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Continuous-time quantum walk

G a graph

We study the continuous-time quantum walk,
whose behaviour is governed by its transition
matrix:

U(t) = eitA

Say, G = K2.

A =

(
0 1
1 0

)
A2 = I and A3 = A.

= I + itA− 1
2 t

2I + 1
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=

(
cos(t) i sin(t)
i sin(t) cos(t)

)
U(t) is unitary and symmetric matrix.
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”Algebraically” symmetric

To study quantum walks, we need another concept:

Vertices u and v are strongly cospectral

there exists a orthogonal matrix Q such that

(a) Q is a polynomial in A with rational entries;

(b) Qeu = ev;

(c) Q2 = I.
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(Godsil 2018) Two columns of M̂ are equal if
and only if the corresponding vertices are
strongly cospectral.
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