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Plan for this talk

Babai’s classification of strongly regular graphs (SRG) by
a measure of symmetry.

Generalization to distance-regular graphs (DRG)

Generalization to coherent configurations (CC).
Conjectures and known results.
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Goal

Goal: Classify all PCC X with “large" G = Aut(X).

There are different ways to measure “largeness":

Most desired: large order of the group |G|.
(|G| > exp((log n)c)).

We focus on:

large thickness of a group θ(G) (θ(G) > (log n)c)

small minimal degree mindeg(G) (mindeg(G) < εn).
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Minimal degree of a permutation group

Degree deg(σ) of permutation σ ∈ Sym(Ω)
is the number of points in Ω not fixed by σ.

Definition
Minimal degree of G is

mindeg(G) = min
σ,1

[deg(σ)]

Examples: mindeg(Sn) = 2, mindeg(An) = 3,
for Zn ≤ Sn: mindeg(Zn) = n.

Theorem (Liebeck 1984, using CFSG)

If G ≤ Sn is a primitive permutation group, then

mindeg(G) ≥
n

9 log2(n)
with known exceptions.

Exceptions are Cameron groups.
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mindeg(G) = min
σ,1
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Structural consequences of large minimal degree

A group H is involved in G if H � L/K for K / L ≤ G.

Terminology (Babai)

The maximal t for which At is involved in G is
the thickness θ(G) of G.

Large minimal degree ⇒ small thickness

Lemma (Wielandt 1934)

G ≤ Sn and minimal degree satisfies mindeg(G) ≥ Ω(n), then

θ(G) ≤ O(log(n)).

Bohdan Kivva, UChicago On the automorphism groups of PCC



Classification of SRG by measure of symmetry

Theorem (Babai 2014)

X strongly regular graph

⇒ mindeg(Aut(X )) ≥ n/8

with known exceptions.

Our paper generalizes this to:
Distance-regular graphs.
Primitive coherent configurations of rank 4.

Techniques:
structural combinatorics
spectral graph theory
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Notation: Strongly regular graphs

Strongly regular graph (SRG) with parameters (n, k , λ, µ)

n - number of vertices;
k - degree of every vertex;
λ = |N(u) ∩ N(v)| for u ∼ v ;
µ = |N(u) ∩ N(v)| for u / v .

(n, k , λ, µ) = (10,3,0,1)
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Coherent configurations

V is a finite set. R = {R1,R2, ...,Rs} is a partition of V × V .
Partition R = (R1,R2, ...,Rs) ←→ coloring c : V × V → [s]
c(w ,w) – a vertex color c(u, v) – an edge color if u , v

X = (V ,R) = (V , c) is a coherent configuration (CC) if
1 vertex colors , edge colors
2 c(u, v) determines c(v ,u)
3 pk

i ,j = |{w : c(u,w) = i , c(w , v) = j}|, where c(u, v) = k
Def: s is a rank of CC.

ji
k

pk
i ,j
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Special classes of coherent configurations

Special classes of CCs:
Homogeneous CC.: c(u,u) = c(v , v) for all u, v ∈ V .
Association schemes: c(u, v) = c(v ,u) for all u, v ∈ V
⇒ homogeneous.
Metric schemes: colors = distances in DRG,

c(x , y) = dist(x , y).
Primitive coherent configurations (PCC): homogeneous +
every constituent digraph is strongly (= weakly) connected
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Distance-regular graphs

X is a distance-regular graph if ∃ sequence of parameters

ι(X ) = {b0,b1, . . . ,bd−1; c1, c2, . . . cd }, s.t.

ci
bi

ai

Ni−1(v) Ni+1(v)
Ni(v)

v

Notation: b0 = k , a1 = λ, c2 = µ. ki = |Ni |.

We have the following properties

ai + bi + ci = k ,

b0 ≥ b1 ≥ · · · ≥ bd−1 and c1 ≤ c2 ≤ · · · ≤ cd .
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Examples: Johnson graph

Johnson graph J(m, t), m ≥ 2t + 1:

V = V (J(m, t)) =
([m]

t
)
,

A,B ∈ V are adjacent iff |A \ B| = |B \ A| = 1.

J(m, t) is DRG of diameter t . Smallest eigenvalue −t .

Aut(J(m, t)) = S(t)
m ⇒ mindeg(Aut(J(m, t))) ≤ O(n1−1/t )
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Examples: Hamming graph

Hamming graph H(t ,m):
V = V (H(t ,m)) = [m]t , i.e., strings of length t over [m].
A,B ∈ V are adjacent if Hamming distance dH(A,B) = 1.

H(s,m) is DRG of diameter t . Smallest eigenvalue −t .

Aut(H(t ,m)) = Sm o St ⇒ mindeg(Aut(H(t ,m))) ≤ O(n1−1/t )
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Our result for DRG

Theorem (K. 2018)
∀d ≥ 3, s.t. for any primitive DRG X of diameter d one of the
following is true.

1 mindeg(Aut(X )) ≥ Ω(n).
2 X is a geometric DRG.

In the case of diameter 3 we get complete classification of all
exceptions to (1) even without primitivity assumption.
They are:

1 Johnson graph J(s,3),
2 Hamming graph H(3, s),
3 cocktail-party graph.
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A classification of PCC of rank 4

Theorem (K. 2018)
Let X be a PCC of rank 4 on n vertices . Then one of the
following is true

1 mindeg(Aut(X)) ≥ Ω(n)

2 X is a Hamming or a Johnson scheme.
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Ideas of the proofs
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Classification of SRG by measure of symmetry

Theorem (Babai, 2014)

If X is a strongly regular graph on n ≥ 29 vertices. Then one of
the following is true

1 minimal degree of Aut(X ) is ≥ n/8.
2 X or its complement is

triangular graph T (s) = J(s,2),
lattice graph L2(s) = H(2, s),
union of cliques (trivial case).
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Distinguishing number

A vertex x distinguishes u and v if c(x ,u) , c(x , v).

D(u, v) = number of vertices that distinguish u and v .

Distinguishing number (Babai 1981):

D(X ) = min
u,v∈V

D(u, v)

D(X ) ≤ mindeg(Aut(X )).

Note, if X is SRG, then D(X ) = 2(k −max(λ, µ)).
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Spectrum of DRG

Spectrum of X = eigenvalues of adjacency matrix.

Let X be DRG of diameter d , then its eigenvalues are the
eigenvalues of (d + 1) × (d + 1) matrix

T (X ) =


a0 b0 0 0 ...
c1 a1 b1 0 ...
0 c2 a2 b2 ...

...
... ...

... 0 cd ad


Thus, there are d + 1 distinct eigenvalues.

For SRG eigenvalues are k and the solutions θ2 ≤ θ1 to

θ1 + θ2 = λ − µ, θ1θ2 = µ − k .
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Spectral tool

X is k -regular graph, k = θ1 ≥ θ2 ≥ · · · ≥ θn is its spectrum.

Definition: zero-weigth spectral radius

ξ = max{|θ2|, |θ3|, . . . , |θn|}

Note: k − ξ is a spectral gap ∼ related to expansion of graphs.
q = max # of common neighbors ∀u , v ∈ V (X ).

Lemma (Babai 2014)

mindeg(Aut(X )) ≥ n
(
1 −

q + ξ

k

)

Lemma is proved using Expander Mixing Lemma.
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Two tools

k - degree of graph X
ξ - zero-weight spectral radius
D(X ) - distinguishing number

Distinguishing number tool

mindeg(Aut(X )) ≥ D(X )

Spectral tool

mindeg(Aut(X )) ≥ n
(
1 −

q + ξ

k

)
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Skeleton of the Babai’s proof

Theorem (Seidel 1968)
If X is a non-trivial SRG on n ≥ 29 vertices and least
eigenvalue −2, then X is T (s) or L2(s) for some s.

Note: complement of SRG is SRG, so we may assume k ≤ n−1
2 .

Then max(λ, µ) ≤ 3
4k . (∆ ineq. for distinguishing numbers)

Case 1: k ≥ n/4⇒ D(X ) = 2(k −max(λ, µ)) ≥ n/8
Apply distinguishing number tool.

Case 2: k ≤ n
4 and smallest eigenvalue of X is at most −3.

Spectral tool works!

Case 3: Smallest eigenvalue is > −3.
These graphs are known by Seidel’s classification.
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The same framework for DRG

Step 1: Apply distinguishing number tool whenever possible.

Step 2: In remaining cases apply spectral analysis.

Step 3: Reduce to classification results for graphs with
special properties in terms of k , λ, µ, θmin.
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Strategy for DRG

Let X be DRG of fixed diameter d .

1 If distinguishing number tool works. !
2 Else:

µ < εk
ai approximate eigenvalues well
+ inequalities involving parameters bi and ci
⇒ X is an expander with spectral gap > γk

(0 < γ < 1 constant dependent on d)

1 If λ ≤ γk/2, then spectral tool works.
Recall: mindeg(X ) ≥ n

(
1 − q+ξ

k

)
2 If λ > γk/2, then X is geometric.
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Geometric DRG

Theorem (Delsarte 1973)
X - DRG, θmin - smallest eigenvalue, C - clique in X. Then

|C| ≤ 1 −
k
θmin

Definition

A clique of size 1 − k
θmin

is called a Delsarte clique.

Definition
Graph X contains clique geometry, if ∃ C a collection of
max. cliques s.t. ∀ edge is in precisely 1 clique C ∈ C .
If all C ∈ C are Delsarte clique, DRG X is geometric.
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Corollaries from Metsch’s criteria

Theorem (Metsch 1995)
Let X be a graph. Some system of inequalities on parameters
of X implies that it has clique geometry.

Lemma (Spielman, Babai-Wilmes, Cor. to Metsch criteria)

If X satisfies kµ = o(λ2), then X has clique geometry.

Lemma (Corollary to Metsch criteria)
Let X be DRG and m ∈N with

(m − 1)(λ+ 1) < k ≤ m(λ+ 1),
λ ≥ 1

2m(m + 1)µ.
Then X is geometric with smallest eigenvalue −m.
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Our result for DRG

Theorem (K 2018)
∀d ≥ 3 ∃γd > 0,md , s.t. for any primitive DRG X of diameter d
one of the following is true:

1 mindeg(Aut(X )) ≥ γdn.
2 X is geometric with smallest eigenvalue −m, where

m ≤ md .
Furthermore, it is possible to take

md = b2(d − 1)(d − 2)log2(d−2)
c.
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More on Distinguishing numbers

Lemma (Properties of distinguishing number)
1 D(u, v) depends only on the color c(u, v) = i , so we can

define D(i) := D(u, v).
2 D(u, v) ≤ D(u,w) + D(w , v).
3 D(X ) ≥

D(i)
diam(i) , where diam(i) is an undirected diameter

color-i constituent.

u v

w

?
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Distinguishing number for DRG

Recall, D(X ) ≥ D(1)/d . Recall, ki = |Ni(v)|. We have,

D(1) ≥ 2(ki − p1
i ,i) = 2ki

(k − ai)

k
.

ki ≥
n−1

d for some i =⇒ We want: k − ai ≥ Ω(k) for all i .

Bad case: k − ai is small for some i .
But: k = ai + bi + ci , so bi and ci are small.
=⇒ we can do spectral analysis.
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Distinguishing number for DRG

Case 1: k − ai ≥ Ω(k) for all i .

Lemma
Let X be DRG of diameter d. Suppose for some 1 ≤ i ≤ d

bi−1 ≥ αk , ci ≥ βk .

Then

D(X ) ≥
min(α, β)

d2
n
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Approximation of eigenvalues

Matrices are entry-wise close⇒ their eigenvalues are close

Theorem (Ostrowski 1960)

Let A,B ∈ Mn(C).
λ1, λ2, ..., λn are eigenvalues of A
µ1, µ2, ..., µn are eigenvalues of B.

M = max{|(A)ij |, |(B)ij | : 1 ≤ i , j ≤ n}, δ =
1

nM

n∑
i=1

n∑
j=1

|(A)ij−(B)ij |.

Then, there exists a permutation σ ∈ Sn such that

|λi − µσ(i)| ≤ 2(n + 1)2Mδ1/n, for all 1 ≤ i ≤ n.
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Spectral analysis of DRG

The eigenvalues of X are the eigenvalues of T (X )

T (X ) =



a0 b0 0 0 0 0 ...
c1 a1 b1 0 0 0 ...
0 c2 a2 b2 0 0 ...
0 0 c3 a3 b3

... ...
... ...

... 0 0 0 cd−1 ad−1 bd−1

... 0 0 0 0 cd ad


Suppose that bi < εk and ci < εk for some i .

Eigenvalues are close to the aj
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a0 b0 0 0 0 0 ...
c1 a1 b1 0 0 0 ...
0 c2 a2 b2 0 0 ...
0 0 c3 a3 b3

... ...
... ...
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
Suppose that bi < εk and ci < εk for some i .

Eigenvalues are close to the aj

|θj − aτ(j)| ≤ 2(d + 2)2ε1/(d+1)k , for all 1 ≤ j ≤ n.
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Spectral analysis of DRG

The eigenvalues of X are the eigenvalues of T (X )

T (X ) =



a0 b0 0 0 0 0 ...
c1 a1 b1 0 0 0 ...
0 c2 a2 b2 0 0 ...
0 0 c3 a3 b3

... ...
... ...

... 0 0 0 cd−1 ad−1 bd−1

... 0 0 0 0 cd ad


Suppose that bi < εk and ci < εk for some i .

Eigenvalues are close to the aj

We know ai ≈ k . So for large spectral gap:
Need: (∀j , i) k − aj ≥ Ω(k)⇒ Need: (∀j , i) bj or cj ≥ Ω(k)
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Control of the expansion

Idea: If bj is large and cj+1 is small, then bj+1 or cj+2 is large.

Lemma (K. 2018)
Let X be a primitive DRG, d ≥ 3. Let 1 ≤ j ≤ d − 2 and
αj > ε > 0. Suppose that cj+1 ≤ εk and bj ≥ αjk. Denote
C =

αj
ε , then for any 1 ≤ s ≤ j + 1

bj+1

 s∑
t=1

1
bt−1

+

j+2−s∑
t=1

1
bt−1

 + cj+2

j+1∑
t=1

1
bt−1

≥ 1 −
4

C − 1
.
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Proof of lemma

Consider graph Y , s.t. V (Y ) = V (X ) and

u ∼Y v ⇔ dX (u, v) ≤ j + 1.

Take dX (v ,w) = j + 2, dX (u, v) = s and dX (w ,u) = j + 2 − s.

Triangle inequality for distinguishing numbers for u, v ,w

⇒ λY
s + λY

j+2−s ≤ kY + µY
j+2

Here λY
i

:= |NY (p) ∩ NY (q)| for dX (p,q) = i and i ≤ j + 1,

µY
j+2

:= |NY (p) ∩ NY (q)| for dX (p,q) = j + 2.
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Proof of Lemma

λY
s + λY

j+2−s ≤ kY + µY
j+2

Parameter λY
i can be bounded with the expression that

involves the number of paths that

start at u, have length i .
end at distance i from u.
end at distance ≥ j + 2 from v .

Where dX (u, v) = j + 1.
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Proof of lemma

For d(u, v) = j + 1 bound the number of paths that
start at u, have length i .
end at distance i from u.
end at distance ≥ j + 2 from v .

Observe
1 At step h there are at most bh−1 ways to continue.
2 ∃t ≤ i s.t at step we enter Nj+2(v), so ≤ bj+1 choices.

Hence the number of paths is at most

i∏
h=1

bh−1

i∑
t=1

bj+1

bt−1
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Proof of lemma

Hence the number of paths is at most

i∏
h=1

bh−1

i∑
t=1

bj+1

bt−1

Therefore, inequality

λY
s + λY

j+2−s ≤ kY + µY
j+2

will lead us to:

Lemma

bj+1

 s∑
t=1

1
bt−1

+

j+2−s∑
t=1

1
bt−1

 + cj+2

j+1∑
t=1

1
bt−1

≥ 1 −
4

C − 1
.
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Theorem (K. 2018)
∀d ≥ 3 ∃γd > 0,md , s.t. for any primitive DRG X of diameter d
one of the following is true:

1 mindeg(Aut(X )) ≥ γdn.
2 X is geometric with smallest eigenvalue −m, where

m ≤ md .
Furthermore, it is possible to take

md = b2(d − 1)(d − 2)log2(d−2)
c.
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Proof summary

Case 1: ∃γ > 0: ai ≤ k − γk ⇒ Distinguishing number!

Case 2: ∃ai close to k

∴ θj ≈ a`(j)

We show: bj large and cj+1 small =⇒ bj+1 or cj+2 large.

∴ ∀j , i aj ≤ k − γk for some 0 < γ < 1

=⇒ Spectral gap

Case 2a: λ < γk/2 =⇒ Ω(k) Spectral tool works.

mindeg(X ) ≥ n
(
1 −

q + ξ

k

)
Case 2b: λ ≥ γk/2 =⇒ geometric by Metsch
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DRG of diameter 3

Previous theorem says: in exceptional cases θmin ≥ −4.
More careful analysis:

we do not need primitivity;
in exceptional cases θmin ≥ −3.

Theorem (Bang, Koolen 2010)

A geometric distance-regular graph with smallest eigenvalue
−3, diameter d ≥ 3 and µ ≥ 2 and n > 96.

1 The Hamming graph H(3, s), where s ≥ 3, or
2 The Johnson graph J(s,3), where s ≥ 6.

Case µ = 1 is analyzed separately via Bang’s classification.
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DRG of diameter 3: classification

Theorem (K. 2018)
Let X be a DRG of diam. 3. Then one of the following is true.

1 mindeg(Aut(X )) ≥ Ω(n).
2 X is the Johnson graph J(s,3) for s ≥ 7, or the Hamming

graph H(3, s) for s ≥ 3.
3 X is the cocktail-party graph.
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DRG with smallest eigenvalue −m

Conjecture (Bang, Koolen 2010)

m ≥ 2, ∀ geometric DRG with θmin = −m, diam d ≥ 3 and µ ≥ 2
is

a Johnson graph, or
a Hamming graph, or
a Grassmann graph, or
a bilinear forms graph, or
the number of vertices is bounded.

If true ⇒ we will have complete classification for DRG of
fixed diameter d with sublinear mindeg(Aut),
except the case µ = 1.
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General setup: coherent
configurations

Bohdan Kivva, UChicago On the automorphism groups of PCC



Classifications of large primitive groups

Theorem (Cameron 1982 , form of Maróti 2002)
If G is a primitive permutation group of degree n > 24, then one
of the following is true.

1 G is a Cameron group, i.e., (A(k)
m )d

≤ G ≤ S(k)
m o Sd for

some m, k ,d ∈N.
2 |G| ≤ n1+log(n).

Theorem (Liebeck 1984)
If G is a primitive permutation group of degree n, then one of
the following is true.

1 G is a Cameron group
2 mindeg(G) ≥ n

9 log2(n)
.

Both results depend on the CFSG.

Bohdan Kivva, UChicago On the automorphism groups of PCC



Orbital configurations

A group G ≤ Sym(Ω) induce an action on Ω × Ω.
Orbits of this action - orbitals.

Orbital (schurian) configuration X(G) = (Ω,Orbitals).
Observation: it is a coherent configuration.

G ≤ Aut(X(G))

Large primitive groups⇒
⇒ (orbital) PCC with many automorphisms

Orbital config. of Cameron groups = Cameron schemes.
Conjecture(Babai):

PCC with many automorphisms⇒ it is orbital CC for large
primitive group
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Conjectures for PCC (Babai) : different layering

Conjecture: Order
∀ε > 0, for n large enough, and PCC X on n vertices

|Aut(X)| ≥ exp(nε) ⇒ X is a Cameron scheme.

Conjecture: Minimal degree

∀r ≥ 2 ∃γr > 0 s.t. if X is a PCC of rank r on n vertices

mindeg(Aut(X)) < γr n ⇒ X is a Cameron scheme.

Conjecture: Thickness
∀ε > 0, for n large enough, and PCC X on n vertices

θ(Aut(X)) ≥ nε ⇒ X is a Cameron scheme.
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Relations between considered measures

Order vs thickness:

|G| ≥
1
2
θ(G)! ≥ exp[θ(G)(lnθ(G) − 1)]

Theorem (Babai, Cameron, Pálfy 1982)
If G is a primitive permutation group of degree n, then

|G| = nO(θ(G)) = exp[θ(G)O(ln(n))].

Large minimal degree⇒ small thickness

Lemma (Wielandt 1934)

G ≤ Sn and minimal degree satisfies mindeg(G) ≥ Ω(n)

θ(G) ≤ O(log(n)).
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Known Progress: in terms of the order

Conjecture: Order (Babai)
∀ε > 0, for n large enough, and PCC X on n vertices

|Aut(X)| ≥ exp(nε) ⇒ X is a Cameron scheme.

Case ε > 1
2 : confirmed by László Babai in 1981.

Case ε > 1
3 : confirmed by X. Sun and J. Wilmes in 2014.

John Wilmes Xiaorui Sun
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Known Progress: In terms of the minimal degree

Conjecture: Minimal degree (Babai)

∀r ≥ 2 ∃γr > 0 s.t. if X is a PCC of rank r on n vertices

mindeg(Aut(X)) < γr n ⇒ X is a Cameron scheme.

For r = 3, i.e. SRG - confirmed by Babai in 2014

For r = 4 - confirmed in this paper
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A classification of PCC of rank 4

Theorem (K. 2018)
Let X be a PCC of rank 4 on n vertices . Then one of the
following is true.

1 mindeg(Aut(X)) ≥ Ω(n).
2 X is a Hamming or a Johnson scheme.
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Coherent configurations of rank 4

Primitive coherent configurations of rank 4:
1 CC induced by diameter 3 DRG; !!

2 CC with two oriented constituents
⇒ undirected constituent is SRG
⇒ only complements to T2(s) and L2(s) are interesting. !

3 CC with three undirected constituents of diam 2. ?
⇒ Distinguishing number+spectral analysis+Metsch for
X1,X2,X1,2 shows that one of them is SRG or a line graph
⇒ we can do more careful spectral analysis combined with
Metsch
⇒ mindeg(Aut(X)) ≥ Ω(n). !
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BIG GOAL

Conjecture (Babai)
Let X be a non-Cameron PCC on n vertices. Then

1 θ(Aut(X)) ≤ log(n)c (polylogarithmic)
2 |Aut(X)| ≤ exp (log(n)c) (quasipolynomial)

Progress:

For part (1):
Babai did for rank 3 (2014)
This paper give for rank 4

For part (2):
if RHS relaxed to exp(nε)

Babai in 1981 for ε > 1/2
Sun, Wilmes in 2014 for
ε > 1/3.
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Related problems

Problem (Bang-Koolen conjecture)

Classify all geometric DRGs of diam d with θmin = −m.

Problem
Classify all geometric DRGs of diameter d with θmin = −m with
sublinear mindeg(Aut).

Problem
We know that all geometric DRGs with diam d and
mindeg(Aut) ≤ γn have θmin ≥ −md ≈ −d log d . Improve md
(ideally to md = d).
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Related problems

Problem
Does there exist an infinite sequence of PCC X of rank r ≥ 4,
s.t. one of the constituents is the complement to J(n,2)?
If yes, what is the smallest r ≥ 4?

Problem
Let X be a PCC of small rank r . Assume D(X) < εn.
Can we show "reasonable" spectral gap for at least one of the
constituent graphs of X?
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