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G a graph Say, G = Ks.

(0 1 2 3 _
A_(l O) A =1 and A° = A.

We study the continuous-time quantum walk,
whose behaviour is governed by its transition
matrix:

_ itA __ - 1 1 -
U(t) = e =T +itA— 12T + Lit’A. ..

_ <cos(t) isin(t))

isin(t) cos(t)

U(t) is unitary and symmetric matrix.
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" Algebraically” symmetric

To study quantum walks, we need another concept:

Vertices u and v are strongly cospectral
A\

A
there exists a orthogonal matrix () such that

(a) @ is a polynomial in A with rational entries;
(b) Qeu — €,
() @°=1.
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(Godsil 2018) Two columns of M are equal if
and only if the corresponding vertices are
strongly cospectral.
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