Quantum walks and algebraic graph theory

Krystal Guo

Université Libre de Bruxelles

Symmetry and Regularity 2018, Pilsen

G a graph

 ${\boldsymbol{G}}$ a graph

 ${\cal A}={\cal A}({\cal G})$ is the adjacency matrix of ${\cal G}$

${\boldsymbol{G}}$ a graph

A = A(G) is the adjacency matrix of G

${\boldsymbol{G}}$ a graph

A = A(G) is the adjacency matrix of G

$$U(t) = e^{itA}$$

${\boldsymbol{G}}$ a graph

A = A(G) is the adjacency matrix of G

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$

G a graph Say, $G = K_2$.

A = A(G) is the adjacency matrix of G

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$

$$G$$
 a graph Say, $G = K_2$.
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$

$$G$$
 a graph Say, $G = K_2$.
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $A^2 = I$ and $A^3 = A$.

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2A^2 + \frac{1}{6}it^3A^3 \cdots$$

$$G$$
 a graph Say, $G = K_2$.
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $A^2 = I$ and $A^3 = A$.

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2I + \frac{1}{6}it^3A \cdots$$

$$G$$
 a graph Say, $G = K_2$.
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $A^2 = I$ and $A^3 = A$.

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2I + \frac{1}{6}it^3A \cdots$$
$$= \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$$

$$G$$
 a graph Say, $G = K_2$.
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $A^2 = I$ and $A^3 = A$.

We study the continuous-time quantum walk, whose behaviour is governed by its transition matrix:

$$U(t) = e^{itA} = I + itA - \frac{1}{2}t^2I + \frac{1}{6}it^3A \cdots$$
$$= \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$$

U(t) is unitary and symmetric matrix.

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$
 all entries of $U(\pi/4)$ have the same absolute value

There are some times when U(t) has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$
 all entries of $U(\pi/4)$ have the same absolute value

There are some times when U(t) has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$
 all entries of $U(\pi/4)$ have the same absolute value

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt$$

There are some times when U(t) has a special form:

$$U(\pi/2) = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$
 all entries of $U(\pi/4)$ have the same absolute value

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There are some times when U(t) has a special form:

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

exists
$$\tau$$
, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline & - \end{pmatrix}$ $||\gamma|| = 1$

 $U(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$ all entries of $U(\pi/4)$ have the same absolute value

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There are some times when U(t) has a special form:

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

exists
$$\tau$$
, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline & - \end{pmatrix}$ $||\gamma|| = 1$
uniform mixing at time τ

all entries of $U(\tau)$ have the same absolute value

$$\frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There are some times when U(t) has a special form:

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

exists
$$\tau$$
, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline & - \end{pmatrix}$ $||\gamma|| = 1$
uniform mixing at time τ
all entries of $U(\tau)$ have
the same absolute value
average mixing matrix

$$\widehat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There are some times when U(t) has a special form:

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

exists
$$\tau$$
, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline \end{pmatrix}$ $||\gamma|| = 1$
uniform mixing at time τ
all entries of $U(\tau)$ have
the same absolute value
average mixing matrix

$$\widehat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There are some times when U(t) has a special form:

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

exists
$$\tau$$
, $U(\tau) = \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline \end{pmatrix}$ $||\gamma|| = 1$
uniform mixing at time τ
all entries of $U(\tau)$ have
the same absolute value
average mixing matrix

$$\widehat{M} := \frac{1}{T} \int_0^T U(t) \circ \overline{U(t)} dt = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

There is an automorphism of G swapping uand vthere exists a permutation matrix P such that

There is an automorphism of G swapping uand vthere exists a permutation matrix P such that

(a)
$$PA = AP$$
;

There is an automorphism of G swapping uand vthere exists a permutation matrix P such that

(a) PA = AP; (b) $Pe_u = e_v$;

There is an automorphism of G swapping uand vthere exists a permutation matrix P such that

(a)
$$PA = AP$$
;
(b) $Pe_u = e_v$;
(c) $P^2 = I$.

We can take a spectral relaxation of this property.

There is an automorphism of G swapping uand vthere exists a permutation matrix P such that

(a)
$$PA = AP$$
;
(b) $Pe_u = e_v$;
(c) $P^2 = I$.

We can take a spectral relaxation of this property.

Vertices u and v are cospectral

there exists a orthogonal matrix Q such that

(a)
$$QA = AQ$$
;
(b) $Qe_u = e_v$;
(c) $Q^2 = I$.

To study quantum walks, we need another concept:

Vertices u and v are cospectral

there exists a orthogonal matrix Q such that

(a)
$$QA = AQ$$
;
(b) $Qe_u = e_v$;
(c) $Q^2 = I$.

To study quantum walks, we need another concept:

Vertices u and v are strongly cospectral

there exists a orthogonal matrix Q such that

(a) Q is a polynomial in A with rational entries; (b) $Qe_u = e_v$; (c) $Q^2 = I$.

Strong Cospectrality in Quantum Walks

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

average mixing matrix

Strong Cospectrality in Quantum Walks

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

$$\implies u$$
 and v are strongly cospectral

average mixing matrix

Strong Cospectrality in Quantum Walks

perfect state transfer between \boldsymbol{u} and \boldsymbol{v}

$$\implies u$$
 and v are strongly cospectral

average mixing matrix

(Godsil 2018) Two columns of \widehat{M} are equal if and only if the corresponding vertices are strongly cospectral.

Perfect state transfer on distance-regular graphs and association schemes. G. Coutinho, C. Godsil, K. Guo, F. Vanhove. Linear Algebra and its Applications 449 (2015) P108-130.

State transfer in strongly regular graphs with an edge perturbation. C. Godsil, K. Guo, M. Kempton and G. Lippner.

A new perspective on the average mixing matrix. G. Coutinho, C. Godsil, K. Guo and H. Zhan.