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Definition (see [BI], [BCN], [EP], [Z1])

An association scheme (X, R) is called an extension of (Y,S) by (Z, T)
if there exists an equivalence E (closed subset, imprimitive block) of R one
of whose equivalence classes induces (Y, S) and whose quotient is
isomorphic to (Z, T).

A finite group G is identified with an association scheme (G,{g | g € G})
where g := {(a,b) € G x G | ab™! = g}.
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Characterization by the thin residue

Every association scheme has the smallest equivalence whose quotient is a
group, called the thin residue.

[20]

For each association scheme (X, S), if 09(S) ~ C,,
then (X, S) is schurian.

\
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Characterization by the thin residue

Every association scheme has the smallest equivalence whose quotient is a
group, called the thin residue.

[20]
For each association scheme (X, S), if 09(S) ~ C,,
then (X, S) is schurian.

\

Q1. How many schemes with the thin residue isomorphic to C3 G537
Al. Infinitely many. (G301 C3) 1 G where G is a finite group.

Q2. How many {1, 3}-schemes with the thin residue isomorphic to C30 C37
A2. Infinitely many. (G301 G3) X G where G is a finite group.

Q3. How many such {1, 3}-schemes such that each relation out of the
thin residue has valency 37
A3. Finite. | will show you the reason why in this talk. 60



(X, S): an association scheme with O?(S) =~ C, 1 C, where p is a prime
Assume that ng = p for each s € S\ 0%(S).

(X, S): the thin residue extension of (X, S), (see [EP], [MP]) i.e.,

the smallest coherent configuration containing S and x0%(S) x x0Q?(S)
with x € X

X1, Xa, ..., Xm: the distinct fibers of (X, 5)

§,-j :={S€§|SQX,-><XJ-} fori,j=1,2,...,m
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Main Result

Lemma 1

For each s € §,-J- with i # j the adjacency s N (X; x X;) induces a complex
Hadamard matrix H(s) of Butson type (p, p).

Lemma 2

For all 51€§U, szefgk and 53E§;kwithi7£j,j7ékandi7£k
we have H(s1)H(s2) = aH(s3) for some o € C with |a] = /p.

| A

Lemma 3

| A

The rows of /, ﬁH(sil) with i = 2,3, ..., m forms a mutually unbiased
bases for CP where s;; € Si1. Thus, m < p+ 1 (see [BBRF]).

Theorem (H, W. Abbas)
We have |X| < p?(p +1).




Why O%(S) ~ C,1 C,?

We say that (X, S) is a p-scheme if |s| is a power of p for each s € S
where |s| = | X]ns.

Each p-scheme has a series {5,-},'-‘:0 of equivalences such that

{Ix}=SC S5 C--- gSk:Sand Siy1//Si~ Cpfori=0,1,..., k-1
(1) If |[X| = p, then (X, S) ~

(2) If | X| = p?, then (X, S) ~ C , Co x Cpoor Gyt Cp;

(3) If |X| = p3, then only the case of p = 2,3 are classified.

(

(5

4) If 09(S) is cyclic, then (X, S) is schurian (see [HZ]);
) If 0%(S) ~ C, x Cp, then [BH] and [CHK] show some constructions of
non-schurian p—schemeS'

(6) If O%(S) ~ C,1 C,, then the problem is reduced to the case of
|X| = p? by our main result.
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On the case 0%(S) ~ C, x C,

We consider (X, S) with O%(S) ~ C, x C,.
Suppose that ng = p for each s € S\ 0%(S).

Theorem([CHK])
We have |X| < p?(p? + p +1).

Let X1,...,Xm be the distinct geometrical cosets of O%(S) and
Po={X1,Xa,..., Xm}, L:={Li(M)|1<i<m, 1<M<0%S)}
where Li(M) :={X;} U{Xj | Vs € S;sN(X; N Xj) # 0,ss* = M}.
Then (P, L) is a linear space.
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Thank you for your attention.
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