Maximal Commutative Schur rings

Maximal Commutative Schur rings

Stephen Humphries, Kenneth Johnson, Andrew Misseldine
Brigham Young University, Penn State, Southern Utah University

Symmetry vs Regularity 2018
Schur rings

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

S. Humphries, K. Johnson, A. Misseldine (BY) Maximal Commutative Schur rings July 3, 2018 2 / 20
For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-ring (or S-ring) over a group G is a sub-ring \mathcal{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, \ldots\}$ of the elements of G by finite sets with $\Gamma_1 = \{id\}$, satisfying:
For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-ring (or S-ring) over a group G is a sub-ring \mathcal{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, \ldots\}$ of the elements of G by finite sets with $\Gamma_1 = \{id\}$, satisfying:

(1) if $1 \leq i \leq m$, then there is some $j \geq 1$ such that $\Gamma_i^{-1} = \Gamma_j$;
Schur rings

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-ring (or S-ring) over a group G is a sub-ring S of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, \ldots\}$ of the elements of G by finite sets with $\Gamma_1 = \{id\}$, satisfying:

1. if $1 \leq i \leq m$, then there is some $j \geq 1$ such that $\Gamma_i^{-1} = \Gamma_j$;
2. if $1 \leq i, j \leq m$, then

$$\overline{\Gamma_i \Gamma_j} = \sum_{k=1}^{m} \lambda_{ijk} \overline{\Gamma_k},$$

where $\lambda_{ijk} \in \mathbb{Z}_{\geq 0}$ for all i, j, k.
Schur rings

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-ring (or S-ring) over a group G is a sub-ring S of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, \ldots\}$ of the elements of G by finite sets with $\Gamma_1 = \{id\}$, satisfying:

1. if $1 \leq i \leq m$, then there is some $j \geq 1$ such that $\Gamma_i^{-1} = \Gamma_j$;
2. if $1 \leq i, j \leq m$, then

$$\overline{\Gamma}_i \overline{\Gamma}_j = \sum_{k=1}^{m} \lambda_{ijk} \overline{\Gamma}_k,$$

where $\lambda_{ijk} \in \mathbb{Z}_{\geq 0}$ for all i, j, k.

The Γ_i are called the principal sets of the S-ring.
The maximal dimension of a commutative S-ring over G is

$$s_G := \sum_{i=1}^{r} d_i,$$

where d_1, \ldots, d_r are the irreducible character degrees of G.
The maximal dimension of a commutative S-ring over G is

$$s_G := \sum_{i=1}^{r} d_i,$$

where d_1, \ldots, d_r are the irreducible character degrees of G.

We say that the finite group G is S-realizable if there is a commutative S-ring \mathcal{S} over G of dimension s_G. We will also say that \mathcal{S} realizes s_G.
Some motivation

Random walks.
Some motivation

Random walks.

Probabilities that are constant on the principal sets of some commutative S-ring. Maximal S-rings give fissions of the centralizer ring $Z(\mathbb{C}G)$.
Some motivation

Random walks.

Probabilities that are constant on the principal sets of some commutative S-ring. Maximal S-rings give fissions of the centralizer ring $\mathbb{Z}(\mathbb{C}G)$.

Use: diagonalization.
We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $\text{SL}(2, 2^n)$, $n \geq 1$, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is cyclic.

Theorem

Every finite metacyclic group G is S-realizable.
We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n)$, $n \geq 1$, are S-realizable.
Result for $SL(2, 2^n)$ and metacyclic groups

We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n), n \geq 1$, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is cyclic:
Result for $SL(2, 2^n)$ and metacyclic groups

We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n), n \geq 1$, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is cyclic:

Theorem

Every finite metacyclic group G is S-realizable.
Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

1. Abelian groups.
2. Groups G with a normal abelian subgroup of index 2.
3. Groups G such that $G/Z(G) \cong \mathbb{Z}/2\mathbb{Z}$.

We call these Amitsur groups (of types (1), (2), (3)).

Theorem
(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

We generalize the above result (to the situation where 2 is replaced by a prime $p > 2$).
Result for Amitsur groups

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:
(1) Abelian groups.

(2) Groups G with a normal abelian subgroup of index 2.

(3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^2$.

We call these Amitsur groups (of types (1), (2), (3)).

Theorem (i) The Amitsur groups of type (1), (2) are S-realizable.

(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

We generalize the above result (to the situation where 2 is replaced by a prime $p > 2$).
Result for Amitsur groups

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:
(1) Abelian groups.
(2) Groups G with a normal abelian subgroup of index 2.
Result for Amitsur groups

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

(1) Abelian groups.
(2) Groups G with a normal abelian subgroup of index 2.
(3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.

Theorem (i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

We generalize the above result (to the situation where 2 is replaced by a prime $p > 2$).
Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

(1) Abelian groups.
(2) Groups G with a normal abelian subgroup of index 2.
(3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.

We call these *Amitsur groups* (of types (1), (2), (3)).
Result for Amitsur groups

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

1. Abelian groups.
2. Groups G with a normal abelian subgroup of index 2.
3. Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.

We call these Amitsur groups (of types (1), (2), (3)).

Theorem

(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.
Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

(1) Abelian groups.
(2) Groups G with a normal abelian subgroup of index 2.
(3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.

We call these *Amitsur groups* (of types (1), (2), (3)).

Theorem

(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

We generalize the above result (to the situation where 2 is replaced by a prime $p > 2$).
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{S}(G, H)$.

1. For $G = A_4$ we take $H = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

2. For $G = S_4$ we take $H = \langle (1, 2, 3) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

3. For $G = A_5$ we take $H = \langle (1, 2, 3, 4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

4. For $G = S_5$ we take $H = \langle (1, 2, 3), (4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

S. Humphries, K. Johnson, A. Misseldine (BYU) Maximal Commutative Schur rings July 3, 2018 7 / 20
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{S}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathcal{S}(G, H)$ realizes s_G. Examples:

1. For $G = A_4$ we take $H = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
2. For $G = S_4$ we take $H = \langle (1, 2, 3) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
3. For $G = A_5$ we take $H = \langle (1, 2, 3, 4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
4. For $G = S_5$ we take $H = \langle (1, 2, 3), (4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

I S. Humphries, K. Johnson, A. Misseldine (BYU) Maximal Commutative Schur rings July 3, 2018 7 / 20
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{S}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathcal{S}(G, H)$ realizes s_G. Examples:

1. For $G = A_4$ we take $H = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{G}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathcal{G}(G, H)$ realizes s_G.

Examples:

1. For $G = A_4$ we take $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then $\mathcal{G}(G, H)$ realizes s_G.
2. For $G = S_4$ we take $H = \langle (1,2,3) \rangle$. Then $\mathcal{G}(G, H)$ realizes s_G.
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{S}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathcal{S}(G, H)$ realizes s_G. Examples:

1. For $G = A_4$ we take $H = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
2. For $G = S_4$ we take $H = \langle (1, 2, 3) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
3. For $G = A_5$ we take $H = \langle (1, 2, 3, 4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathcal{S}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathcal{S}(G, H)$ realizes s_G.

Examples:

1. For $G = A_4$ we take $H = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
2. For $G = S_4$ we take $H = \langle (1, 2, 3) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
3. For $G = A_5$ we take $H = \langle (1, 2, 3, 4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.
4. For $G = S_5$ we take $H = \langle (1, 2, 3), (4, 5) \rangle$. Then $\mathcal{S}(G, H)$ realizes s_G.

S. Humphries, K. Johnson, A. Misseldine (BYU) Maximal Commutative Schur rings July 3, 2018 7 / 20
We also have:

Theorem

Let G be a Frobenius group with Frobenius complement H and abelian Frobenius kernel. Then G is S-realizable if and only if H is S-realizable.

We note that S-realizability is inherited by quotients:

Theorem

Let G be a finite group which is S-realizable and let $H \trianglelefteq G$. Then G/H is S-realizable.
We also have:

Theorem

Let G be a Frobenius group with Frobenius complement H and abelian Frobenius kernel. Then G is S-realizable if and only if H is S-realizable.

We note that S-realizability is inherited by quotients:

Theorem

Let G be a finite group which is S-realizable and let $H \trianglelefteq G$. Then G/H is S-realizable.
Group determinant

For a finite group $G = \{g_1 = 1, g_2, \ldots, g_n\}$, and independent commuting variables $x_1, x_2, \ldots, x_n, x_i = x_{g_i}$, the group matrix X_G of G is the $n \times n$ matrix whose rows and columns are indexed by the group elements, where the (i, j) entry is x_k if $g_i g_j^{-1} = g_k$. The group determinant is $\Theta_G = \det X_G$.

Theorem

Let S be an S-ring on a finite group G and let $\{C_i\}_{i=1}^t$ be the principal sets of S. Suppose that each variable x_g in X_G is set equal to the variable x_{C_i}, where $g \in C_i$, to obtain the matrix X_G^S. Let $\Theta_G^S = \det X_G^S$.

Then Θ_G^S factors into linear factors (over \mathbb{C}) if and only if S is commutative.
\[\mathcal{S}(G, H) \text{ maximal} \]

Theorem

If \(\mathcal{S}(G, H) \) *is commutative and realizes* \(s_G \), *then* \(H \) *is abelian.*
Proof: Let $H \leq G$.
Let χ_1, \ldots, χ_r be the irreducible characters of G.
Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H.
Let E_1, \ldots, E_t be the H-conjugacy classes.
Proof: Let $H \leq G$.
Let χ_1, \ldots, χ_r be the irreducible characters of G.
Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H.
Let E_1, \ldots, E_t be the H-conjugacy classes.

Karlof/Wigner: Suppose that $\chi_j|_H = \sum_{i=1}^{s} c_{ij} \varphi_i$. Then $\sum_{i,j} c_{ij}^2 = t.$
\(\mathcal{S}(G, H) \) maximal

Proof: Let \(H \leq G \).
Let \(\chi_1, \ldots, \chi_r \) be the irreducible characters of \(G \).
Let \(\varphi_1, \ldots, \varphi_s \) be the irreducible characters of \(H \).
Let \(E_1, \ldots, E_t \) be the \(H \)-conjugacy classes.

Karlof/Wigner: Suppose that \(\chi_j|_H = \sum_{i=1}^s c_{ij} \varphi_i \). Then \(\sum_{i,j} c_{ij}^2 = t \).

So \(\chi_j(1) = \sum_{i=1}^s c_{ij} \varphi_i(1) \), and

\[
S_G = \sum_{j=1}^r \chi_j(1) = \sum_{i,j} c_{ij} \varphi_i(1).
\]
$\mathcal{S}(G, H)$ maximal

Proof: Let $H \leq G$.
Let χ_1, \ldots, χ_r be the irreducible characters of G.
Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H.
Let E_1, \ldots, E_t be the H-conjugacy classes.

Karof/Wigner: Suppose that $\chi_j|_H = \sum_{i=1}^s c_{ij} \varphi_i$. Then $\sum_{i,j} c_{ij}^2 = t$.

So $\chi_j(1) = \sum_{i=1}^s c_{ij} \varphi_i(1)$, and

$$s_G = \sum_{j=1}^r \chi_j(1) = \sum_{i,j} c_{ij} \varphi_i(1).$$

Thus if the S-ring $\mathcal{S}(G, H)$ is of maximal dimension, then $t = s_G$ and so

$$\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2.$$
Karof: The irreducible $\mathcal{S}(G, H)$-modules have dimension c_{ij}.

So: $\mathcal{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$.

If $\mathcal{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also \[
\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij} \varphi_i(2).
\]

But $\varphi_i(1) \geq 1$ and so $\varphi_i(1) = 1$ for all φ_i.

Theorem: If $\mathcal{S}(G, H)$ is commutative of maximal dimension, then H is abelian.
$\mathfrak{S}(G, H)$ maximal

Karlof: The irreducible $\mathfrak{S}(G, H)$-modules have dimension c_{ij}.

So: $\mathfrak{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$.
Karof: The irreducible $\mathcal{S}(G, H)$-modules have dimension c_{ij}.

So: $\mathcal{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$.

If $\mathcal{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also

$$\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2 = \sum_{i,j} c_{ij}.$$

Theorem

If $\mathcal{S}(G, H)$ is commutative of maximal dimension, then H is abelian.
Karof: The irreducible $\mathcal{S}(G, H)$-modules have dimension c_{ij}.

So: $\mathcal{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$.

If $\mathcal{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also

$$\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2 = \sum_{i,j} c_{ij}.$$

But $\varphi_i(1) \geq 1$ and so $\varphi_i(1) = 1$ for all φ_i.
\(\mathcal{S}(G, H) \) maximal

Karlof: The irreducible \(\mathcal{S}(G, H) \)-modules have dimension \(c_{ij} \).

So: \(\mathcal{S}(G, H) \) is commutative if and only if \(c_{ij} = 0, 1 \).

If \(\mathcal{S}(G, H) \) is maximal commutative, then \(c_{ij} \in \{0, 1\} \) and also

\[
\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2 = \sum_{i,j} c_{ij}.
\]

But \(\varphi_i(1) \geq 1 \) and so \(\varphi_i(1) = 1 \) for all \(\varphi_i \).

Theorem

If \(\mathcal{S}(G, H) \) is commutative of maximal dimension, then \(H \) is abelian.
Gelfand pairs

1. $(G, H), H \leq G$, is a Gelfand pair if $\langle \chi|_H, 1 \rangle \leq 1$ for all irreducible characters χ of G
Gelfand pairs

1. \((G, H), H \leq G,\) is a Gelfand pair if \(\langle \chi|_H, 1 \rangle \leq 1\) for all irreducible characters \(\chi\) of \(G\)

2. \((G, H), H \leq G,\) is a strong Gelfand pair if \(\langle \chi|_H, \varphi \rangle \leq 1\) for all irreducible characters \(\chi\) of \(G\) and all irreducible characters \(\varphi\) of \(H\).
Gelfand pairs

1. \((G, H), H \leq G,\) is a Gelfand pair if \(\langle \chi |_H, 1 \rangle \leq 1\) for all irreducible characters \(\chi\) of \(G\).

2. \((G, H), H \leq G,\) is a strong Gelfand pair if \(\langle \chi |_H, \varphi \rangle \leq 1\) for all irreducible characters \(\chi\) of \(G\) and all irreducible characters \(\varphi\) of \(H\).

Nice fact: \((G, H), H \leq G,\) is a strong Gelfand pair if and only if \(S(G, H)\) is commutative.
Symmetric groups

We note:

$(S_3, \langle (1, 2) \rangle)$ is a strong Gelfand pair realizing s_G.
$(S_4, \langle (1, 2, 3) \rangle)$ is a strong Gelfand pair realizing s_G.
$(S_5, \langle (1, 2, 3)(4, 5) \rangle)$ is a strong Gelfand pair realizing s_G.
We note:

\((S_3, \langle (1, 2) \rangle)\) is a strong Gelfand pair realizing \(s_G\).

\((S_4, \langle (1, 2, 3) \rangle)\) is a strong Gelfand pair realizing \(s_G\).

\((S_5, \langle (1, 2, 3)(4, 5) \rangle)\) is a strong Gelfand pair realizing \(s_G\).

Proposition

If \(n \geq 6\) and \(H \leq S_n\) is an abelian subgroup, then \((G, H)\) is not a Gelfand pair.

In particular, \(S_n, n \geq 6\), cannot realize \(s_G\) using an \(S\)-ring of the form \(\mathcal{S}(S_n, H)\).
Symmetric groups

Proof:
Let $V_\pi = \text{Span}(v_1, \ldots, v_n) = V_{(n-1,1)} \oplus V_{(n)}$ be the permutation module.
Proof:
Let $V_{\pi} = \text{Span}(v_1, \ldots, v_n) = V_{(n-1,1)} \oplus V_{(n)}$ be the permutation module.

1. Let $H \leq S_n$ have k orbits. Then 1_H occurs in $V_{(n-1,1)}$ with multiplicity $k - 1$. So assume $k = 1, 2$.
Symmetric groups

Proof:
Let $V_\pi = \text{Span}(v_1, \ldots, v_n) = V_{(n-1,1)} \oplus V_{(n)}$ be the permutation module.

1. Let $H \leq S_n$ have k orbits. Then 1_H occurs in $V_{(n-1,1)}$ with multiplicity $k - 1$. So assume $k = 1, 2$.

2. If $k = 1$: A transitive abelian subgroup of S_n is regular. Then the action of $H \leq S_n$ on $V_\pi \otimes V_\pi$ has at least n orbits ($v_1 \otimes v_i, i \geq 1$)
Symmetric groups

Proof:
Let \(V_\pi = \text{Span}(v_1, \ldots, v_n) = V_{(n-1,1)} \oplus V_{(n)} \) be the permutation module.

1. Let \(H \leq S_n \) have \(k \) orbits. Then \(1_H \) occurs in \(V_{(n-1,1)} \) with multiplicity \(k - 1 \). So assume \(k = 1, 2 \).

2. If \(k = 1 \): A transitive abelian subgroup of \(S_n \) is regular. Then the action of \(H \leq S_n \) on \(V_\pi \otimes V_\pi \) has at least \(n \) orbits \((v_1 \otimes v_i, i \geq 1)\)

3. If \(k = 2 \), then \(V_{(n-1,1)} \otimes V_{(n-1,1)} \) has at least \(n - 1 \) orbits.
Symmetric groups

Proof:
Let \(V_\pi = \text{Span}(v_1, \ldots, v_n) = V_{(n-1,1)} \oplus V_{(n)} \) be the permutation module.

1. Let \(H \leq S_n \) have \(k \) orbits. Then \(1_H \) occurs in \(V_{(n-1,1)} \) with multiplicity \(k - 1 \). So assume \(k = 1, 2 \).

2. If \(k = 1 \) : A transitive abelian subgroup of \(S_n \) is regular. Then the action of \(H \leq S_n \) on \(V_\pi \otimes V_\pi \) has at least \(n \) orbits \((v_1 \otimes v_i, i \geq 1)\)

3. If \(k = 2 \), then \(V_{(n-1,1)} \otimes V_{(n-1,1)} \) has at least \(n - 1 \) orbits.

Use:

\[
V_\pi \otimes V_\pi = 2V_{(n)} \oplus 3V_{(n-1,1)} \oplus V_{(n-2,1,1)} \oplus V_{(n-2,2)}.
\]
Question 1: What is the largest dimension of a commutative S-ring over S_n.

Conjecture: when $H = S_n - 2 \times S_2$, $n > 5$.

S. Humphries, K. Johnson, A. Misseldine (BY)
Maximal Commutative Schur rings
July 3, 2018
Infinite groups

Question 1: What is the largest dimension of a commutative S-ring over S_n.

Question 2: What is the largest dimension of a commutative S-ring of the form $\mathcal{G}(S_n, H)$.

Conjecture: when $H = S_n - 2 \times S_2$, $n > 5$.

S. Humphries, K. Johnson, A. Misseldine (BYU)
Question 1: What is the largest dimension of a commutative S-ring over S_n.

Question 2: What is the largest dimension of a commutative S-ring of the form $\mathcal{G}(S_n, H)$.

Conjecture: when $H = S_{n-2} \times S_2$, $n > 5$.

Infinite groups

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over \(\mathbb{Z} \) or \(\mathbb{Z} \times C_2 \) is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set generates an infinite cyclic subgroup. e.g. subgroups of \(\mathbb{Q} \).
Theorem

Any Schur ring over \(\mathbb{Z} \) or \(\mathbb{Z} \times C_2 \) is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set generates an infinite cyclic subgroup. e.g. subgroups of \(\mathbb{Q} \).
Infinite groups

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over \(\mathbb{Z} \) or \(\mathbb{Z} \times C_2 \) is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set generates an infinite cyclic subgroup. E.g. subgroups of \(\mathbb{Q} \).

Theorem

Let \(G \) be locally infinite-cyclic. Any Schur ring over \(G \) or \(G \times C_2 \) is generated as the orbits of a finite subgroup of automorphisms of the group or a wedge product.
Let F_n be a free group of rank n and let $L_k = L_{n,k} = \{x : x \in F_n, |x| = k\}$.

Theorem

The L_k are the principle sets of a Schur ring over F_n. Further, this S-ring is commutative.
Infinite groups - free products

Consider $G = G_1 * G_2 * \cdots * G_k * \ldots$, the free product of different (but perhaps pairwise isomorphic) groups.
Infinite groups - free products

Consider $G = G_1 \ast G_2 \ast \cdots \ast G_k \ast \ldots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each i let O_i be an S-ring over G_i.
Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each i let O_i be an S-ring over G_i.

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i.
Infinite groups - free products

Consider $G = G_1 \ast G_2 \ast \cdots \ast G_k \ast \ldots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each i let O_i be an S-ring over G_i.

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i.

Then a type will be a sequence $s = [s_1, s_2, \ldots, s_h]$ where $s_i \in \{G_i\}_i$ and $s_i \neq s_{i+1}$.
Consider $G = G_1 \ast G_2 \ast \cdots \ast G_k \ast \ldots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each i let O_i be an S-ring over G_i.

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i.

Then a type will be a sequence $s = [s_1, s_2, \ldots, s_h]$ where $s_i \in \{ G_i \}_i$ and $s_i \neq s_{i+1}$.

Let \mathcal{L}_s be the set of all elements of the form $w = w_1 w_2 \cdots w_h$ where w_i is a non-trivial principal element of O_{s_i}. Then:

Theorem

The set $\bigcup_s \mathcal{L}_s$, where s is a type, is a set of principle elements for a Schur ring over G.