Maximal Commutative Schur rings

Stephen Humphries, Kenneth Johnson, Andrew Misseldine Brigham Young University, Penn State, Southern Utah University

Symmetry vs Regularity 2018

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-*ring* (or *S*-*ring*) over a group *G* is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, ...\}$ of the elements of *G* by finite sets with $\Gamma_1 = \{id\}$, satisfying:

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-*ring* (or *S*-*ring*) over a group *G* is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, ...\}$ of the elements of *G* by finite sets with $\Gamma_1 = \{id\}$, satisfying:

(1) if $1 \le i \le m$, then there is some $j \ge 1$ such that $\Gamma_i^{-1} = \Gamma_j$;

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-*ring* (or *S*-*ring*) over a group *G* is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, ...\}$ of the elements of *G* by finite sets with $\Gamma_1 = \{id\}$, satisfying:

(1) if $1 \le i \le m$, then there is some $j \ge 1$ such that $\Gamma_i^{-1} = \Gamma_j$; (2) if $1 \le i, j \le m$, then

$$\overline{\Gamma}_i\overline{\Gamma}_j=\sum_{k=1}^m\lambda_{ijk}\overline{\Gamma}_k,$$

where $\lambda_{ijk} \in \mathbb{Z}^{\geq 0}$ for all i, j, k.

For a group G and finite $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{-1} = \{x^{-1} : x \in X\}$.

A Schur-*ring* (or *S*-*ring*) over a group *G* is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{\Gamma_1, \Gamma_2, ...\}$ of the elements of *G* by finite sets with $\Gamma_1 = \{id\}$, satisfying:

(1) if $1 \le i \le m$, then there is some $j \ge 1$ such that $\Gamma_i^{-1} = \Gamma_j$; (2) if $1 \le i, j \le m$, then

$$\overline{\Gamma}_i\overline{\Gamma}_j=\sum_{k=1}^m\lambda_{ijk}\overline{\Gamma}_k,$$

where $\lambda_{ijk} \in \mathbb{Z}^{\geq 0}$ for all i, j, k.

The Γ_i are called the *principal sets* of the S-ring.

Basic result

The maximal dimension of a commutative S-ring over G is

$$s_G := \sum_{i=1}^r d_i,$$

where d_1, \ldots, d_r are the irreducible character degrees of G.

Basic result

The maximal dimension of a commutative S-ring over G is

$$s_G := \sum_{i=1}^r d_i,$$

where d_1, \ldots, d_r are the irreducible character degrees of G.

We say that the finite group G is S-realizable if there is a commutative S-ring \mathfrak{S} over G of dimension s_G . We will also say that \mathfrak{S} realizes s_G .

Some motivation

Random walks.

Random walks.

Probabilities that are constant on the principal sets of some commutative S-ring. Maximal S-rings give fissions of the centralizer ring $Z(\mathbb{C}G)$.

Random walks.

Probabilities that are constant on the principal sets of some commutative S-ring. Maximal S-rings give fissions of the centralizer ring $Z(\mathbb{C}G)$.

Use: diagonalization.

We give examples of families of finite groups that are S-realizable. For example we have:

We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n)$, $n \ge 1$, are S-realizable.

We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n)$, $n \ge 1$, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is cyclic:

We give examples of families of finite groups that are S-realizable. For example we have:

Theorem

The groups $SL(2, 2^n)$, $n \ge 1$, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is cyclic:

Theorem

Every finite metacyclic group G is S-realizable.

- (1) Abelian groups.
- (2) Groups G with a normal abelian subgroup of index 2.

- (1) Abelian groups.
- (2) Groups G with a normal abelian subgroup of index 2.
- (3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.

- (1) Abelian groups.
- (2) Groups G with a normal abelian subgroup of index 2.
- (3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.
- We call these Amitsur groups (of types (1), (2), (3)).

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

- (1) Abelian groups.
- (2) Groups G with a normal abelian subgroup of index 2.
- (3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.
- We call these Amitsur groups (of types (1), (2), (3)).

Theorem

(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

Amitsur determines all groups whose irreducible characters have degrees bounded by 2. These are:

- (1) Abelian groups.
- (2) Groups G with a normal abelian subgroup of index 2.
- (3) Groups G such that $G/Z(G) \cong \mathbb{Z}_2^3$.
- We call these Amitsur groups (of types (1), (2), (3)).

Theorem

(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not S-realizable.

We generalize the above result (to the situation where 2 is replaced by a prime p > 2).

Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the conjugation action of H on G partition G. These orbits determine an S-ring that we denote by $\mathfrak{S}(G, H)$.

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathfrak{S}(G, H)$ realizes s_G . Examples:

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathfrak{S}(G, H)$ realizes s_G . Examples:

1. For $G = A_4$ we take $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G .

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathfrak{S}(G, H)$ realizes s_G . Examples:

1. For $G = A_4$ we take $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 2. For $G = S_4$ we take $H = \langle (1,2,3) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G .

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathfrak{S}(G, H)$ realizes s_G . Examples:

1. For $G = A_4$ we take $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 2. For $G = S_4$ we take $H = \langle (1,2,3) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 3. For $G = A_5$ we take $H = \langle (1,2,3,4,5) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G .

A computer calculation shows that for all groups G of order less than 54 there is a subgroup H such that the S-ring $\mathfrak{S}(G, H)$ realizes s_G . Examples:

1. For $G = A_4$ we take $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 2. For $G = S_4$ we take $H = \langle (1,2,3) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 3. For $G = A_5$ we take $H = \langle (1,2,3,4,5) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . 4. For $G = S_5$ we take $H = \langle (1,2,3), (4,5) \rangle$. Then $\mathfrak{S}(G,H)$ realizes s_G . We also have:

Theorem

Let G be a Frobenius group with Frobenius complement H and abelian Frobenius kernel. Then G is S-realizable if and only if H is S-realizable. We also have:

Theorem

Let G be a Frobenius group with Frobenius complement H and abelian Frobenius kernel. Then G is S-realizable if and only if H is S-realizable.

We note that *S*-realizability is inherited by quotients:

Theorem

Let G be a finite group which is S-realizable and let $H \leq G$. Then G/H is S-realizable.

Group determinant

For a finite group $G = \{g_1 = 1, g_2, \dots, g_n\}$, and independent commuting variables $x_1, x_2, \dots, x_n, x_i = x_{g_i}$, the group matrix X_G of G is the $n \times n$ matrix whose rows and columns are indexed by the group elements, where the (i, j) entry is x_k if $g_i g_i^{-1} = g_k$. The group determinant is $\Theta_G = \det X_G$.

Theorem

Let \mathfrak{S} be an S-ring on a finite group G and let $\{C_i\}_{i=1}^t$ be the principal sets of \mathfrak{S} . Suppose that each variable x_g in X_G is set equal to the variable x_{C_i} , where $g \in C_i$, to obtain the matrix $X_G^{\mathfrak{S}}$. Let $\mathfrak{O}_G^{\mathfrak{S}} = \det X_G^{\mathfrak{S}}$.

Then $\Theta_G^{\mathfrak{S}}$ factors into linear factors (over \mathbb{C}) if and only if \mathfrak{S} is commutative.

Theorem

If $\mathfrak{S}(G, H)$ is commutative and realizes s_G , then H is abelian.

Proof: Let $H \leq G$.

Let χ_1, \ldots, χ_r be the irreducible characters of *G*. Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of *H*. Let *E*.

Let E_1, \ldots, E_t be the *H*-conjugacy classes.

Proof: Let $H \leq G$. Let χ_1, \ldots, χ_r be the irreducible characters of G. Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H. Let E_1, \ldots, E_t be the H-conjugacy classes.

Karlof/Wigner: Suppose that $\chi_j|_H = \sum_{i=1}^s c_{ij}\varphi_i$. Then $\sum_{i,j} c_{ij}^2 = t$.

Proof: Let $H \leq G$. Let χ_1, \ldots, χ_r be the irreducible characters of G. Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H. Let E_1, \ldots, E_t be the H-conjugacy classes.

Karlof/Wigner: Suppose that $\chi_j|_H = \sum_{i=1}^s c_{ij}\varphi_i$. Then $\sum_{i,j} c_{ij}^2 = t$.

So
$$\chi_j(1) = \sum_{i=1}^s c_{ij} \varphi_i(1)$$
, and
 $s_G = \sum_{j=1}^r \chi_j(1) = \sum_{i,j} c_{ij} \varphi_i(1)$.

Proof: Let $H \leq G$. Let χ_1, \ldots, χ_r be the irreducible characters of G. Let $\varphi_1, \ldots, \varphi_s$ be the irreducible characters of H. Let E_1, \ldots, E_t be the H-conjugacy classes.

Karlof/Wigner: Suppose that
$$\chi_j|_H = \sum_{i=1}^s c_{ij}\varphi_i$$
. Then $\sum_{i,j} c_{ij}^2 = t$.

So
$$\chi_j(1) = \sum_{i=1}^s c_{ij}\varphi_i(1)$$
, and
 $s_G = \sum_{j=1}^r \chi_j(1) = \sum_{i,j} c_{ij}\varphi_i(1)$.

Thus if the S-ring $\mathfrak{S}(G, H)$ is of maximal dimension, then $t = s_G$ and so

$$\sum_{i,j} c_{ij}\varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2.$$

Karlof: The irreducible $\mathfrak{S}(G, H)$ -modules have dimension c_{ij} .

Karlof: The irreducible $\mathfrak{S}(G, H)$ -modules have dimension c_{ij} .

So: $\mathfrak{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$.

Karlof: The irreducible $\mathfrak{S}(G, H)$ -modules have dimension c_{ij} . So: $\mathfrak{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$. If $\mathfrak{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also

$$\sum_{i,j} c_{ij} arphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2 = \sum_{i,j} c_{ij}.$$

Karlof: The irreducible $\mathfrak{S}(G, H)$ -modules have dimension c_{ij} . So: $\mathfrak{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$. If $\mathfrak{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also

$$\sum_{i,j} c_{ij} \varphi_i(1) = s_G = t = \sum_{i,j} c_{ij}^2 = \sum_{i,j} c_{ij}.$$

But $\varphi_i(1) \ge 1$ and so $\varphi_i(1) = 1$ for all φ_i .

Karlof: The irreducible $\mathfrak{S}(G, H)$ -modules have dimension c_{ij} . So: $\mathfrak{S}(G, H)$ is commutative if and only if $c_{ij} = 0, 1$. If $\mathfrak{S}(G, H)$ is maximal commutative, then $c_{ij} \in \{0, 1\}$ and also

 $\sum_{i,j}c_{ij}arphi_i(1)=s_{\mathcal{G}}=t=\sum_{i,j}c_{ij}^2=\sum_{i,j}c_{ij}.$

But $\varphi_i(1) \ge 1$ and so $\varphi_i(1) = 1$ for all φ_i .

Theorem

If $\mathfrak{S}(G, H)$ is commutative of maximal dimension, then H is abelian.

Gelfand pairs

1. $(G, H), H \leq G$, is a *Gelfand pair* if $\langle \chi |_H, 1 \rangle \leq 1$ for all irreducible characters χ of *G*

Gelfand pairs

1. $(G, H), H \leq G$, is a *Gelfand pair* if $\langle \chi |_H, 1 \rangle \leq 1$ for all irreducible characters χ of *G*

2. $(G, H), H \leq G$, is a strong Gelfand pair if $\langle \chi |_H, \varphi \rangle \leq 1$ for all irreducible characters χ of G and all irreducible characters φ of H.

Gelfand pairs

1. $(G, H), H \leq G$, is a *Gelfand pair* if $\langle \chi |_H, 1 \rangle \leq 1$ for all irreducible characters χ of *G*

2. $(G, H), H \leq G$, is a strong Gelfand pair if $\langle \chi |_H, \varphi \rangle \leq 1$ for all irreducible characters χ of G and all irreducible characters φ of H.

Nice fact: $(G, H), H \leq G$, is a strong Gelfand pair if and only if $\mathfrak{S}(G, H)$ is commutative.

We note:

 $(S_3, \langle (1,2) \rangle)$ is a strong Gelfand pair realizing s_G . $(S_4, \langle (1,2,3) \rangle)$ is a strong Gelfand pair realizing s_G . $(S_5, \langle (1,2,3)(4,5) \rangle)$ is a strong Gelfand pair realizing s_G . We note:

 $(S_3, \langle (1,2) \rangle)$ is a strong Gelfand pair realizing s_G . $(S_4, \langle (1,2,3) \rangle)$ is a strong Gelfand pair realizing s_G . $(S_5, \langle (1,2,3)(4,5) \rangle)$ is a strong Gelfand pair realizing s_G .

Proposition

If $n \ge 6$ and $H \le S_n$ is an abelian subgroup, then (G, H) is not a Gelfand pair. In particular, $S_n, n \ge 6$, cannot realize s_G using an S-ring of the form $\mathfrak{S}(S_n, H)$. Proof: Let $V_{\pi} = \text{Span}(v_1, \dots, v_n) = V_{(n-1,1)} \oplus V_{(n)}$ be the permutation module.

2. If k = 1: A transitive abelian subgroup of S_n is regular. Then the action of $H \leq S_n$ on $V_{\pi} \otimes V_{\pi}$ has at least *n* orbits ($v_1 \otimes v_i, i \geq 1$)

2. If k = 1: A transitive abelian subgroup of S_n is regular. Then the action of $H \leq S_n$ on $V_{\pi} \otimes V_{\pi}$ has at least *n* orbits $(v_1 \otimes v_i, i \geq 1)$

3. If k = 2, then $V_{(n-1,1)} \otimes V_{(n-1,1)}$ has at least n-1 orbits.

2. If k = 1: A transitive abelian subgroup of S_n is regular. Then the action of $H \leq S_n$ on $V_\pi \otimes V_\pi$ has at least n orbits $(v_1 \otimes v_i, i \geq 1)$ 3. If k = 2, then $V_{(n-1,1)} \otimes V_{(n-1,1)}$ has at least n-1 orbits. Use:

$$V_{\pi} \otimes V_{\pi} = 2V_{(n)} \oplus 3V_{(n-1,1)} \oplus V_{(n-2,1,1)} \oplus V_{(n-2,2)}.$$

Question 1: What is the largest dimension of a commutative S-ring over S_n .

Question 1: What is the largest dimension of a commutative S-ring over S_n .

Question 2: What is the largest dimension of a commutative S-ring of the form $\mathfrak{S}(S_n, H)$.

Question 1: What is the largest dimension of a commutative S-ring over S_n .

Question 2: What is the largest dimension of a commutative S-ring of the form $\mathfrak{S}(S_n, H)$.

Conjecture: when $H = S_{n-2} \times S_2$, n > 5.

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over \mathbb{Z} or $\mathbb{Z} \times C_2$ is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over \mathbb{Z} or $\mathbb{Z} \times C_2$ is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set generates an infinite cyclic subgroup. e.g. subgroups of \mathbb{Q} .

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over \mathbb{Z} or $\mathbb{Z} \times C_2$ is the set of orbits of a finite subgroup of automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set generates an infinite cyclic subgroup. e.g. subgroups of \mathbb{Q} .

Theorem

Let G be locally infinite-cyclic. Any Schur ring over G or $G \times C_2$ is generated as the orbits of a finite subgroup of automorphisms of the group or a wedge product.

Infinite groups - constructions

Let F_n be a free group of rank n and let $L_k = L_{n,k} = \{x : x \in F_n, |x| = k\}.$

Theorem

The L_k are the principle sets of a Schur ring over F_n . Further, this S-ring is commutative.

Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each *i* let O_i be an S-ring over G_i .

Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each *i* let O_i be an S-ring over G_i .

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i .

Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each *i* let O_i be an S-ring over G_i .

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i .

Then a *type* will be a sequence $s = [s_1, s_2, ..., s_h]$ where $s_i \in \{G_i\}_i$ and $s_i \neq s_{i+1}$.

Consider $G = G_1 * G_2 * \cdots * G_k * \cdots$, the free product of different (but perhaps pairwise isomorphic) groups.

For each *i* let O_i be an S-ring over G_i .

Let $O_{i,1}, O_{i,2}, \ldots, O_{i,d_i}$ be the principle sets of O_i .

Then a *type* will be a sequence $s = [s_1, s_2, ..., s_h]$ where $s_i \in \{G_i\}_i$ and $s_i \neq s_{i+1}$.

Let \mathcal{L}_s be the set of all elements of the form $w = w_1 w_2 \cdots w_h$ where w_i is a non-trivial principal element of O_{s_i} . Then:

Theorem

The set $\cup_s \mathcal{L}_s$, where s is a type, is a set of principle elements for a Schur ring over G.

THE END