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EQUILATERAL POINT SETS IN ELLIPTIC GEOMETRY

BY

J. H. VAN LINT axp J. J. SEIDEL

(Communicated by Prof. C. J. Bouwkamp at the meeting of December 18, 1965)

1. Introduction on geometry

Elliptic space of r—1 dimensions E,_; is obtained from r-dimensional
vector space R, with inner product (e, b) as follows. For 1<k<r, call
any k-dimensional linear subspace Ry of R, a (k— 1)-dimensional elliptic
subspace Ex—_1, and, for any pair of elliptic points Bo: x=Aa and Eo': x=pub,
define the elliptic distance 6(Zo, Eo’) by

oos 8(Ho, Ho') = (@, b) |

= 0<5<L75,
Via, a) (b, b) g

which, by taking |a|=|b|=1, reduces to
e cos 8(Eo, Eo')=(a, b), = =+ 1, 0<o<in.
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SPHERICAL CODES AND DESIGNS

P.DELSARTE, J. M. GOETHALS AND J.J.SEIDEL

1. INTRODUCTION

A finite non-empty set X of unit vectors in Euclidean space R¢ has several
characteristics, such as the dimension d(X) of the space spanned by X, its
cardinality n = | X|, its degree s(X) and its strength 7(X).

The degree s(X) is the number of values assumed by the inner product
between distinct vectors in X; that is,

s(X) = [4(X)],  AX) = {& ;€ #ne X}

We shall consider sets X having the property that A(X) is contained in a
prescribed subset A of the interval [—1, 1[. Such sets are called spherical
A-codes. We are interested in upper bounds for n = | X|, and in the structure
of spherical 4-codes which are extremal with respect to such bounds. For
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q = 5 gives:
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