a Cayley graph.
Then Aut(Γ) has an element g with |g| = 11 and α0(g) = 0.
By Higman’s observation, α1(g) ∈ {11, 44, 77}.

x

xg

xg
2

. . .

xg
p−1

. . .

α1(g)
|g| = the number of “cyclic” (x ⇀ xg) orbits
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Mixed Moore-Cayley graphs
Suppose α1(g) = 11:

α1(g) = α1(g
2) = . . . = α1(g

10)

and α1(g) + α1(g
2) + . . .+ α1(g

9) = 99 > 88, so there exists
i, 2 ≤ i ≤ 9, such that x ⇀ xg

i
:
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Mixed Moore-Cayley graphs

This rules out mixed Moore-Cayley graphs of orders 88,
204, 238, 368, 460, . . ..



Graham Higman

Thank you!

(by Norman Blamey, 1984)


