The Graham Higman method and beyond

Alexander Gavrilyuk

Pusan National University (Busan, Korea)

Symmetry vs Regularity Pilsen, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Regularity: association schemes
- ▶ Symmetry: automorphisms of association schemes
- ▶ The Graham Higman "method":

Outline

- Higman's observation
- Survey of its various applications and extensions

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

▶ Regularity: association schemes

- ▶ Symmetry: automorphisms of association schemes
- ▶ The Graham Higman "method":

Outline

- Higman's observation
- Survey of its various applications and extensions

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- ▶ Regularity: association schemes
- ▶ Symmetry: automorphisms of association schemes
- ▶ The Graham Higman "method":

Outline

- Higman's observation
- Survey of its various applications and extensions

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- ▶ Regularity: association schemes
- ▶ Symmetry: automorphisms of association schemes
- ▶ The Graham Higman "method":

Outline

- Higman's observation
- Survey of its various applications and extensions

うして ふゆう ふほう ふほう ふしつ

- ▶ Regularity: association schemes
- ▶ Symmetry: automorphisms of association schemes
- ▶ The Graham Higman "method":

Outline

- Higman's observation
- Survey of its various applications and extensions

(日) (日) (日) (日) (日) (日) (日) (日)

Adjacency matrices of a (symmetric) association scheme \mathcal{S} :

$$\mathsf{A}_0(=\mathsf{I}), \mathsf{A}_1, \dots, \mathsf{A}_D \in \mathbb{R}^{V \times V}$$

Eigenspaces:

The first eigenmatrix P

ション ふゆ マ キャット マックシン

$$\mathsf{E}_j: \mathbb{R}^V \mapsto \mathbf{W}_j$$

Adjacency matrices of a (symmetric) association scheme \mathcal{S} :

$$\mathsf{A}_0(=\mathsf{I}), \mathsf{A}_1, \dots, \mathsf{A}_D \in \mathbb{R}^{V \times V}$$

Eigenspaces:

The first eigenmatrix P

ション ふゆ マ キャット マックシン

$$\mathsf{E}_j: \mathbb{R}^V \mapsto \mathbf{W}_j$$

Adjacency matrices of a (symmetric) association scheme \mathcal{S} :

$$\mathsf{A}_0(=\mathsf{I}), \mathsf{A}_1, \dots, \mathsf{A}_D \in \mathbb{R}^{V \times V}$$

Eigenspaces:

The first eigenmatrix ${\sf P}$

ション ふゆ マ キャット マックシン

$$\mathsf{E}_j:\; \mathbb{R}^V\mapsto \mathbf{W}_j$$

Adjacency matrices of a (symmetric) association scheme \mathcal{S} :

$$\mathsf{A}_0(=\mathsf{I}), \mathsf{A}_1, \dots, \mathsf{A}_D \in \mathbb{R}^{V \times V}$$

Eigenspaces:

The first eigenmatrix P

ション ふゆ マ キャット マックシン

$$\mathsf{E}_j: \mathbb{R}^V \mapsto \mathbf{W}_j$$

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

The second eigenmatrix Q

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

The second eigenmatrix Q

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

The second eigenmatrix Q

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two bases of the Bose-Mesner algebra:

$$\langle \mathsf{A}_0, \mathsf{A}_1, \dots, \mathsf{A}_D \rangle = \langle \mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_D \rangle$$

 $\mathsf{E}_j = \frac{1}{|V|} \sum_{i=0}^D Q_{ji} \mathsf{A}_i$

The second eigenmatrix ${\sf Q}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to \operatorname{a}$ permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

 $\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$ and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with n = |g|, the order of g,

$$X_g A_i X_g^{-1} = A_i$$
, i.e., $X_g A_i = A_i X_g$ for all $i = 0, 1, \dots, D$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g}E_{j}X_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(X_{g}A_{i}X_{g}^{-1})}_{A_{i}} = E_{j}$$

and so $X_{g}E_{j} = E_{j}X_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

 $X_g^T = X_g^{-1}$ and $X_g^n = I$ with n = |g|, the order of g,

$$X_g A_i X_g^{-1} = A_i$$
, i.e., $X_g A_i = A_i X_g$ for all $i = 0, 1, \dots, D$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_i(\mathsf{X}_g\overline{w}) = \mathsf{X}_g(\mathsf{A}_i\overline{w}) = P_{ij} \cdot \mathsf{X}_g\overline{w} \text{ for } \overline{w} \in \mathbf{W}_j$$

$$X_{g}E_{j}X_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(X_{g}A_{i}X_{g}^{-1})}_{A_{i}} = E_{j}$$

and so $X_{g}E_{j} = E_{j}X_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

$$\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$$
 and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with $n = |g|$, the order of g ,

$$X_g A_i X_g^{-1} = A_i$$
, i.e., $X_g A_i = A_i X_g$ for all $i = 0, 1, \dots, D$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g}E_{j}X_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(X_{g}A_{i}X_{g}^{-1})}_{A_{i}} = E_{j}$$

and so $X_{g}E_{j} = E_{j}X_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

$$\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$$
 and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with $n = |g|$, the order of g ,

$$\mathsf{X}_{g}\mathsf{A}_{i}\mathsf{X}_{g}^{-1} = \mathsf{A}_{i}, \text{i.e.}, \mathsf{X}_{g}\mathsf{A}_{i} = \mathsf{A}_{i}\mathsf{X}_{g} \text{ for all } i = 0, 1, \dots, D$$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g}E_{j}X_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(X_{g}A_{i}X_{g}^{-1})}_{A_{i}} = E_{j}$$

and so $X_{g}E_{j} = E_{j}X_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

$$\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$$
 and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with $n = |g|$, the order of g ,

$$\mathsf{X}_{g}\mathsf{A}_{i}\mathsf{X}_{g}^{-1} = \mathsf{A}_{i}, \text{i.e.}, \mathsf{X}_{g}\mathsf{A}_{i} = \mathsf{A}_{i}\mathsf{X}_{g} \text{ for all } i = 0, 1, \dots, D$$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g}E_{j}X_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(X_{g}A_{i}X_{g}^{-1})}_{A_{i}} = E_{j}$$

and so $X_{g}E_{j} = E_{j}X_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

$$\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$$
 and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with $n = |g|$, the order of g ,

$$\mathsf{X}_{g}\mathsf{A}_{i}\mathsf{X}_{g}^{-1} = \mathsf{A}_{i}$$
, i.e., $\mathsf{X}_{g}\mathsf{A}_{i} = \mathsf{A}_{i}\mathsf{X}_{g}$ for all $i = 0, 1, \dots, D$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g} \mathsf{E}_{j} \mathsf{X}_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(\mathsf{X}_{g} \mathsf{A}_{i} \mathsf{X}_{g}^{-1})}_{\mathsf{A}_{i}} = \mathsf{E}_{j}$$

and so $\mathsf{X}_{g} \mathsf{E}_{j} = \mathsf{E}_{j} \mathsf{X}_{g}$

 $G \leq \operatorname{Aut}(\mathcal{S})$: permutations on V that preserve the relations $g \in G \to$ a permutation matrix $X_g \in \mathbb{R}^{V \times V}$:

$$\mathsf{X}_{g}^{T} = \mathsf{X}_{g}^{-1}$$
 and $\mathsf{X}_{g}^{n} = \mathsf{I}$ with $n = |g|$, the order of g ,

$$\mathsf{X}_{g}\mathsf{A}_{i}\mathsf{X}_{g}^{-1} = \mathsf{A}_{i}$$
, i.e., $\mathsf{X}_{g}\mathsf{A}_{i} = \mathsf{A}_{i}\mathsf{X}_{g}$ for all $i = 0, 1, \dots, D$

Every eigenspace \mathbf{W}_j is *G*-invariant:

$$\mathsf{A}_{i}(\mathsf{X}_{g}\overline{w}) = \mathsf{X}_{g}(\mathsf{A}_{i}\overline{w}) = P_{ij} \cdot \mathsf{X}_{g}\overline{w} \text{ for } \overline{w} \in \mathbf{W}_{j}$$

$$X_{g}\mathsf{E}_{j}\mathsf{X}_{g}^{-1} = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \underbrace{(\mathsf{X}_{g}\mathsf{A}_{i}\mathsf{X}_{g}^{-1})}_{\mathsf{A}_{i}} = \mathsf{E}_{j}$$

and so $\mathsf{X}_{g}\mathsf{E}_{j} = \mathsf{E}_{j}\mathsf{X}_{g}$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$(X_g E_j)^{|g|} = (X_g)^{|g|} (E_j)^{|g|} \qquad (by X_g E_j = E_j X_g)$$
$$= (E_j)^{|g|} \qquad (by X_g^{|g|} = I)$$
$$= E_j$$
$$\Rightarrow$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|. <u>the sum of eigenvalues</u> \in algebraic integers $\|$ $\operatorname{Trace}(X_g E_j) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(X_g A_i)$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$\begin{aligned} (\mathsf{X}_g\mathsf{E}_j)^{|g|} &= (\mathsf{X}_g)^{|g|}(\mathsf{E}_j)^{|g|} & \text{(by } \mathsf{X}_g\mathsf{E}_j = \mathsf{E}_j\mathsf{X}_g) \\ &= (\mathsf{E}_j)^{|g|} & \text{(by } \mathsf{X}_g^{|g|} = \mathsf{I}) \\ &= \mathsf{E}_j \\ &\Rightarrow \end{aligned}$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|. the sum of eigenvalues \in algebraic integers $\|$ $\operatorname{Trace}(X_g E_j) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(X_g A_i)$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$(\mathsf{X}_{g}\mathsf{E}_{j})^{|g|} = (\mathsf{X}_{g})^{|g|}(\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}\mathsf{E}_{j} = \mathsf{E}_{j}\mathsf{X}_{g})$$
$$= (\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}^{|g|} = \mathsf{I})$$
$$= \mathsf{E}_{j}$$
$$\Rightarrow$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|.

the sum of eigenvalues
$$\in$$
 algebraic integers

$$\|$$

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$(\mathsf{X}_{g}\mathsf{E}_{j})^{|g|} = (\mathsf{X}_{g})^{|g|}(\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}\mathsf{E}_{j} = \mathsf{E}_{j}\mathsf{X}_{g})$$
$$= (\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}^{|g|} = \mathsf{I})$$
$$= \mathsf{E}_{j}$$
$$\Rightarrow$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|. the sum of eigenvalues \in algebraic integers $\|$ $\operatorname{Trace}(X_g E_j) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(X_g A_i)$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$(\mathsf{X}_{g}\mathsf{E}_{j})^{|g|} = (\mathsf{X}_{g})^{|g|}(\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}\mathsf{E}_{j} = \mathsf{E}_{j}\mathsf{X}_{g})$$
$$= (\mathsf{E}_{j})^{|g|} \qquad (\text{by } \mathsf{X}_{g}^{|g|} = \mathsf{I})$$
$$= \mathsf{E}_{j}$$
$$\Rightarrow$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|. <u>the sum of eigenvalues</u> \in algebraic integers $\|$ $\operatorname{Trace}(X_g E_j) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(X_g A_i)$

 E_j is a projection matrix $\Rightarrow E_j^2 = E_j$, and so the eigenvalues of E_j are only 1's and 0's. Now:

$$\begin{aligned} (\mathsf{X}_{g}\mathsf{E}_{j})^{|g|} &= (\mathsf{X}_{g})^{|g|}(\mathsf{E}_{j})^{|g|} & \text{(by } \mathsf{X}_{g}\mathsf{E}_{j} = \mathsf{E}_{j}\mathsf{X}_{g}) \\ &= (\mathsf{E}_{j})^{|g|} & \text{(by } \mathsf{X}_{g}^{|g|} = \mathsf{I}) \\ &= \mathsf{E}_{j} \\ &\Rightarrow \end{aligned}$$

non-zero eigenvalues of $X_g E_j$ are roots of unity of order |g|. <u>the sum of eigenvalues</u> \in algebraic integers $\|$ $\operatorname{Trace}(X_g E_j) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(X_g A_i)$

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

is an algebraic integer, and

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \#\{v \in V \mid (v, v^{g}) \in R_{i}\}$$

In particular, if all the eigenvalues P_{ij} are integers:

• all Q_{ji} are rational by $\mathsf{PQ} = |V|\mathsf{I}$,

• Trace($X_g A_i$) is an integer by definition, ad thus

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

is an algebraic integer, and

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \#\{v \in V \mid (v, v^{g}) \in R_{i}\}$$

In particular, if all the eigenvalues P_{ij} are integers:

• all Q_{ji} are rational by $\mathsf{PQ} = |V|\mathsf{I}$,

• Trace($X_g A_i$) is an integer by definition,

and thus

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

is an algebraic integer, and

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \#\{v \in V \mid (v, v^{g}) \in R_{i}\}$$

In particular, if all the eigenvalues P_{ij} are integers:

- all Q_{ji} are rational by $\mathsf{PQ} = |V|\mathsf{I}$,
- Trace($X_g A_i$) is an integer by definition,

and thus

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji} \operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

is an algebraic integer, and

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \#\{v \in V \mid (v, v^{g}) \in R_{i}\}\$$

In particular, if all the eigenvalues P_{ij} are integers:

- all Q_{ji} are rational by $\mathsf{PQ} = |V|\mathsf{I}$,
- Trace($X_g A_i$) is an integer by definition,

and thus

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{j}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{ji}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i})$$

Moore graphs

Let Γ be a (undirected) graph:

- regular of valency k,
- of diameter D,
- of (odd) girth γ ,
- \blacktriangleright on N vertices,

then (Hoffman & Singleton, 1960)

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

If any of these bounds is attained (Damerell, Bannai&Ito):

Moore graphs

Let Γ be a (undirected) graph:

- regular of valency k,
- of diameter D,
- of (odd) girth γ ,
- \blacktriangleright on N vertices,

then (Hoffman&Singleton, 1960)

$$N \le 1 + k + k(k-1) + \ldots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \ldots + k(k-1)^{\frac{\gamma-3}{2}}.$$

If any of these bounds is attained (Damerell, Bannai&Ito):

Moore graphs

Let Γ be a (undirected) graph:

- regular of valency k,
- of diameter D,
- of (odd) girth γ ,
- on N vertices,

then (Hoffman&Singleton, 1960)

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

If any of these bounds is attained (Damerell, Bannai&Ito):

naa
Moore graphs

Let Γ be a (undirected) graph:

- regular of valency k,
- of diameter D,
- of (odd) girth γ ,
- on N vertices,

then (Hoffman&Singleton, 1960)

$$N \le 1 + k + k(k-1) + \ldots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \ldots + k(k-1)^{\frac{\gamma-3}{2}}.$$

If any of these bounds is attained (Damerell, Bannai&Ito):

nar

Theorem (G. Higman, unpublished) A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Theorem (G. Higman, unpublished)

A Moore graph \mathcal{M} of valency 57 is not vertex-transitive.

Suppose not: the number of vertices is 3250, so \mathcal{M} admits an involution g, and let Fix(g) be the set of its fixed points.

Step 3. If $x \not\sim x^g$ for any vertex x then |Fix(g)| = 58. Step 4. $|\text{Fix}(g)| \neq 58$ (by Higman's observation). A Moore graph of diameter 2 is strongly regular. $P = \begin{pmatrix} 1 & 1 & 1 \\ 57 & -8 & 7 \end{pmatrix}, Q = \begin{pmatrix} 1 & 1 & 1 \\ 1520 & -\frac{640}{12} & \frac{10}{12} \end{pmatrix}$

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{1}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{1i}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \frac{1}{3250} (1520 \cdot \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{0})}_{58} - \frac{640}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{1})}_{0} + \frac{10}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{2})}_{3192})$$
$$\alpha_{i}(g) := \operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \#\{v \in V \mid (v, v^{g}) \in R_{i}\}$$

. . .

Step 3. If $x \not\sim x^g$ for any vertex x then |Fix(g)| = 58. **Step 4.** $|\text{Fix}(g)| \neq 58$ (by Higman's observation). A Moore graph of diameter 2 is strongly regular.

$$\mathsf{P} = \begin{pmatrix} 1 & 1 & 1\\ 57 & -8 & 7\\ 3192 & 7 & -8 \end{pmatrix}, \mathsf{Q} = \begin{pmatrix} 1 & 1 & 1\\ 1520 & -\frac{640}{3} & \frac{10}{3}\\ 1729 & \frac{637}{3} & -\frac{13}{3} \end{pmatrix}$$

$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{1}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{1i}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \frac{1}{3250} \left(1520 \cdot \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{0})}_{58} - \frac{640}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{1})}_{0} + \frac{10}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{2})}_{3192}\right)$$

. . .

Step 3. If $x \not\sim x^g$ for any vertex x then |Fix(g)| = 58. **Step 4.** $|\text{Fix}(g)| \neq 58$ (by Higman's observation). A Moore graph of diameter 2 is strongly regular.

$$\mathsf{P} = \begin{pmatrix} 1 & 1 & 1 \\ 57 & -8 & 7 \\ 3192 & 7 & -8 \end{pmatrix}, \mathsf{Q} = \begin{pmatrix} 1 & 1 & 1 \\ 1520 & -\frac{640}{3} & \frac{10}{3} \\ 1729 & \frac{637}{3} & -\frac{13}{3} \end{pmatrix}$$
$$\operatorname{Trace}(\mathsf{X}_{g}\mathsf{E}_{1}) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{1i}\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{i}) = \frac{1}{3250} (1520 \cdot \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{0})}_{58} - \frac{640}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{1})}_{0} + \frac{10}{3} \underbrace{\operatorname{Trace}(\mathsf{X}_{g}\mathsf{A}_{2})}_{3192}$$

 $\alpha_i(g) := \operatorname{Trace}(\mathsf{X}_g\mathsf{A}_i) = \#\{v \in V \mid (v, v^g) \in R_i\}$

. . .

Step 3. If $x \not\sim x^g$ for any vertex x then |Fix(g)| = 58. **Step 4.** $|\text{Fix}(g)| \neq 58$ (by Higman's observation). A Moore graph of diameter 2 is strongly regular.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 57 & -8 & 7 \\ 3192 & 7 & -8 \end{pmatrix}, Q = \begin{pmatrix} \frac{1}{1520} & \frac{1}{3} & \frac{1}{3} \\ 1729 & \frac{637}{3} & -\frac{13}{3} \end{pmatrix}$$
$$Trace(X_g E_1) = \frac{1}{|V|} \sum_{i=0}^{D} Q_{1i} Trace(X_g A_i) =$$
$$\frac{1}{3250} (1520 \cdot \underbrace{Trace(X_g A_0)}_{58} - \frac{640}{3} \underbrace{Trace(X_g A_1)}_{0} + \frac{10}{3} \underbrace{Trace(X_g A_2)}_{3192})$$
$$58 \qquad 0 \qquad 3192$$
$$\alpha_i(g) := Trace(X_g A_i) = \#\{v \in V \mid (v, v^g) \in R_i\}$$

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ▶ to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ▶ study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.

(日) (日) (日) (日) (日) (日) (日) (日)

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ► to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ▶ study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ► to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ▶ study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ► to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ► study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ▶ to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ► study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.

"... The method has not been widely applied, since knowledge of the numbers $\alpha_i(g)$ is not easy to come by." P. Cameron, "Permutation groups" (1999)

Objectives:

- to prove non-existence of DRGs Γ with given intersection numbers and prescribed symmetries,
- ► to construct / find all DRGs with prescribed symmetries.

Recipe:

- determine $g \in \operatorname{Aut}(\Gamma)$ of prime order with $\operatorname{Fix}(g) = \emptyset$,
- ► study $g \in \operatorname{Aut}(\Gamma)$ of prime order and the subgraphs induced by $\operatorname{Fix}(g)$ with $\operatorname{Fix}(g) \neq \emptyset$,
- determine possible automorphisms of order pq, p^2 , etc.
- recognize $\operatorname{Aut}(\Gamma)$.

Generalized polygons

The incidence graph of a point-line incidence structure:

Generalized polygons (Tits, 1959):

- the girth is twice the diameter n (a generalized n-gon);
- ▶ generalize Moore graphs (the case of even girth);
- of order (s, t) if \forall line has s + 1 points and \forall point is on t + 1 lines $\Rightarrow n \in \{2, 3, 4, 6, 8\}$ if $s \ge 2, t \ge 2$; (Feit-Higman, 1964)
- the collinearity graph is distance-regular if n > 2;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Generalized polygons

The incidence graph of a point-line incidence structure:

Generalized polygons (Tits, 1959):

- the girth is twice the diameter n (a generalized n-gon);
- ▶ generalize Moore graphs (the case of even girth);
- of order (s,t) if \forall line has s+1 points and \forall point is on t+1 lines $\Rightarrow n \in \{2,3,4,6,8\}$ if $s \ge 2, t \ge 2;$ (Feit-Higman, 1964)
- the collinearity graph is distance-regular if n > 2;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Generalized polygons

The incidence graph of a point-line incidence structure:

Generalized polygons (Tits, 1959):

- the girth is twice the diameter n (a generalized n-gon);
- ▶ generalize Moore graphs (the case of even girth);
- of order (s,t) if \forall line has s+1 points and \forall point is on t+1 lines $\Rightarrow n \in \{2,3,4,6,8\}$ if $s \ge 2, t \ge 2$; (Feit-Higman, 1964)
- the collinearity graph is distance-regular if n > 2;

Benson's theorem

Theorem (C.T. Benson, 1970)

Let g be an automorphism of a GQ(s,t) with α_0 fixed points and α_1 points x such that x is collinear to x^g . Then

$$\frac{1}{s+t}((t+1)\alpha_0 + \alpha_1 - (1+s)(1+t))$$

is an integer.

"... a method of Feit and Higman is extended to provide restrictions on s and t when certain natural automorphisms are present."

Benson, "On the structure of Generalized Quadrangles" (1970)

This result has been generalized by Temmermans, Thas, Van Maldeghem (2009) in "On collineations and dualities of finite generalized polygons".

Benson's theorem

Theorem (C.T. Benson, 1970)

Let g be an automorphism of a GQ(s,t) with α_0 fixed points and α_1 points x such that x is collinear to x^g . Then

$$\frac{1}{s+t}((t+1)\alpha_0 + \alpha_1 - (1+s)(1+t))$$

is an integer.

"... a method of Feit and Higman is extended to provide restrictions on s and t when certain natural automorphisms are present."

Benson, "On the structure of Generalized Quadrangles" (1970)

This result has been generalized by Temmermans, Thas, Van Maldeghem (2009) in "On collineations and dualities of finite generalized polygons".

Benson's theorem

Theorem (C.T. Benson, 1970)

Let g be an automorphism of a GQ(s,t) with α_0 fixed points and α_1 points x such that x is collinear to x^g . Then

$$\frac{1}{s+t}((t+1)\alpha_0 + \alpha_1 - (1+s)(1+t))$$

is an integer.

"... a method of Feit and Higman is extended to provide restrictions on s and t when certain natural automorphisms are present."

Benson, "On the structure of Generalized Quadrangles" (1970)

This result has been generalized by Temmermans, Thas, Van Maldeghem (2009) in "On collineations and dualities of finite generalized polygons". Various applications of Higman's observation

Theorem (Makhnev, Paduchikh, 2001, 2009) Let Γ be a Moore graph of valency 57, and $G = \operatorname{Aut}(\Gamma)$. Then $|G| \leq 550$ if |G| is even.

Theorem (Makhnev, Belousov, 2009)

Let Γ be a DRG with intersection array {84, 81, 81; 1, 1, 28}, and let Aut(Γ) act transitively on the vertex set of Γ . Then $\Gamma \cong GH(3, 27)$ with Aut(Γ) \cong ${}^{3}D_{4}(3)$.

Theorem (Makhnev, Belousov, 2008) Let Γ be a DRG with intersection array $\{10, 8, 8, 8; 1, 1, 1, 5\}$, and let Aut(Γ) act transitively on the vertex set of Γ . Then $\Gamma \cong GO(2, 4)$ with Aut(Γ) $\cong {}^{2}F_{4}(2)'$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Various applications of Higman's observation

Theorem (Makhnev, Paduchikh, 2001, 2009) Let Γ be a Moore graph of valency 57, and $G = \text{Aut}(\Gamma)$.

Then $|G| \leq 550$ if |G| is even.

Theorem (Makhnev, Belousov, 2009)

Let Γ be a DRG with intersection array $\{84, 81, 81; 1, 1, 28\}$, and let Aut(Γ) act transitively on the vertex set of Γ . Then $\Gamma \cong GH(3, 27)$ with Aut(Γ) $\cong {}^{3}D_{4}(3)$.

Theorem (Makhnev, Belousov, 2008)

Let Γ be a DRG with intersection array $\{10, 8, 8, 8; 1, 1, 1, 5\}$, and let $\operatorname{Aut}(\Gamma)$ act transitively on the vertex set of Γ . Then $\Gamma \cong GO(2, 4)$ with $\operatorname{Aut}(\Gamma) \cong {}^{2}F_{4}(2)'$.

Higman's observation via the character theory

 $g \mapsto \mathsf{X}_g$ is a linear representation ρ of G in \mathbb{R}^V with the (permutation) character $\pi(g) = \operatorname{Trace}(\mathsf{X}_g)$.

As every eigenspace \mathbf{W}_j is *G*-invariant, the restriction

 $\rho|_{\mathbf{W}_j}: G \to GL(\mathbf{W}_j)$

is a linear representation of G in \mathbf{W}_j with the character given by

 $\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j),$

which thus must be an algebraic integer for any $g \in G$.

Higman's observation via the character theory

 $g \mapsto \mathsf{X}_g$ is a linear representation ρ of G in \mathbb{R}^V with the (permutation) character $\pi(g) = \operatorname{Trace}(\mathsf{X}_g)$.

As every eigenspace \mathbf{W}_j is *G*-invariant, the restriction

 $\rho|_{\mathbf{W}_j}: G \to GL(\mathbf{W}_j)$

is a linear representation of G in \mathbf{W}_j with the character given by

 $\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j),$

which thus must be an algebraic integer for any $g \in G$.

Higman's observation via the character theory

 $g \mapsto \mathsf{X}_g$ is a linear representation ρ of G in \mathbb{R}^V with the (permutation) character $\pi(g) = \operatorname{Trace}(\mathsf{X}_g)$.

As every eigenspace \mathbf{W}_j is *G*-invariant, the restriction

$$\rho|_{\mathbf{W}_j}: G \to GL(\mathbf{W}_j)$$

is a linear representation of G in \mathbf{W}_j with the character given by

$$\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j),$$

which thus must be an algebraic integer for any $g \in G$.

Mačaj and Širáň (2010) further developed this observation:

- ▶ if the eigenvalue corresponding to W_j is integer, then
 W_j has a basis over Q;
- A linear representation in \mathbf{W}_j is thus rational;
- \mathbb{Q} has characteristic 0, and by Maschke's Theorem $\rho|_{\mathbf{W}_j}$ is decomposed into rational representations that are irreducible over \mathbb{Q} ;
- elements x, y of a group H are in the same \mathbb{Q} -class of $H \Leftrightarrow \langle x \rangle, \langle y \rangle$ are conjugate subgroups of H;
- ▶ the number of irreducible \mathbb{Q} -representations of H = the number of \mathbb{Q} -classes of H.
- ▶ a rational character is constant on rational classes.

Mačaj and Širáň (2010) further developed this observation:

- ▶ if the eigenvalue corresponding to W_j is integer, then
 W_j has a basis over Q;
- A linear representation in \mathbf{W}_j is thus rational;
- ▶ Q has characteristic 0, and by Maschke's Theorem ρ|_{W_j} is decomposed into rational representations that are irreducible over Q;
- elements x, y of a group H are in the same \mathbb{Q} -class of $H \Leftrightarrow \langle x \rangle, \langle y \rangle$ are conjugate subgroups of H;
- ▶ the number of irreducible \mathbb{Q} -representations of H = the number of \mathbb{Q} -classes of H.
- ▶ a rational character is constant on rational classes.

Mačaj and Širáň (2010) further developed this observation:

- ▶ if the eigenvalue corresponding to W_j is integer, then
 W_j has a basis over Q;
- A linear representation in \mathbf{W}_j is thus rational;
- ▶ Q has characteristic 0, and by Maschke's Theorem ρ|_{W_j} is decomposed into rational representations that are irreducible over Q;
- elements x, y of a group H are in the same \mathbb{Q} -class of $H \Leftrightarrow \langle x \rangle, \langle y \rangle$ are conjugate subgroups of H;
- ▶ the number of irreducible \mathbb{Q} -representations of H = the number of \mathbb{Q} -classes of H.
- ▶ a rational character is constant on rational classes.

Mačaj and Širáň (2010) further developed this observation:

- ▶ if the eigenvalue corresponding to W_j is integer, then
 W_j has a basis over Q;
- A linear representation in \mathbf{W}_j is thus rational;
- ▶ Q has characteristic 0, and by Maschke's Theorem ρ|_{W_j} is decomposed into rational representations that are irreducible over Q;
- elements x, y of a group H are in the same \mathbb{Q} -class of $H \Leftrightarrow \langle x \rangle, \langle y \rangle$ are conjugate subgroups of H;
- ▶ the number of irreducible \mathbb{Q} -representations of H = the number of \mathbb{Q} -classes of H.
- ▶ a rational character is constant on rational classes.

Mačaj and Širáň (2010) further developed this observation:

- ▶ if the eigenvalue corresponding to W_j is integer, then
 W_j has a basis over Q;
- A linear representation in \mathbf{W}_j is thus rational;
- ▶ Q has characteristic 0, and by Maschke's Theorem ρ|_{W_j} is decomposed into rational representations that are irreducible over Q;
- elements x, y of a group H are in the same \mathbb{Q} -class of $H \Leftrightarrow \langle x \rangle, \langle y \rangle$ are conjugate subgroups of H;
- ▶ the number of irreducible \mathbb{Q} -representations of H = the number of \mathbb{Q} -classes of H.
- ▶ a rational character is constant on rational classes.
For a finite group H, let:

- ▶ x_1, x_2, \ldots, x_u be representatives of the Q-classes of H,
- ► $R_1, R_2, ..., R_u$ be the irreducible Q-representations of H with characters $\sigma_1, \sigma_2, ..., \sigma_u$.

Then, for any rational representation of H with character χ , the system of linear equation with the matrix $\begin{pmatrix} \sigma_1(x_1) & \dots & \sigma_u(x_1) \ \chi(x_1) \end{pmatrix}$

 $\int \sigma_1(x_u) \dots \sigma_u(x_u) | \chi(x_u) \rangle$ has a solution in non-negative integers c_1, c_2, \dots, c_u :

$$\chi = c_1 \sigma_1 + \ldots + c_u \sigma_u.$$

$$\begin{pmatrix} 1 & p-1 & m_j \\ 1 & -1 & \chi_j(g) \end{pmatrix}$$

For a finite group H, let:

- x_1, x_2, \ldots, x_u be representatives of the Q-classes of H,
- R_1, R_2, \ldots, R_u be the irreducible Q-representations of H with characters $\sigma_1, \sigma_2, \ldots, \sigma_u$.

Then, for any rational representation of H with character χ , the system of linear equation with the matrix $\begin{pmatrix}
\sigma_1(x_1) & \dots & \sigma_u(x_1) & \chi(x_1) \\
\dots & \dots & \dots & \dots & \\
\sigma_1(x_u) & \dots & \sigma_u(x_u) & \chi(x_u)
\end{pmatrix}$ has a solution in non-negative integers c_1, c_2, \dots, c_n :

$$\chi = c_1 \sigma_1 + \ldots + c_u \sigma_u.$$

$$\left(\begin{array}{cc|c} 1 & p-1 & m_j \\ 1 & -1 & \chi_j(g) \end{array}\right)$$

For a finite group H, let:

- ▶ x_1, x_2, \ldots, x_u be representatives of the Q-classes of H,
- R_1, R_2, \ldots, R_u be the irreducible Q-representations of H with characters $\sigma_1, \sigma_2, \ldots, \sigma_u$.

Then, for any rational representation of H with character χ , the system of linear equation with the matrix $\begin{pmatrix} \sigma_1(x_1) & \dots & \sigma_u(x_1) & \chi(x_1) \\ \dots & \dots & & \ddots \\ \sigma_1(x_u) & \dots & \sigma_u(x_u) & \chi(x_u) \end{pmatrix}$ has a solution in non-negative integers c_1, c_2, \dots, c_u :

$$\chi = c_1 \sigma_1 + \ldots + c_u \sigma_u.$$

$$\begin{pmatrix} 1 & p-1 & m_j \\ 1 & -1 & \chi_j(g) \end{pmatrix}$$

For a finite group H, let:

- x_1, x_2, \ldots, x_u be representatives of the Q-classes of H,
- R_1, R_2, \ldots, R_u be the irreducible Q-representations of H with characters $\sigma_1, \sigma_2, \ldots, \sigma_u$.

Then, for any rational representation of H with character χ , the system of linear equation with the matrix $\begin{pmatrix} \sigma_1(x_1) & \dots & \sigma_u(x_1) & \chi(x_1) \\ \dots & \dots & & \ddots \\ \sigma_1(x_u) & \dots & \sigma_u(x_u) & \chi(x_u) \end{pmatrix}$ has a solution in non-negative integers c_1, c_2, \dots, c_u :

$$\chi = c_1 \sigma_1 + \ldots + c_u \sigma_u.$$

$$\begin{pmatrix} 1 & p-1 & m_j \\ 1 & -1 & \chi_j(g) \end{pmatrix}$$

For a finite group H, let:

- ▶ x_1, x_2, \ldots, x_u be representatives of the Q-classes of H,
- R_1, R_2, \ldots, R_u be the irreducible Q-representations of H with characters $\sigma_1, \sigma_2, \ldots, \sigma_u$.

Then, for any rational representation of H with character χ , the system of linear equation with the matrix $\begin{pmatrix} \sigma_1(x_1) & \dots & \sigma_u(x_1) & \chi(x_1) \\ \dots & \dots & \dots & \dots \\ \sigma_1(x_u) & \dots & \sigma_u(x_u) & \chi(x_u) \end{pmatrix}$ has a solution in non-negative integers c_1, c_2, \dots, c_u :

$$\chi = c_1 \sigma_1 + \ldots + c_u \sigma_u.$$

$$\begin{pmatrix} 1 & p-1 & m_j \\ 1 & -1 & \chi_j(g) \end{pmatrix}$$

Update on the Moore valency 57 graph problem

$$\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j) = \frac{1}{|V|} \sum_{i=0}^D Q_{ji}\alpha_i(g)$$

so

$$(\chi_0(g),\chi_1(g),\ldots,\chi_D(g))^T = \frac{1}{|V|} \mathbf{Q} \cdot (\alpha_0(g),\alpha_1(g),\ldots,\alpha_D(g))^T$$

Corollary (Mačaj and Širáň, 2010)

If all eigenvalues of an association scheme are integral, then the functions $\alpha_i(g)$ are constant on rational classes. In particular, $\alpha_i(g) = \alpha_i(g^2) = \ldots = \alpha_i(g^{|g|-1})$ if |g| is a prime.

Theorem (Mačaj and Širáň, 2010)

Let Γ be a Moore graph of valency 57, and $G = \operatorname{Aut}(\Gamma)$. Then $|G| \leq 375$, and $|G| \leq 110$ if |G| is even. Update on the Moore valency 57 graph problem

$$\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j) = \frac{1}{|V|} \sum_{i=0}^D Q_{ji}\alpha_i(g)$$

SO

$$(\chi_0(g),\chi_1(g),\ldots,\chi_D(g))^T = \frac{1}{|V|} \mathbf{Q} \cdot (\alpha_0(g),\alpha_1(g),\ldots,\alpha_D(g))^T$$

Corollary (Mačaj and Širáň, 2010)

If all eigenvalues of an association scheme are integral, then the functions $\alpha_i(g)$ are constant on rational classes. In particular, $\alpha_i(g) = \alpha_i(g^2) = \ldots = \alpha_i(g^{|g|-1})$ if |g| is a prime.

Theorem (Mačaj and Širáň, 2010)

Let Γ be a Moore graph of valency 57, and $G = \operatorname{Aut}(\Gamma)$. Then $|G| \leq 375$, and $|G| \leq 110$ if |G| is even. Update on the Moore valency 57 graph problem

$$\chi_j(g) = \operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j) = \frac{1}{|V|} \sum_{i=0}^D Q_{ji}\alpha_i(g)$$

SO

$$(\chi_0(g),\chi_1(g),\ldots,\chi_D(g))^T = \frac{1}{|V|} \mathsf{Q} \cdot (\alpha_0(g),\alpha_1(g),\ldots,\alpha_D(g))^T$$

Corollary (Mačaj and Širáň, 2010)

If all eigenvalues of an association scheme are integral, then the functions $\alpha_i(g)$ are constant on rational classes. In particular, $\alpha_i(g) = \alpha_i(g^2) = \ldots = \alpha_i(g^{|g|-1})$ if |g| is a prime.

Theorem (Mačaj and Širáň, 2010)

Let Γ be a Moore graph of valency 57, and $G = \operatorname{Aut}(\Gamma)$. Then $|G| \leq 375$, and $|G| \leq 110$ if |G| is even.

In 1998, Godsil, Liebler, Praeger classified antipodal distance-transitive covers of complete graphs. Their key observation was that $\operatorname{Aut}(\Gamma)$ of such a graph Γ induces a 2-transitive action on the set of fibres.

Tsiovkina noticed that it is enough to assume that $\operatorname{Aut}(\Gamma)$ acts transitively on arcs of Γ .

In a series of papers (2013-2017), Makhnev, Paduchikh and Tsiovkina classified arc-transitive distance-regular covers of complete graphs.

Besides distance-transitive graphs, they found several new examples including three infinite series related to Sz(q), $SU_3(q)$ and ${}^2G_2(q)$.

In 1998, Godsil, Liebler, Praeger classified antipodal distance-transitive covers of complete graphs. Their key observation was that $\operatorname{Aut}(\Gamma)$ of such a graph Γ induces a 2-transitive action on the set of fibres.

Tsiovkina noticed that it is enough to assume that $Aut(\Gamma)$ acts transitively on arcs of Γ .

In a series of papers (2013-2017), Makhnev, Paduchikh and Tsiovkina classified arc-transitive distance-regular covers of complete graphs.

Besides distance-transitive graphs, they found several new examples including three infinite series related to Sz(q), $SU_3(q)$ and ${}^2G_2(q)$.

In 1998, Godsil, Liebler, Praeger classified antipodal distance-transitive covers of complete graphs. Their key observation was that $\operatorname{Aut}(\Gamma)$ of such a graph Γ induces a 2-transitive action on the set of fibres.

Tsiovkina noticed that it is enough to assume that $Aut(\Gamma)$ acts transitively on arcs of Γ .

In a series of papers (2013-2017), Makhnev, Paduchikh and Tsiovkina classified arc-transitive distance-regular covers of complete graphs.

Besides distance-transitive graphs, they found several new examples including three infinite series related to Sz(q), $SU_3(q)$ and ${}^2G_2(q)$.

In 1998, Godsil, Liebler, Praeger classified antipodal distance-transitive covers of complete graphs. Their key observation was that $\operatorname{Aut}(\Gamma)$ of such a graph Γ induces a 2-transitive action on the set of fibres.

Tsiovkina noticed that it is enough to assume that $\operatorname{Aut}(\Gamma)$ acts transitively on arcs of Γ .

In a series of papers (2013-2017), Makhnev, Paduchikh and Tsiovkina classified arc-transitive distance-regular covers of complete graphs.

Besides distance-transitive graphs, they found several new examples including three infinite series related to Sz(q), $SU_3(q)$ and ${}^2G_2(q)$.

More recent results: partial difference sets Theorem (De Winter, Kamischke, Wang, 2014) Let Γ be an SRG on v vertices whose adjacency matrix has integer eigenvalues k, ν_2 and ν_3 . Let g be an automorphism of order n of Γ , and let μ () be the Möbius function. Then for every integer r and all positive divisors d of n, there are

non-negative integers a_d and b_d such that

$$k - r + \sum_{d|n} a_d \mu(d)(\nu_2 - r) + \sum_{d|n} b_d \mu(d)(\nu_3 - r) = -r\alpha_0(g) + \alpha_1(g)$$

Moreover, $a_1 + b_1 = c - 1$, where c is the number of cycles in the disjoint cycle decomposition of g, and $a_d + b_d = \sum_{d|\ell} c_\ell$, $d \neq 1$, where c_ℓ is the number of cycles of length ℓ of g.

Using this, they ruled out several open cases of partial difference sets in abelian groups (from the list of feasible parameters by S.L. Ma).

More recent results: partial difference sets Theorem (De Winter, Kamischke, Wang, 2014) Let Γ be an SRG on v vertices whose adjacency matrix has integer eigenvalues k, ν_2 and ν_3 . Let g be an automorphism of order n of Γ , and let μ () be the Möbius function. Then for every integer r and all positive divisors d of n, there are

non-negative integers a_d and b_d such that

$$k - r + \sum_{d|n} a_d \mu(d)(\nu_2 - r) + \sum_{d|n} b_d \mu(d)(\nu_3 - r) = -r\alpha_0(g) + \alpha_1(g)$$

Moreover, $a_1 + b_1 = c - 1$, where c is the number of cycles in the disjoint cycle decomposition of g, and $a_d + b_d = \sum_{d|\ell} c_\ell$, $d \neq 1$, where c_ℓ is the number of cycles of length ℓ of g.

Using this, they ruled out several open cases of partial difference sets in abelian groups (from the list of feasible parameters by S.L. Ma).

The Moore bounds

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

can be generalized to the cases of directed (arcs only) and mixed (with both edges and arcs) graphs.

► the only Moore digraph of diameter > 1 is $\overrightarrow{C_3}$; Plesnik, Znám (1974)

▶ no mixed Moore graph can exist for diameters > 2 Nguyen, Miller, Gimbert (2007)

 mixed Moore graphs of diameter 2 are directed SRGs introduced by Duval (1988).

The Moore bounds

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

can be generalized to the cases of directed (arcs only) and mixed (with both edges and arcs) graphs.

- ► the only Moore digraph of diameter > 1 is $\overrightarrow{C_3}$; Plesnik, Znám (1974)
- ▶ no mixed Moore graph can exist for diameters > 2 Nguyen, Miller, Gimbert (2007)
- ▶ mixed Moore graphs of diameter 2 are directed SRGs introduced by Duval (1988).

The Moore bounds

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

can be generalized to the cases of directed (arcs only) and mixed (with both edges and arcs) graphs.

▶ the only Moore digraph of diameter > 1 is $\overrightarrow{C_3}$; Plesnik, Znám (1974)

 \blacktriangleright no mixed Moore graph can exist for diameters >2 Nguyen, Miller, Gimbert (2007)

 mixed Moore graphs of diameter 2 are directed SRGs introduced by Duval (1988).

(日) (日) (日) (日) (日) (日) (日) (日)

The Moore bounds

$$N \le 1 + k + k(k-1) + \dots + k(k-1)^{D-1},$$

$$N \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{\gamma-3}{2}}.$$

can be generalized to the cases of directed (arcs only) and mixed (with both edges and arcs) graphs.

▶ the only Moore digraph of diameter > 1 is $\overrightarrow{C_3}$; Plesnik, Znám (1974)

- \blacktriangleright no mixed Moore graph can exist for diameters >2 Nguyen, Miller, Gimbert (2007)
- mixed Moore graphs of diameter 2 are directed SRGs introduced by Duval (1988).

- the total vertex degree is k = t + z:
 - every vertex is incident to t edges;
 - every vertex is incident to z in-arcs and z out-arcs;
- for every arc/edge $a \rightarrow b$ there exist λ vertices c such that $a \rightarrow c \rightarrow b$;
- for every non-arc $a \not\rightarrow b$ there exist μ vertices c such that $a \rightarrow c \rightarrow b$;

The adjacency matrix A defined by $(A)_{a,b} = 1$ if $a \rightarrow b$:

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$

AJ = JA = kJ.

A is diagonalizable with 3 eigenspaces:

 $A \in \langle E_0, E_1, E_2 \rangle$ and $E_j \in \langle A, I, J \rangle$ Jørgensen (2003); Godsil, Hobart, Martin (2007)

- the total vertex degree is k = t + z:
 - every vertex is incident to t edges;
 - every vertex is incident to z in-arcs and z out-arcs;
- for every arc/edge $a \rightharpoonup b$ there exist λ vertices c such that $a \rightharpoonup c \rightharpoonup b$;
- for every non-arc $a \not\rightarrow b$ there exist μ vertices c such that $a \rightarrow c \rightarrow b$;

The adjacency matrix A defined by $(A)_{a,b} = 1$ if $a \rightharpoonup b$:

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$

AJ = JA = kJ.

A is diagonalizable with 3 eigenspaces:

 $A \in \langle E_0, E_1, E_2 \rangle$ and $E_j \in \langle A, I, J \rangle$ Jørgensen (2003); Godsil, Hobart, Martin (2007)

- the total vertex degree is k = t + z:
 - every vertex is incident to t edges;
 - every vertex is incident to z in-arcs and z out-arcs;
- for every arc/edge $a \rightharpoonup b$ there exist λ vertices c such that $a \rightharpoonup c \rightharpoonup b$;
- ► for every non-arc $a \twoheadrightarrow b$ there exist μ vertices c such that $a \rightharpoonup c \rightharpoonup b$;

The adjacency matrix A defined by $(A)_{a,b} = 1$ if $a \rightarrow b$:

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$

AJ = JA = kJ.

A is diagonalizable with 3 eigenspaces:

 $\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle$ and $\mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

Jørgensen (2003); Godsil, Hobart, Martin (2007)

- the total vertex degree is k = t + z:
 - every vertex is incident to t edges;
 - every vertex is incident to z in-arcs and z out-arcs;
- for every arc/edge $a \rightharpoonup b$ there exist λ vertices c such that $a \rightharpoonup c \rightharpoonup b$;
- ► for every non-arc $a \twoheadrightarrow b$ there exist μ vertices c such that $a \rightharpoonup c \rightharpoonup b$;

The adjacency matrix A defined by $(A)_{a,b} = 1$ if $a \rightarrow b$:

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$

AJ = JA = kJ.

A is diagonalizable with 3 eigenspaces:

 $\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle$ and $\mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

Jørgensen (2003); Godsil, Hobart, Martin (2007)

- the total vertex degree is k = t + z:
 - every vertex is incident to t edges;
 - every vertex is incident to z in-arcs and z out-arcs;
- for every arc/edge $a \rightharpoonup b$ there exist λ vertices c such that $a \rightharpoonup c \rightharpoonup b$;
- for every non-arc $a \not\rightarrow b$ there exist μ vertices c such that $a \rightharpoonup c \rightharpoonup b$;

The adjacency matrix A defined by $(A)_{a,b} = 1$ if $a \rightarrow b$:

$$A^2 = tI + \lambda A + \mu (J - I - A), \\ AJ = JA = kJ.$$

A is diagonalizable with 3 eigenspaces:

$$\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle \text{ and } \mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$$

Jørgensen (2003); Godsil, Hobart, Martin (2007)

A mixed Moore graph ($\not\simeq C_5 \text{ or } \overrightarrow{C_3}$) is a DSRG(v, k, t, 0, 1), $t = \frac{c^2+3}{4}$ for an odd integer c > 0 with c|(4z-3)(4z+5). Bosák (1979)

(For every pair of vertices a, b, there is a unique path $a \rightarrow \ldots \rightarrow b$ of length at most 2.)

The known Mixed Moore graphs:

• t = 1: the Kautz digraphs;

Gimbert (2001)

- t > 1: only three graphs are known:
 - the Bosák graph (18, 4, 3, 0, 1);
 - the two Jørgensen graphs (108, 10, 3, 0, 1) (2015).
- All three known graphs with t > 1 are Cayley graphs;
- ▶ There are no other mixed Moore-Cayley graphs with $v \leq 485$.

A mixed Moore graph ($\not\simeq C_5 \text{ or } \overrightarrow{C_3}$) is a DSRG(v, k, t, 0, 1), $t = \frac{c^2+3}{4}$ for an odd integer c > 0 with c|(4z-3)(4z+5). Bosák (1979)

(For every pair of vertices a, b, there is a unique path $a \rightarrow \ldots \rightarrow b$ of length at most 2.)

The known Mixed Moore graphs:

• t = 1: the Kautz digraphs;

Gimbert (2001)

- t > 1: only three graphs are known:
 - the Bosák graph (18, 4, 3, 0, 1);
 - the two Jørgensen graphs (108, 10, 3, 0, 1) (2015).
- All three known graphs with t > 1 are Cayley graphs;
- ▶ There are no other mixed Moore-Cayley graphs with $v \leq 485$.

A mixed Moore graph ($\not\simeq C_5 \text{ or } \overrightarrow{C_3}$) is a DSRG(v, k, t, 0, 1), $t = \frac{c^2+3}{4}$ for an odd integer c > 0 with c|(4z-3)(4z+5). Bosák (1979)

(For every pair of vertices a, b, there is a unique path $a \rightarrow \ldots \rightarrow b$ of length at most 2.)

The known Mixed Moore graphs:

• t = 1: the Kautz digraphs;

Gimbert (2001)

• t > 1: only three graphs are known:

• the Bosák graph (18, 4, 3, 0, 1);

- the two Jørgensen graphs (108, 10, 3, 0, 1) (2015).
- All three known graphs with t > 1 are Cayley graphs;
- ▶ There are no other mixed Moore-Cayley graphs with $v \leq 485$.

A mixed Moore graph ($\not\simeq C_5 \text{ or } \overrightarrow{C_3}$) is a DSRG(v, k, t, 0, 1), $t = \frac{c^2+3}{4}$ for an odd integer c > 0 with c|(4z-3)(4z+5). Bosák (1979)

(For every pair of vertices a, b, there is a unique path $a \rightarrow \ldots \rightarrow b$ of length at most 2.)

The known Mixed Moore graphs:

• t = 1: the Kautz digraphs;

Gimbert (2001)

- t > 1: only three graphs are known:
 - the Bosák graph (18, 4, 3, 0, 1);
 - ▶ the two Jørgensen graphs (108, 10, 3, 0, 1) (2015).
- All three known graphs with t > 1 are Cayley graphs;
- ► There are no other mixed Moore-Cayley graphs with $v \leq 485$.

A mixed Moore graph ($\not\simeq C_5$ or $\overrightarrow{C_3}$) is a DSRG(v, k, t, 0, 1), $t = \frac{c^2+3}{4}$ for an odd integer c > 0 with c|(4z-3)(4z+5). Bosák (1979)

(For every pair of vertices a, b, there is a unique path $a \rightarrow \ldots \rightarrow b$ of length at most 2.)

The known Mixed Moore graphs:

• t = 1: the Kautz digraphs;

Gimbert (2001)

- t > 1: only three graphs are known:
 - the Bosák graph (18, 4, 3, 0, 1);
 - the two Jørgensen graphs (108, 10, 3, 0, 1) (2015).
- All three known graphs with t > 1 are Cayley graphs;
- ► There are no other mixed Moore-Cayley graphs with $v \leq 485$.

) 2 (~

$\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle \text{ and } \mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

Re-define:

$$\begin{aligned} \alpha_0(g) &:= \operatorname{Trace}(\mathsf{X}_g \mathsf{I}) = \#\{x \in V \mid x = x^g\},\\ \alpha_1(g) &:= \operatorname{Trace}(\mathsf{X}_g \mathsf{A}) = \#\{x \in V \mid x \rightharpoonup x^g\}, \end{aligned}$$

so that $\operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j)$ is a linear combination of $\alpha_0(g), \alpha_1(g)$.

うして ふゆう ふほう ふほう ふしつ

The eigenvalues of DSRGs are always integral, so by applying \mathbb{Q} -representation theory we obtain that the functions $\alpha_i(g)$ are constant on rational classes.

$$\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle$$
 and $\mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

Re-define:

$$\begin{aligned} \alpha_0(g) &:= \operatorname{Trace}(\mathsf{X}_g \mathsf{I}) = \#\{x \in V \mid x = x^g\},\\ \alpha_1(g) &:= \operatorname{Trace}(\mathsf{X}_g \mathsf{A}) = \#\{x \in V \mid x \rightharpoonup x^g\}, \end{aligned}$$

so that $\operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j)$ is a linear combination of $\alpha_0(g), \alpha_1(g)$.

The eigenvalues of DSRGs are always integral, so by applying \mathbb{Q} -representation theory we obtain that the functions $\alpha_i(g)$ are constant on rational classes.

$$\mathsf{A} \in \langle \mathsf{E}_0, \mathsf{E}_1, \mathsf{E}_2 \rangle$$
 and $\mathsf{E}_j \in \langle \mathsf{A}, \mathsf{I}, \mathsf{J} \rangle$

Re-define:

$$\begin{aligned} &\alpha_0(g) := \operatorname{Trace}(\mathsf{X}_g \mathsf{I}) = \#\{x \in V \mid x = x^g\}, \\ &\alpha_1(g) := \operatorname{Trace}(\mathsf{X}_g \mathsf{A}) = \#\{x \in V \mid x \rightharpoonup x^g\}, \end{aligned}$$

so that $\operatorname{Trace}(\mathsf{X}_g\mathsf{E}_j)$ is a linear combination of $\alpha_0(g), \alpha_1(g)$.

The eigenvalues of DSRGs are always integral, so by applying \mathbb{Q} -representation theory we obtain that the functions $\alpha_i(g)$ are constant on rational classes.

Example: suppose that a DSRG(88, 9, 3, 0, 1) is a Cayley graph. Then Aut(Γ) has an element g with |g| = 11 and $\alpha_0(g) = 0$. By Higman's observation, $\alpha_1(g) \in \{11, 44, 77\}$.

 $\frac{\alpha_1(g)}{|g|}$ = the number of "cyclic" $(x \rightarrow x^g)$ orbits

Example: suppose that a DSRG(88, 9, 3, 0, 1) is a Cayley graph. Then $\operatorname{Aut}(\Gamma)$ has an element g with |g| = 11 and $\alpha_0(g) = 0$. By Higman's observation, $\alpha_1(g) \in \{11, 44, 77\}$.

うして ふゆう ふほう ふほう ふしつ

 $\frac{\alpha_1(g)}{|g|}$ = the number of "cyclic" $(x \rightarrow x^g)$ orbits

Example: suppose that a DSRG(88, 9, 3, 0, 1) is a Cayley graph. Then $\operatorname{Aut}(\Gamma)$ has an element g with |g| = 11 and $\alpha_0(g) = 0$. By Higman's observation, $\alpha_1(g) \in \{11, 44, 77\}$.

うして ふゆう ふほう ふほう ふしつ

 $\frac{\alpha_1(g)}{|g|}$ = the number of "cyclic" $(x \rightarrow x^g)$ orbits

Mixed Moore-Cayley graphs Suppose $\alpha_1(g) = 11$: $\alpha_1(g) = \alpha_1(g^2) = \ldots = \alpha_1(g^{10})$ and $\alpha_1(g) + \alpha_1(g^2) + \ldots + \alpha_1(g^9) = 99 > 88$, so there exists $i, 2 \le i \le 9$, such that $x \rightharpoonup x^{g^i}$:

Mixed Moore-Cayley graphs Suppose $\alpha_1(g) = 11$: $\alpha_1(g) = \alpha_1(g^2) = \ldots = \alpha_1(g^{10})$ and $\alpha_1(g) + \alpha_1(g^2) + \ldots + \alpha_1(g^9) = 99 > 88$, so there exists $i, 2 \le i \le 9$, such that $x \rightharpoonup x^{g^i}$:

Mixed Moore-Cayley graphs

This rules out mixed Moore-Cayley graphs of orders 88, 204, 238, 368, 460,

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Graham Higman

Thank you!

(by Norman Blamey, 1984)