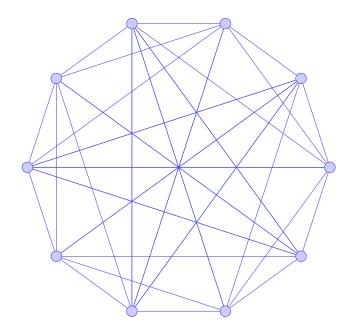
Edge-regular graphs and regular cliques

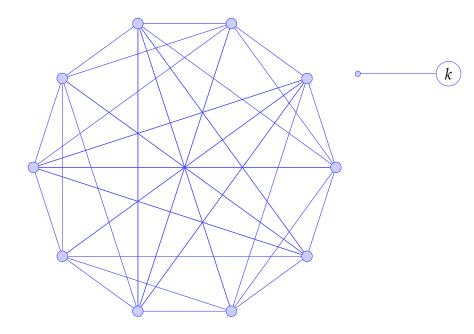
Gary Greaves

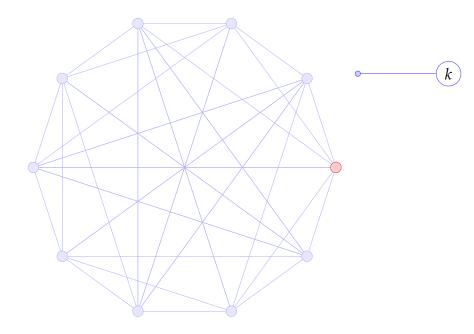
Nanyang Technological University, Singapore

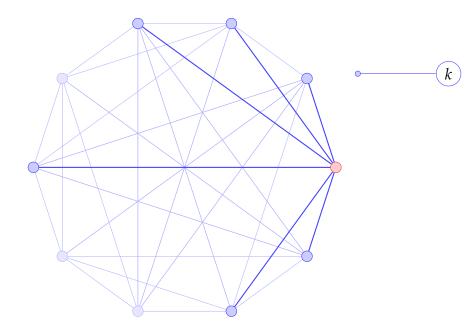
6th July 2018

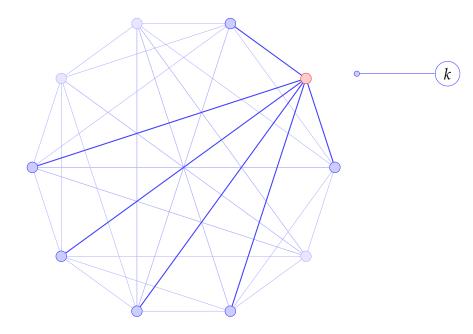
joint work with J. H. Koolen

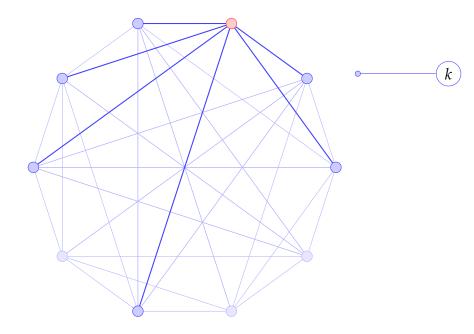


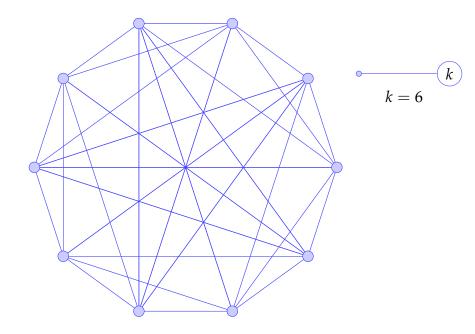


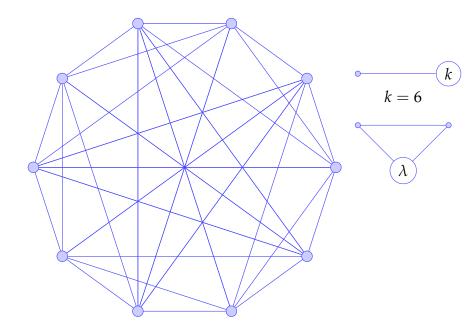


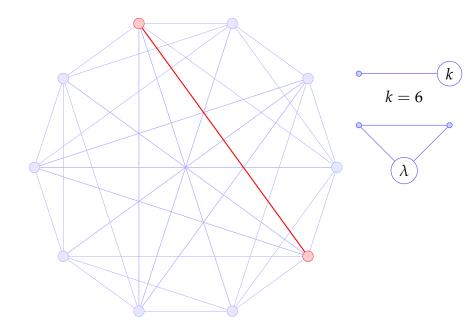


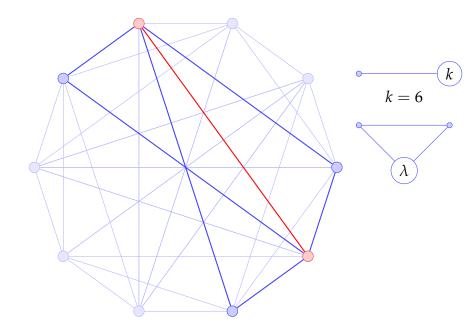


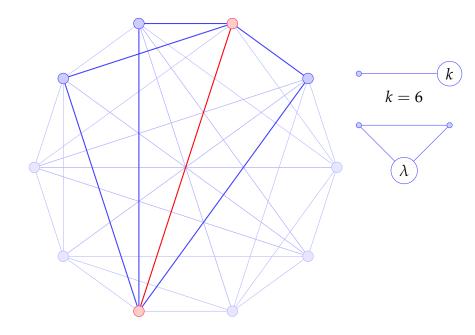


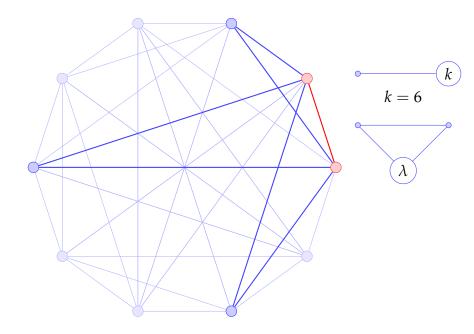


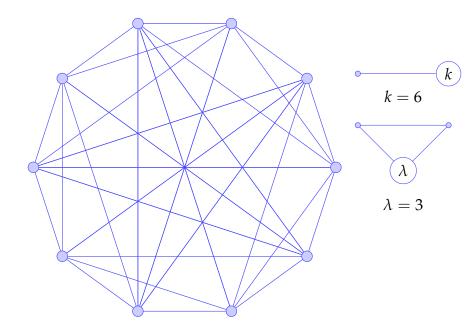


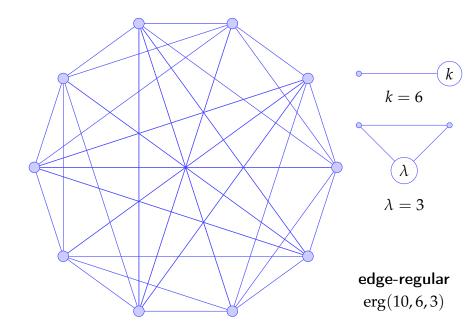


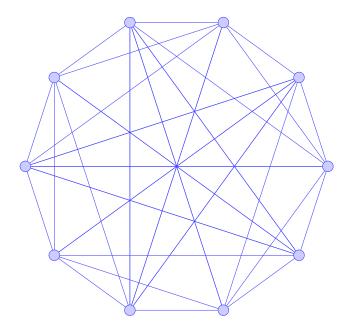




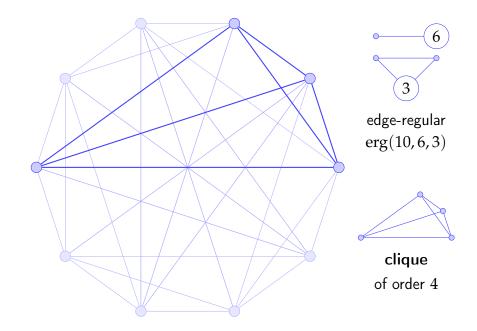




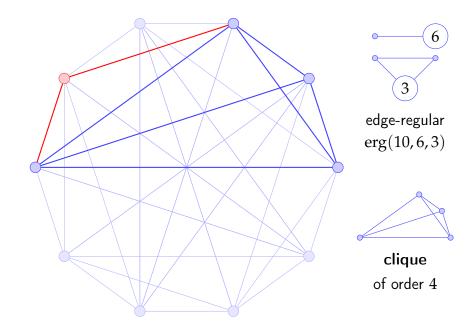


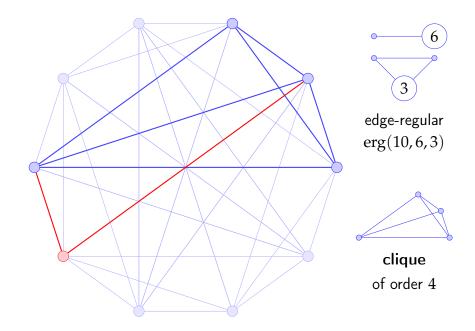


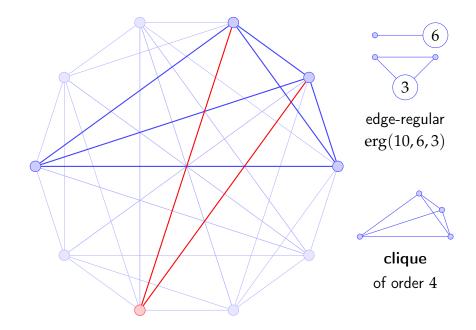
 $\begin{array}{c} \mathsf{edge-regular} \\ \mathsf{erg}(10,6,3) \end{array}$

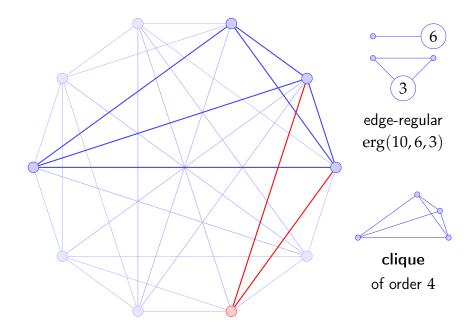


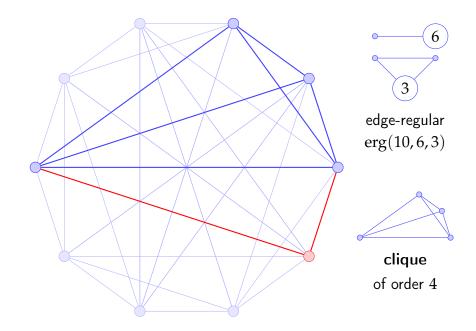


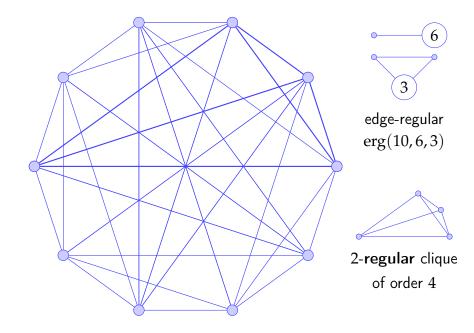


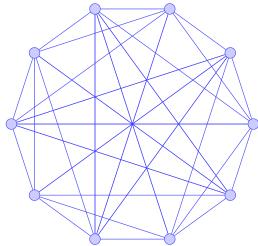


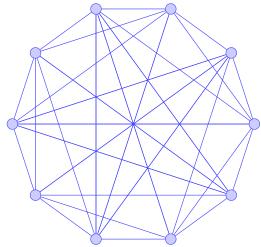


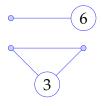


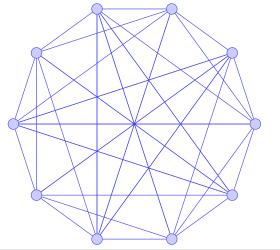


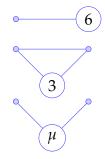


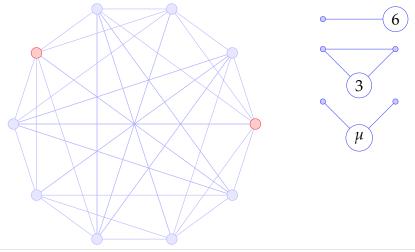


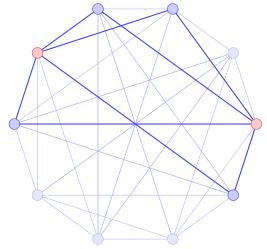


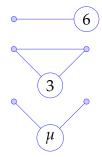


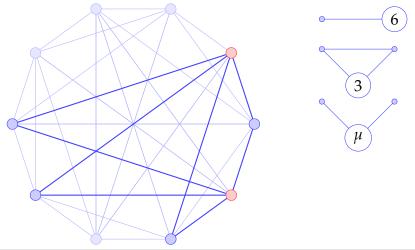


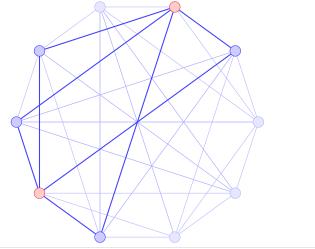


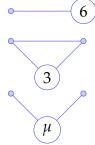




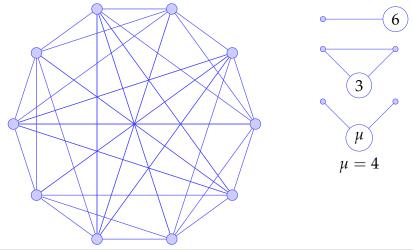




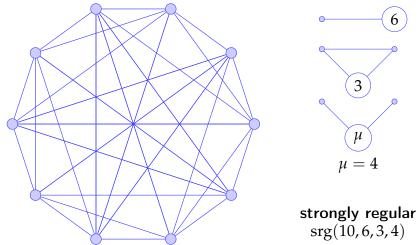




Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.



Gary Greaves — Edge-regular graphs and regular cliques



Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018) No.

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018)

No.

Gary — magma.exe ◄ magma — 94×34

Graph

Vertex Neighbours

1	8	9	14	1	5	18	в	19		22	2	4	2	7	;	
2	8	9	10	1	6	19	Э	20		23	2	5	2	8	;	
3	9	10	1	1	17	1	20	2	1	2	2	24	1	26	5	;
4	10	1	1	12	1	5	1	8	2:	L	23	1	25	2	27	1
	11															
6																
	8															
	1															
9	1	2	3	16	1	8	2	1	2	8	26		27			
10																
11																
12																
13																
14																
15			5													
16																
	3															
18			7													
19			5													
20			6													
21				9												
	1	3	6													
23																
24			5													
25	2															
26				8												
	1															
28																

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2018)

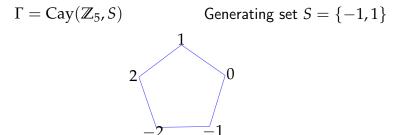
No. There exist infinitely many non-strongly-regular, edge-regular vertex-transitive graphs with regular cliques.

Cayley graphs

- Let G be an (additive) group and S ⊆ G a generating subset, i.e., G = ⟨S⟩.
- The Cayley graph Cay(G,S) has vertex set G and arc set

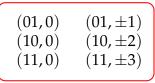
$$\left\{(g,g+s):g\in G \text{ and } s\in S\right\}.$$

Example



An example $ightarrow \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$

Generating set S



$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28, 9, 2):

Generating set S

 $\begin{array}{ll} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$

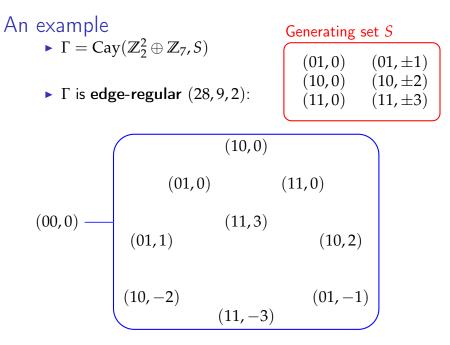
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

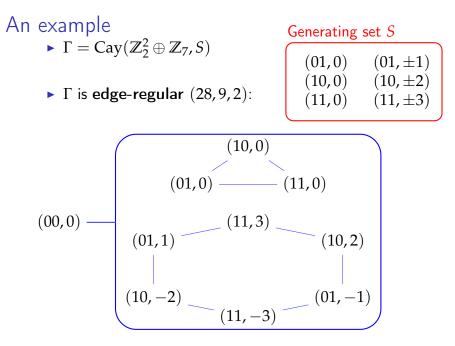
Γ is edge-regular (28,9,2):

Generating set S

 $\begin{array}{ll} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$

(00, 0)





•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

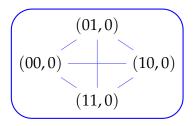
Γ is edge-regular (28,9,2);

Γ has a 1-regular 4-clique:

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

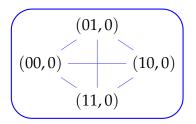
Γ has a 1-regular 4-clique:



$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

Γ has a 1-regular 4-clique:

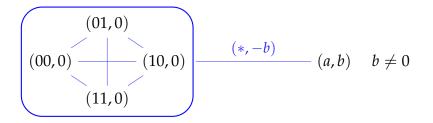


$$(a,b)$$
 $b \neq 0$

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

Γ is edge-regular (28,9,2);

Γ has a 1-regular 4-clique:



- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;
- Γ is not strongly regular:

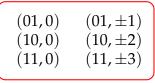
Generating set S

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S



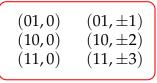
Γ is not strongly regular:

$$(00,0) \qquad \begin{array}{c} (01,0) & (11,0) \\ (01,0) & (01,1) \\ (11,3) & (10,0) \\ (10,-2) & (01,-1) \\ (11,-3) & (10,2) \end{array}$$

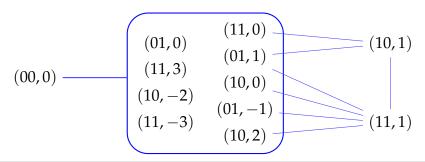
$$\bullet \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

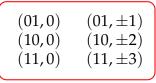


Γ is not strongly regular:

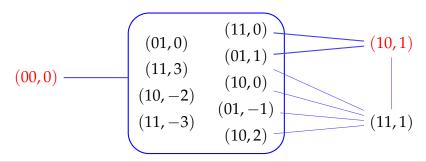


- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S

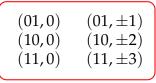


Γ is not strongly regular:

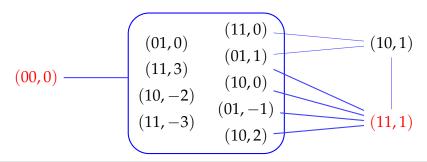


- $\blacktriangleright \ \Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;

Generating set S



Γ is not strongly regular:



•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;
- Γ is not strongly regular:

Generating set S

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique;
- Γ is not strongly regular:

Generating set S

 $(01, \pm 1)$ (01, 0) $(10, \pm 2)$ $(11, \pm 3)$ (10, 0)

• Bijection $\pi: (\mathbb{Z}_2^2)^* \to \mathbb{Z}_3$

1

• Primitive element ρ of \mathbb{F}_q

•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_l \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q, S(\pi))$$

Generating set $S(\pi)$ $(g,0) \mid g \in (\mathbb{Z}_l \oplus \mathbb{Z}_2^2)^*$ $\forall z \in (\mathbb{Z}_2^2)^*$ $(0, z, \rho^j) \mid j \equiv \pi(z) \pmod{3}$

• Bijection
$$\pi: (\mathbb{Z}_2^2)^* \to \mathbb{Z}_3$$

• Primitive element ρ of \mathbb{F}_q

•
$$\Gamma = \operatorname{Cay}(\mathbb{Z}_l \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q, S(\pi))$$

Generating set $S(\pi)$

$$(g,0) \mid g \in (\mathbb{Z}_l \oplus \mathbb{Z}_2^2)^*$$

$$\begin{aligned} \forall z \in (\mathbb{Z}_2^2)^* \\ (0,z,\rho^j) \mid j \equiv \pi(z) \pmod{3} \end{aligned}$$

• Bijection
$$\pi: (\mathbb{Z}_2^2)^* \to \mathbb{Z}_3$$

• Primitive element ρ of \mathbb{F}_q

$$\Gamma = \operatorname{Cay}(\mathbb{Z}_l \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q, S(\pi))$$

Generating set $S(\pi)$

$$(g,0) \mid g \in (\mathbb{Z}_l \oplus \mathbb{Z}_2^2)^*$$

 $\forall z \in (\mathbb{Z}_2^2)^*$ $(0, z, \rho^j) \mid j \equiv \pi(z) \pmod{3}$

- Γ is undirected when $q \equiv 1 \pmod{6}$;
- Γ has a (spread of) 1-regular clique(s);
- When q ≡ 1 (mod 6), the graph induced on the neighbourhood Γ(v) has valencies 4l − 2 and 2c, where c equals the 3rd cyclotomic number c³_q(1,2).

General construction/infinite family

• Generalise:
$$\mathbb{Z}_2^2 \oplus \mathbb{Z}_7$$
 to $\mathbb{Z}_{(c+1)/2} \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q$.

- Works for q ≡ 1 (mod 6) such that the 3rd cyclotomic number c = c_q³(1, 2) is odd.
- ► Then there exists an erg(2(c+1)q, 2c+q, 2c) having a 1-regular clique of order 2c + 2.
- ▶ Take $p \equiv 1 \pmod{3}$ a prime s.t. $2 \not\equiv x^3 \pmod{p}$. Then there exist *a* such that $c_{p^a}^3(1,2)$ is odd.

Examples in the wild

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 11, стр. 268-310 (2014)

УДК 519.17 MSC 05C

КЭЛИ-ДЕЗА ГРАФЫ, ИМЕЮЩИЕ МЕНЕЕ 60 ВЕРШИН

С.В. ГОРЯИНОВ, Л.В. ШАЛАГИНОВ

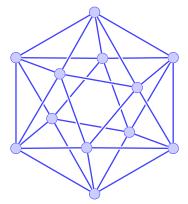
ABSTRACT. Deza graph, which is the Cayley graph is called the Cayley-Deza graph. The paper describes all non-isomorphic Cayley-Deza graphs of diameter 2 having less than 60 vertices.

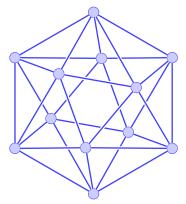
Keywords: Deza graph, Cayley graph, graph isomorphism, automorphism group.

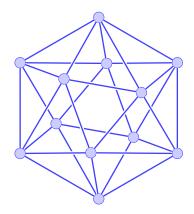
1. Введение

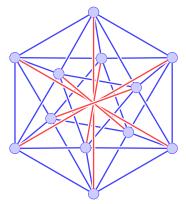
В этой статье мы начинаем изучение графов Деза, которые нвляются графами Кэли. Графы Деза принято рассматривать как обобщение слыно регулярных графов. В ряде исследований было выженею, что графы Деза наследуют некоторые свойства сильно регулярных графов. Например, в [1] показано, что вершинная связность графа Деза, полученного из сильно регулярного графа с помощью инволюции, созвадает с валетностью.

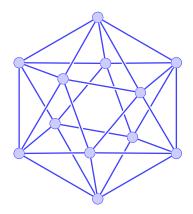
Four erg(24, 8, 2) graphs with a 1-regular clique; Brought to our attention by Sasha Gavrilyuk

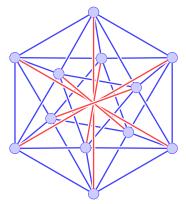


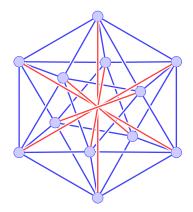


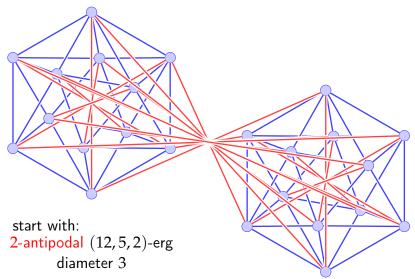


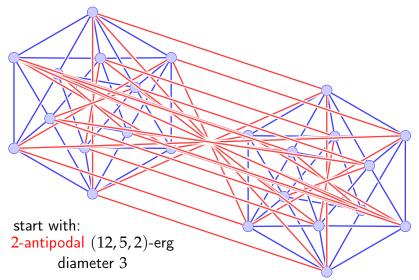


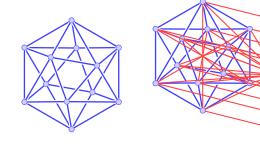






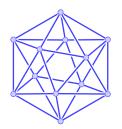


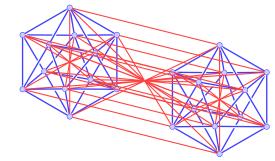




 $\begin{array}{ccc} \text{2-antipodal} & (12,5,2)\text{-erg} & \rightarrow \\ & \text{diameter } 3 & \end{array}$

(24, 8, 2)-erg with 1-regular 4-cliques not strongly regular





2-antipodal (12, 5, 2)-erg diameter 3

a-antipodal (v, k, λ) -erg diameter 3

(24, 8, 2)-erg with 1-regular 4-cliques not strongly regular

 $(rac{v(\lambda+2)}{a},k+\lambda+1,\lambda)$ -erg with 1-regular $(\lambda+2)$ -cliques not strongly regular

Remarks

- ► A non-strongly-regular, edge-regular graph with a regular clique is called a **Neumaier graph**.
- *a*-antipodal $\operatorname{erg}(v, k, \lambda)$ to $\operatorname{erg}(v(\lambda + 2)/a, k + \lambda + 1, \lambda)$.
 - Produce Neumaier graphs using constructions of antipodal edge-regular graphs of diameter 3;
- ► Evans, Goryainov, and Panasenko (2018+): Smallest Neumaier graph is erg(16,9,4).
- Evans, Goryainov, and Panasenko (2018+): Neumaier graphs with 2-regular cliques.

Problems

- ▶ \exists Neumaier graphs with 3-regular cliques?
- ▶ \exists Neumaier graphs with diameter ≥ 3 ?
- Spectral properties of Neumaier graphs

Thank you for your attention

Further reading:

G. R. W. Greaves and J. H. Koolen, *Edge-regular graphs with regular cliques*, European J. Combin. **71** (2018), pp. 194–201.