Quantum walks and algebraic graph theory

Krystal Guo

Université Libre de Bruxelles

Symmetry and Regularity 2018, Pilsen
Continuous-time quantum walk

G a graph
Continuous-time quantum walk

G a graph

$A = A(G)$ is the adjacency matrix of G
Continuous-time quantum walk

G a graph

$A = A(G)$ is the adjacency matrix of G

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:
Continuous-time quantum walk

G a graph

$A = A(G)$ is the adjacency matrix of G

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA}$$
Continuous-time quantum walk

G a graph

$A = A(G)$ is the adjacency matrix of G

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$
Continuous-time quantum walk

\(G \) a graph \(\text{Say, } G = K_2. \)

\(A = A(G) \) is the adjacency matrix of \(G \)

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

\[
U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \ldots
\]
Continuous-time quantum walk

G a graph \[\text{Say, } G = K_2. \]

$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$
We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

\[U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \ldots \]

Say, \(G = K_2 \).

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

\[A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad A^2 = I \text{ and } A^3 = A. \]
Continuous-time quantum walk

G a graph \text{Say, } G = K_2.

\begin{align*}
A &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
A^2 &= I \text{ and } A^3 = A.
\end{align*}

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2I + \frac{1}{6}it^3A \cdots$$
Continuous-time quantum walk

G a graph \quad \text{Say, } G = K_2.

$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad A^2 = I \text{ and } A^3 = A.$

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2I + \frac{1}{6}it^3A \cdots$$

$$= \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$$
Continuous-time quantum walk

G a graph \textbf{Say, $G = K_2$.}

\[A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad A^2 = I \text{ and } A^3 = A. \]

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

\[U(t) = e^{itA} = I + itA - \frac{1}{2} t^2 I + \frac{1}{6} it^3 A \cdots \]

\[\begin{pmatrix} \cos(t) & i \sin(t) \\ i \sin(t) & \cos(t) \end{pmatrix} \]

$U(t)$ is unitary and symmetric matrix.
Special behaviour of K_2

There are some times when $U(t)$ has a special form:
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

all entries of $U(\pi/4)$ have the same absolute value
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

\[U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

\[U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \] all entries of $U(\pi/4)$ have the same absolute value

We can consider the average behaviour over time:
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

all entries of $U(\pi/4)$ have the same absolute value

We can consider the average behaviour over time:

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} \, dt$$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

all entries of $U(\pi/4)$ have the same absolute value

We can consider the average behaviour over time:

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

perfect state transfer between u and v

exists τ, \[U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] \[\|\gamma\| = 1 \]

\[U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \]

all entries of $U(\pi/4)$ have the same absolute value

We can consider the average behaviour over time:

\[\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \]
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

perfect state transfer between u and v

exists τ, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\|\gamma\| = 1$

uniform mixing at time τ

all entries of $U(\tau)$ have the same absolute value

We can consider the average behaviour over time:

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

perfect state transfer between u and v

exists τ, \[U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \|\gamma\| = 1 \]

uniform mixing at time τ

all entries of $U(\tau)$ have the same absolute value

average mixing matrix

\[\hat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} \, dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \]
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

perfect state transfer between u and v

exists τ, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\|\gamma\| = 1$

uniform mixing at time τ

all entries of $U(\tau)$ have the same absolute value

average mixing matrix

$\widehat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
Special behaviour of K_2

There are some times when $U(t)$ has a special form:

perfect state transfer between u and v

exists τ, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $||\gamma|| = 1$

uniform mixing at time τ

all entries of $U(\tau)$ have the same absolute value

average mixing matrix

$$\hat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
There is an automorphism of G swapping u and v such that there exists a permutation matrix P such that
"Algebraically" symmetric

There is an automorphism of G swapping u and v

there exists a permutation matrix P such that

(a) $PA = AP$;
"Algebraically" symmetric

There is an automorphism of G swapping u and v;

there exists a permutation matrix P such that

(a) $PA = AP$;

(b) $Pe_u = e_v$;
"Algebraically" symmetric

There is an automorphism of G swapping u and v

\[\begin{array}{c}
\uparrow \\
\downarrow \\
\end{array} \]

there exists a permutation matrix P such that

(a) $PA = AP$;

(b) $Pe_u = e_v$;

(c) $P^2 = I$.
"Algebraically" symmetric

We can take a spectral relaxation of this property.

There is an automorphism of G swapping u and v

there exists a permutation matrix P such that

(a) $PA = AP$;
(b) $Pe_u = e_v$;
(c) $P^2 = I$.
"Algebraically" symmetric

We can take a spectral relaxation of this property.

Vertices u and v are cospectral

there exists a orthogonal matrix Q such that

(a) $QA = AQ$;
(b) $Qe_u = e_v$;
(c) $Q^2 = I$.
"Algebraically" symmetric

To study quantum walks, we need another concept:

Vertices u and v are cospectral if there exists an orthogonal matrix Q such that

(a) $QA = AQ$;
(b) $Qe_u = e_v$;
(c) $Q^2 = I$.
"Algebraically" symmetric

To study quantum walks, we need another concept:

Vertices u and v are strongly cospectral

there exists an orthogonal matrix Q such that

(a) Q is a polynomial in A with rational entries;
(b) $Qe_u = e_v$;
(c) $Q^2 = I$.
Strong Cospectrality in Quantum Walks

Perfect state transfer between u and v

Average mixing matrix
Strong Cospectrality in Quantum Walks

perfect state transfer between \(u \) and \(v \)

\[\rightarrow \quad u \text{ and } v \text{ are strongly cospectral} \]

average mixing matrix
Strong Cospectrality in Quantum Walks

perfect state transfer between u and v

\implies u and v are strongly cospectral

average mixing matrix

(Godsil 2018) Two columns of \hat{M} are equal if and only if the corresponding vertices are strongly cospectral.

State transfer in strongly regular graphs with an edge perturbation. C. Godsil, K. Guo, M. Kempton and G. Lippner.