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Schur rings

For a group G and finite X ⊆ G , we let X =
∑

x∈X x ∈ CG .
We also let X−1 = {x−1 : x ∈ X}.

A Schur-ring (or S-ring) over a group G is a sub-ring S of CG that is
constructed from a partition {Γ1, Γ2, . . . } of the elements of G by finite
sets with Γ1 = {id}, satisfying:

(1) if 1 ≤ i ≤ m, then there is some j ≥ 1 such that Γ−1i = Γj ;
(2) if 1 ≤ i , j ≤ m, then

ΓiΓj =
m∑

k=1

λijkΓk ,

where λijk ∈ Z≥0 for all i , j , k.

The Γi are called the principal sets of the S-ring.
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Basic result

The maximal dimension of a commutative S-ring over G is

sG :=
r∑

i=1

di ,

where d1, . . . , dr are the irreducible character degrees of G .

We say that the finite group G is S-realizable if there is a commutative
S-ring S over G of dimension sG .
We will also say that S realizes sG .
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Some motivation

Random walks.

Probabilities that are constant on the principal sets of some commutative
S-ring. Maximal S-rings give fissions of the centralizer ring Z (CG ).

Use: diagonalization.
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Result for SL(2, 2n) and metacyclic groups

We give examples of families of finite groups that are S-realizable. For
example we have:

Theorem

The groups SL(2, 2n), n ≥ 1, are S-realizable.

Metacyclic groups: have a cyclic normal subgroup N such that G/N is
cyclic:

Theorem

Every finite metacyclic group G is S-realizable.
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Result for Amitsur groups

Amitsur determines all groups whose irreducible characters have degrees
bounded by 2. These are:

(1) Abelian groups.
(2) Groups G with a normal abelian subgroup of index 2.
(3) Groups G such that G/Z (G ) ∼= Z3

2.
We call these Amitsur groups (of types (1), (2), (3)).

Theorem

(i) The Amitsur groups of type (1), (2) are S-realizable.
(ii) The Amitsur groups of type (3), but not of type (2), are not
S-realizable.

We generalize the above result (to the situation where 2 is replaced by a
prime p > 2).
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Examples for small groups

If G is a group and H is a finite subgroup, then the orbits for the
conjugation action of H on G partition G .
These orbits determine an S-ring that we denote by S(G ,H).

A computer calculation shows that for all groups G of order less than 54
there is a subgroup H such that the S-ring S(G ,H) realizes sG .
Examples:

1. For G = A4 we take H = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉. Then S(G ,H)
realizes sG .
2. For G = S4 we take H = 〈(1, 2, 3)〉. Then S(G ,H) realizes sG .
3. For G = A5 we take H = 〈(1, 2, 3, 4, 5)〉. Then S(G ,H) realizes sG .
4. For G = S5 we take H = 〈(1, 2, 3), (4, 5)〉. Then S(G ,H) realizes sG .
I
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Frobenius groups and quotients

We also have:

Theorem

Let G be a Frobenius group with Frobenius complement H and abelian
Frobenius kernel. Then G is S-realizable if and only if H is S-realizable.

We note that S-realizability is inherited by quotients:

Theorem

Let G be a finite group which is S-realizable and let H E G . Then G/H is
S-realizable.
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Group determinant

For a finite group G = {g1 = 1, g2, . . . , gn}, and independent commuting
variables x1, x2, . . . , xn, xi = xgi , the group matrix XG of G is the n × n
matrix whose rows and columns are indexed by the group elements, where
the (i , j) entry is xk if gig

−1
j = gk . The group determinant is ΘG = detXG .

Theorem

Let S be an S-ring on a finite group G and let {Ci}ti=1 be the principal
sets of S. Suppose that each variable xg in XG is set equal to the variable
xCi
, where g ∈ Ci , to obtain the matrix XS

G . Let ΘS
G = detXS

G .

Then ΘS
G factors into linear factors (over C) if and only if S is

commutative.
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S(G ,H) maximal

Theorem

If S(G ,H) is commutative and realizes sG , then H is abelian.
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S(G ,H) maximal

Proof: Let H ≤ G .
Let χ1, . . . , χr be the irreducible characters of G .
Let ϕ1, . . . , ϕs be the irreducible characters of H.
Let E1, . . . ,Et be the H-conjugacy classes.

Karlof/Wigner: Suppose that χj |H =
∑s

i=1 cijϕi . Then
∑

i ,j c
2
ij = t.

So χj(1) =
∑s

i=1 cijϕi (1), and

sG =
r∑

j=1

χj(1) =
∑
i ,j

cijϕi (1).

Thus if the S-ring S(G ,H) is of maximal dimension, then t = sG and so∑
i ,j

cijϕi (1) = sG = t =
∑
i ,j

c2ij .
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S(G ,H) maximal

Karlof: The irreducible S(G ,H)-modules have dimension cij .

So: S(G ,H) is commutative if and only if cij = 0, 1.

If S(G ,H) is maximal commutative, then cij ∈ {0, 1} and also∑
i ,j

cijϕi (1) = sG = t =
∑
i ,j

c2ij =
∑
i ,j

cij .

But ϕi (1) ≥ 1 and so ϕi (1) = 1 for all ϕi .

Theorem

If S(G ,H) is commutative of maximal dimension, then H is abelian.
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Gelfand pairs

1. (G ,H),H ≤ G , is a Gelfand pair if 〈χ|H , 1〉 ≤ 1 for all irreducible
characters χ of G

2. (G ,H),H ≤ G , is a strong Gelfand pair if 〈χ|H , ϕ〉 ≤ 1 for all
irreducible characters χ of G and all irreducible characters ϕ of H.

Nice fact: (G ,H),H ≤ G , is a strong Gelfand pair if and only if S(G ,H)
is commutative.
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Symmetric groups

We note:
(S3, 〈(1, 2)〉) is a strong Gelfand pair realizing sG .
(S4, 〈(1, 2, 3)〉) is a strong Gelfand pair realizing sG .
(S5, 〈(1, 2, 3)(4, 5)〉) is a strong Gelfand pair realizing sG .

Proposition

If n ≥ 6 and H ≤ Sn is an abelian subgroup, then (G ,H) is not a Gelfand
pair.
In particular, Sn, n ≥ 6, cannot realize sG using an S-ring of the form
S(Sn,H).
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Symmetric groups

Proof:
Let Vπ = Span(v1, . . . , vn) = V(n−1,1) ⊕ V(n) be the permutation module.

1. Let H ≤ Sn have k orbits. Then 1H occurs in V(n−1,1) with multiplicity
k − 1. So assume k = 1, 2.

2. If k = 1 : A transitive abelian subgroup of Sn is regular. Then the
action of H ≤ Sn on Vπ ⊗ Vπ has at least n orbits (v1 ⊗ vi , i ≥ 1)

3. If k = 2, then V(n−1,1) ⊗ V(n−1,1) has at least n − 1 orbits.

Use:

Vπ ⊗ Vπ = 2V(n) ⊕ 3V(n−1,1) ⊕ V(n−2,1,1) ⊕ V(n−2,2).
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Infinite groups

Question 1: What is the largest dimension of a commutative S-ring over
Sn.

Question 2: What is the largest dimension of a commutative S-ring of the
form S(Sn,H).

Conjecture: when H = Sn−2 × S2, n > 5.
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Infinite groups

(with Bastian, Brewer, Misseldine and Thompson)

Theorem

Any Schur ring over Z or Z× C2 is the set of orbits of a finite subgroup of
automorphisms of the group or a wedge product.

More generally: a group is locally infinite-cyclic if any finite non-trivial set
generates an infinite cyclic subgroup. e.g. subgroups of Q.

Theorem

Let G be locally infinite-cyclic. Any Schur ring over G or G × C2 is
generated as the orbits of a finite subgroup of automorphisms of the group
or a wedge product.
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Infinite groups - constructions

Let Fn be a free group of rank n and let Lk = Ln,k = {x : x ∈ Fn, |x | = k}.

Theorem

The Lk are the principle sets of a Schur ring over Fn. Further, this S-ring
is commutative.
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Infinite groups - free products

Consider G = G1 ∗ G2 ∗ · · · ∗ Gk ∗ . . . , the free product of different (but
perhaps pairwise isomorphic) groups.

For each i let Oi be an S-ring over Gi .

Let Oi ,1,Oi ,2, . . . ,Oi ,di be the principle sets of Oi .

Then a type will be a sequence s = [s1, s2, . . . , sh] where si ∈ {Gi}i and
si 6= si+1.

Let Ls be the set of all elements of the form w = w1w2 · · ·wh where wi is
a non-trivial principal element of Osi . Then:

Theorem

The set ∪sLs , where s is a type, is a set of principle elements for a Schur
ring over G .
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THE END

THE END
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