On *p*-valenced association schemes whose thin residue has valency p^2

Mitsugu Hirasaka

Pusan National University

Conference in Algebraic Graph Theory Symmetry vs Regularity The first 50 years since Weisfeiler-Leman stabilization July 1 - July 7, 2018 Pilsen, Czech Republic.

1/23

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ Q (~ 2/23

 C_p

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < □ > < ○ へ (~ 3/23

 $C_p < C_p \times C_p, C_{p^2},$

 $C_p < C_p \times C_p, C_{p^2}, C_p \wr C_p$

 $C_p < C_p imes C_p, C_{p^2}, \ C_p \wr C_p < \mbox{five groups of order } p^3, \ \mbox{and so on}$

 $C_p < C_p imes C_p, C_{p^2}, \ C_p \wr C_p < \mbox{five groups of order } p^3, \ \mbox{and so on}$

Definition (see [BI], [BCN], [EP], [Z1])

An association scheme (X, R) is called an **extension** of (Y, S) by (Z, T) if there exists an equivalence E (closed subset, imprimitive block) of R one of whose equivalence classes induces (Y, S) and whose quotient is isomorphic to (Z, T).

Notice

A finite group G is identified with an association scheme $(G, \{\bar{g} \mid g \in G\})$ where $\bar{g} := \{(a, b) \in G \times G \mid ab^{-1} = g\}$.

Examples

$$C_3 \simeq \{I, C, C^2\} := \left\{ \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right), \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right), \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \right\}$$

 $C_3 \wr C_3 = \{I \otimes X \mid X \in C_3\} \cup \{Y \otimes J \mid Y \in C_3 \setminus \{I\}\}$

1	0	1	2	3	3	3	4	4	4 \	۱.
	2	0	1	3	3	3	4	4	4	
	1	2	0	3	3	3	4	4	4	
	4	4	4	0	1	2	3	3	3	
	4	4	4	2	0	1	3	3	3	
	4	4	4	1	2	0	3	3	3	
	3	3	3	4	4	4	0	1	2	
	3	3	3	4	4	4	2	0	1	
(3	3	3	4	4	4	1	2	0/	

An extension of $C_3 \wr C_3$ by C_3

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$?

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$? A1. Infinitely many. $(C_3 \wr C_3) \wr G$ where G is a finite group.

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$? A1. Infinitely many. $(C_3 \wr C_3) \wr G$ where G is a finite group.

Q2. How many $\{1,3\}$ -schemes with the thin residue isomorphic to $C_3 \wr C_3$?

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$? A1. Infinitely many. $(C_3 \wr C_3) \wr G$ where G is a finite group.

Q2. How many $\{1,3\}$ -schemes with the thin residue isomorphic to $C_3 \wr C_3$? A2. Infinitely many. $(C_3 \wr C_3) \times G$ where G is a finite group.

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$? A1. Infinitely many. $(C_3 \wr C_3) \wr G$ where G is a finite group.

Q2. How many $\{1,3\}$ -schemes with the thin residue isomorphic to $C_3 \wr C_3$? A2. Infinitely many. $(C_3 \wr C_3) \times G$ where G is a finite group.

Q3. How many such $\{1,3\}$ -schemes such that each relation out of the thin residue has valency 3?

Definition

Every association scheme has the smallest equivalence whose quotient is a group, called the **thin residue**.

[Z0]

For each association scheme (X, S), if $\mathbf{O}^{\theta}(S) \simeq C_n$, then (X, S) is schurian.

Q1. How many schemes with the thin residue isomorphic to $C_3 \wr C_3$? A1. Infinitely many. $(C_3 \wr C_3) \wr G$ where G is a finite group.

Q2. How many $\{1,3\}$ -schemes with the thin residue isomorphic to $C_3 \wr C_3$? A2. Infinitely many. $(C_3 \wr C_3) \times G$ where G is a finite group.

Q3. How many such $\{1,3\}$ -schemes such that each relation out of the thin residue has valency 3?

A3. Finite. I will show you the reason why in this talk. $3 \times 3 \times 3 \times 3 \times 10^{-10/23}$

(X, S): an association scheme with $\mathbf{O}^{\theta}(S) \simeq C_p \wr C_p$ where p is a prime Assume that $n_s = p$ for each $s \in S \setminus \mathbf{O}^{\theta}(S)$. (X, \tilde{S}) : the thin residue extension of (X, S), (see [EP], [MP]) i.e., the smallest coherent configuration containing S and $x\mathbf{O}^{\theta}(S) \times x\mathbf{O}^{\theta}(S)$ with $x \in X$

$$X_1, X_2, \dots, X_m$$
: the distinct fibers of (X, \hat{S})
 $\tilde{S}_{ij} := \{s \in \tilde{S} \mid s \subseteq X_i \times X_j\}$ for $i, j = 1, 2, \dots, m$

Main Result

Lemma 1

For each $s \in \tilde{S}_{ij}$ with $i \neq j$ the adjacency $s \cap (X_i \times X_j)$ induces a complex Hadamard matrix H(s) of Butson type (p, p).

Lemma 2

For all $s_1 \in \tilde{S}_{ij}$, $s_2 \in \tilde{S}_{jk}$ and $s_3 \in \tilde{S}_{ik}$ with $i \neq j$, $j \neq k$ and $i \neq k$ we have $H(s_1)H(s_2) = \alpha H(s_3)$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = \sqrt{p}$.

Lemma 3

The rows of I, $\frac{1}{\sqrt{p}}H(s_{i1})$ with i = 2, 3, ..., m forms a mutually unbiased bases for \mathbb{C}^p where $s_{i1} \in \tilde{S}_{i1}$. Thus, $m \leq p + 1$ (see [BBRF]).

Theorem (H, W. Abbas)

We have $|X| \le p^2(p+1)$.

We say that (X, S) is a *p*-scheme if |s| is a power of *p* for each $s \in S$ where $|s| = |X|n_s$. Each *p*-scheme has a series $\{S_i\}_{i=0}^k$ of equivalences such that $\{1_X\} = S_0 \subseteq S_1 \subseteq \cdots \subseteq S_k = S$ and $S_{i+1} / S_i \simeq C_p$ for $i = 0, 1, \ldots, k-1$. (1) If |X| = p, then $(X, S) \simeq C_p$; (2) If $|X| = p^2$, then $(X, S) \simeq C_{p^2}$, $C_p \times C_p$ or $C_p \wr C_p$; (3) If $|X| = p^3$, then only the case of p = 2, 3 are classified. (4) If $\mathbf{O}^{\theta}(S)$ is cyclic, then (X, S) is schurian (see [HZ]); (5) If $\mathbf{O}^{\theta}(S) \simeq C_{\rho} \times C_{\rho}$, then [BH] and [CHK] show some constructions of non-schurian *p*-schemes;

(6) If $\mathbf{O}^{\theta}(S) \simeq C_p \wr C_p$, then the problem is reduced to the case of $|X| = p^3$ by our main result.

We consider (X, S) with $\mathbf{O}^{\theta}(S) \simeq C_p \times C_p$. Suppose that $n_s = p$ for each $s \in S \setminus \mathbf{O}^{\theta}(S)$.

Theorem([CHK])

We have $|X| \le p^2(p^2 + p + 1)$.

Let X_1, \ldots, X_m be the distinct geometrical cosets of $\mathbf{O}^{\theta}(S)$ and $\mathcal{P} := \{X_1, X_2, \ldots, X_m\}, \ \mathcal{L} := \{L_i(M) \mid 1 \le i \le m, \ 1 < M < \mathbf{O}^{\theta}(S)\}$ where $L_i(M) := \{X_i\} \cup \{X_j \mid \forall s \in S; s \cap (X_i \cap X_j) \neq \emptyset, ss^* = M\}$. Then $(\mathcal{P}, \mathcal{L})$ is a linear space.

[BBRF] S. Bandyopadhyay, P.O. Boykin, V. Roychowdhury, F. Vatan, A new proof for the existence of mutually unbiased bases, Quantum computation and quantum cryptography. Algorithmica 34 (2002), no. 4, 512-528. [BI] E. Bannai, Eiichi, T. Ito, Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. [BCN] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 18. Springer-Verlag, Berlin, 1989. [BH] S. Bang, M. Hirasaka, Construction of association schemes from difference sets, European J. Combin. 26 (2005), no. 1, 59–74. [CHK] J.R. Cho, M. Hirasaka, K. Kim, On *p*-schemes of order *p*³. *J. Algebra* 369 (2012), 369–380.

[EP] S.A. Evdokimov, I.N. Ponomarenko,

Schemes of relations of a finite projective plane and their extensions. (Russian. Russian summary) *Algebra i Analiz* 21 (2009), no. 1, 90–132; translation in *St. Petersburg Math. J.* 21 (2010), no. 1, 65-93

[MP] M. Muzychuk, I. Ponomarenko,

On quasi-thin association schemes, J. Algebra 351 (2012), 467-489.

[HM] A. Hanaki, I. Miyamoto,

Classification of association schemes of small order, Online catalogue.

http://kissme.shinshu-u.ac.jp/as.

[HZ] M. Hirasaka, P.-H. Zieschang,

Sufficient conditions for a scheme to originate from a group, *J. Combin. Theory* Ser. A 104 (2003), no. 1, 17–27.

[Z0] P.-H. Zieschang, Association schemes in which the thin residue is a finite cyclic group, *J. Algebra* 324 (2010), no. 12, 3572–3578.

[Z1] P.-H. Zieschang, *An algebraic approach to association schemes*, Lecture Notes in Mathematics, 1628. Springer-Verlag, Berlin, 1996.

[Z2] P.-H. Zieschang, *Theory of association schemes*, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

Thank you for your attention.