On the automorphism groups of primitive coherent configurations

Bohdan Kivva (U Chicago) Advisor: László Babai

Symmetry vs Regularity, WL2018 Pilsen, 6 July 2018

Bohdan Kivva, UChicago On the automorphism groups of PCC

- Babai's classification of strongly regular graphs (SRG) by a measure of symmetry.
- Generalization to distance-regular graphs (DRG)
- Generalization to coherent configurations (CC). Conjectures and known results.

```
Goal: Classify all PCC \mathfrak{X} with "large" G = Aut(\mathfrak{X}).
There are different ways to measure "largeness":
Most desired: large order of the group |G|.
(|G| > exp((\log n)^c)).
```

We focus on:

large thickness of a group $\theta(G)$ $(\theta(G) > (\log n)^c)$ **small minimal degree** mindeg(G) $(mindeg(G) < \varepsilon n)$.

Minimal degree of a permutation group

Degree deg(σ) of permutation $\sigma \in Sym(\Omega)$ is the number of points in Ω not fixed by σ .

Definition

Minimal degree of G is

$$\mathsf{mindeg}(G) = \min_{\sigma \neq 1} [\mathsf{deg}(\sigma)]$$

Examples: mindeg $(S_n) = 2$, mindeg $(A_n) = 3$, for $\mathbb{Z}_n \leq S_n$: mindeg $(\mathbb{Z}_n) = n$.

Minimal degree of a permutation group

Degree deg(σ) of permutation $\sigma \in Sym(\Omega)$ is the number of points in Ω not fixed by σ .

Definition

Minimal degree of G is

$$\mathsf{mindeg}(G) = \min_{\sigma \neq 1} [\mathsf{deg}(\sigma)]$$

Examples: mindeg(S_n) = 2, mindeg(A_n) = 3, for $\mathbb{Z}_n \leq S_n$: mindeg(\mathbb{Z}_n) = n.

Theorem (Bochert 1892)

If G is doubly transitive, $G \leq S_n$, then

 $mindeg(G) \ge n/4$

with known exceptions.

Only exceptions are: A_n , S_n .

Minimal degree of a permutation group

Degree deg(σ) of permutation $\sigma \in Sym(\Omega)$ is the number of points in Ω not fixed by σ .

Definition

Minimal degree of G is

$$\mathsf{mindeg}(G) = \min_{\sigma \neq 1} [\mathsf{deg}(\sigma)]$$

Examples: mindeg(S_n) = 2, mindeg(A_n) = 3, for $\mathbb{Z}_n \leq S_n$: mindeg(\mathbb{Z}_n) = n.

Theorem (Liebeck 1984, using CFSG)

If $G \leq S_n$ is a primitive permutation group, then

$$\mathsf{mindeg}(G) \geq \frac{n}{9\log_2(n)}$$

with known exceptions.

Exceptions are Cameron groups.

A group *H* is **involved** in *G* if $H \cong L/K$ for $K \triangleleft L \leq G$.

Terminology (Babai)

The maximal *t* for which A_t is involved in *G* is the **thickness** $\theta(G)$ of *G*.

Large minimal degree \Rightarrow small thickness

Lemma (Wielandt 1934)

 $G \leq S_n$ and minimal degree satisfies mindeg $(G) \geq \Omega(n)$, then

 $\theta(G) \leq O(\log(n)).$

Classification of SRG by measure of symmetry

Theorem (Babai 2014)

X strongly regular graph

$$\Rightarrow$$
 mindeg(Aut(X)) $\ge n/8$

with known exceptions.

Our paper generalizes this to:

- Distance-regular graphs.
- Primitive coherent configurations of rank 4.

Techniques:

- structural combinatorics
- spectral graph theory

Strongly regular graph (SRG) with parameters (n, k, λ, μ)

 $\begin{array}{l} n \text{ - number of vertices;} \\ k \text{ - degree of every vertex;} \\ \lambda = |N(u) \cap N(v)| \text{ for } u \sim v; \\ \mu = |N(u) \cap N(v)| \text{ for } u \not\sim v. \end{array}$

Coherent configurations

V is a finite set. $\mathcal{R} = \{R_1, R_2, ..., R_s\}$ is a partition of $V \times V$. Partition $\mathcal{R} = (R_1, R_2, ..., R_s) \iff$ coloring $c : V \times V \rightarrow [s]$ c(w, w) - a vertex color c(u, v) - an edge color if $u \neq v$

$$\begin{aligned} \mathfrak{X} &= (V, \mathcal{R}) = (V, c) \text{ is a coherent configuration (CC) if} \\ \bullet \text{ vertex colors } \neq \text{ edge colors} \\ edge colors \\ c(u, v) \text{ determines } c(v, u) \\ \bullet p_{i,j}^k &= |\{w : c(u, w) = i, c(w, v) = j\}|, \text{ where } c(u, v) = k \\ \text{Def: } s \text{ is a rank of CC.} \end{aligned}$$

Special classes of coherent configurations

Special classes of CCs:

- Homogeneous CC.: c(u, u) = c(v, v) for all $u, v \in V$.
- Association schemes: c(u, v) = c(v, u) for all $u, v \in V$
 - \Rightarrow homogeneous.
- Metric schemes: colors = distances in DRG,

c(x,y) = dist(x,y).

 Primitive coherent configurations (PCC): homogeneous + every constituent digraph is strongly (= weakly) connected

Distance-regular graphs

X is a **distance-regular graph** if \exists sequence of parameters

$$\iota(X) = \{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots c_d\}, \text{ s.t.}$$

Notation: $b_0 = k$, $a_1 = \lambda$, $c_2 = \mu$. $k_i = |N_i|$.

We have the following properties

$$a_i+b_i+c_i=k$$
,

 $b_0 \ge b_1 \ge \cdots \ge b_{d-1}$ and $c_1 \le c_2 \le \cdots \le c_d$.

Johnson graph $J(m, t), m \ge 2t + 1$:

•
$$V = V(J(m, t)) = {[m] \choose t},$$

• $A, B \in V$ are adjacent iff $|A \setminus B| = |B \setminus A| = 1$.

J(m, t) is DRG of diameter t. Smallest eigenvalue -t.

$$\operatorname{Aut}(J(m,t)) = S_m^{(t)} \implies \operatorname{mindeg}(\operatorname{Aut}(J(m,t))) \le O(n^{1-1/t})$$

Hamming graph H(t, m):

- $V = V(H(t, m)) = [m]^t$, i.e., strings of length t over [m].
- $A, B \in V$ are adjacent if Hamming distance $d_H(A, B) = 1$.

H(s, m) is DRG of diameter t. Smallest eigenvalue -t.

 $\operatorname{Aut}(H(t,m)) = S_m \wr S_t \implies \operatorname{mindeg}(\operatorname{Aut}(H(t,m))) \le O(n^{1-1/t})$

Theorem (K. 2018)

 $\forall d \ge 3$, s.t. for any **primitive DRG** X of diameter d one of the following is true.

- mindeg $(\operatorname{Aut}(X)) \ge \Omega(n)$.
- 2 X is a geometric DRG.

In the case of **diameter 3** we get **complete classification** of all exceptions to (1) even without primitivity assumption. They are:

- **1** Johnson graph J(s, 3),
- 2 Hamming graph H(3, s),
- Ocktail-party graph.

Theorem (K. 2018)

Let $\mathfrak X$ be a PCC of rank 4 on n vertices . Then one of the following is true

- mindeg(Aut(\mathfrak{X})) $\geq \Omega(n)$
- 2 \mathfrak{X} is a Hamming or a Johnson scheme.

Ideas of the proofs

Bohdan Kivva, UChicago On the automorphism groups of PCC

Theorem (Babai, 2014)

If X is a strongly regular graph on $n \ge 29$ vertices. Then one of the following is true

- minimal degree of Aut(X) is $\ge n/8$.
- 2 X or its complement is
 - triangular graph T(s) = J(s, 2),
 - *lattice graph* $L_2(s) = H(2, s)$,
 - union of cliques (trivial case).

Distinguishing number

A vertex *x* distinguishes *u* and *v* if $c(x, u) \neq c(x, v)$.

D(u, v) = number of vertices that distinguish u and v.

Distinguishing number (Babai 1981):

 $D(X) = \min_{u \neq v \in V} D(u, v)$

 $D(X) \leq \operatorname{mindeg}(\operatorname{Aut}(X)).$

Note, if X is SRG, then $D(X) = 2(k - \max(\lambda, \mu))$.

Spectrum of DRG

Spectrum of *X* = eigenvalues of adjacency matrix.

Let X be **DRG of diameter** d, then its eigenvalues are the eigenvalues of $(d + 1) \times (d + 1)$ matrix

$$T(X) = \begin{pmatrix} a_0 & b_0 & 0 & 0 & \dots \\ c_1 & a_1 & b_1 & 0 & \dots \\ 0 & c_2 & a_2 & b_2 & \dots \\ \dots & \vdots & & \dots \\ \dots & 0 & c_d & a_d \end{pmatrix}$$

Thus, there are d + 1 distinct **eigenvalues**.

For **SRG** eigenvalues are *k* and the solutions $\theta_2 \le \theta_1$ to

$$\theta_1 + \theta_2 = \lambda - \mu, \quad \theta_1 \theta_2 = \mu - k.$$

X is *k*-regular graph, $k = \theta_1 \ge \theta_2 \ge \cdots \ge \theta_n$ is its spectrum.

Definition: zero-weigth spectral radius

 $\xi = \max\{|\theta_2|, |\theta_3|, \dots, |\theta_n|\}$

Note: $k - \xi$ is a **spectral gap** ~ related to **expansion** of graphs. $q = \max \#$ of common neighbors $\forall u \neq v \in V(X)$.

Lemma (Babai 2014)

mindeg(Aut(X))
$$\geq n\left(1 - \frac{q + \xi}{k}\right)$$

Lemma is proved using Expander Mixing Lemma.

- k degree of graph X
- ξ zero-weight spectral radius
- D(X) distinguishing number

Distinguishing number tool

 $\mathsf{mindeg}(\mathsf{Aut}(X)) \geq D(X)$

Spectral tool

$$mindeg(Aut(X)) \ge n\left(1 - \frac{q+\xi}{k}\right)$$

Theorem (Seidel 1968)

If X is a non-trivial SRG on $n \ge 29$ vertices and least eigenvalue -2, then X is T(s) or $L_2(s)$ for some s.

Theorem (Seidel 1968)

If X is a non-trivial SRG on $n \ge 29$ vertices and least eigenvalue -2, then X is T(s) or $L_2(s)$ for some s.

Note: complement of SRG is SRG, so we may assume $k \le \frac{n-1}{2}$. Then $\max(\lambda, \mu) \le \frac{3}{4}k$. (Δ ineq. for distinguishing numbers)

Theorem (Seidel 1968)

If X is a non-trivial SRG on $n \ge 29$ vertices and least eigenvalue -2, then X is T(s) or $L_2(s)$ for some s.

Note: complement of SRG is SRG, so we may assume $k \le \frac{n-1}{2}$. Then $\max(\lambda, \mu) \le \frac{3}{4}k$. (Δ ineq. for distinguishing numbers)

Case 1: $k \ge n/4 \Rightarrow D(X) = 2(k - \max(\lambda, \mu)) \ge n/8$ Apply **distinguishing number** tool.

Case 2: $k \le \frac{n}{4}$ and smallest eigenvalue of X is at most -3. **Spectral tool** works!

Case 3: Smallest eigenvalue is > -3. These graphs are known by **Seidel's classification**.

- Step 1: Apply distinguishing number tool whenever possible.
- Step 2: In remaining cases apply spectral analysis.
- **Step 3:** Reduce to **classification results** for graphs with special properties in terms of k, λ , μ , θ_{min} .

Let X be DRG of fixed diameter d.

- If distinguishing number tool works.
- 2 Else:
 - μ < εk
 - *a_i* approximate eigenvalues well
 - + inequalities involving parameters b_i and c_i
 - \Rightarrow X is an **expander** with spectral gap > γk
 - $(0 < \gamma < 1 \text{ constant dependent on } d)$

Let X be DRG of fixed diameter d.

- 🗕 If distinguishing number tool works. 🗸
- 2 Else:
 - μ < εk
 - *a_i* approximate eigenvalues well
 - + inequalities involving parameters b_i and c_i
 - $\Rightarrow X \text{ is an expander with spectral gap} > \gamma k$ (0 < γ < 1 constant dependent on *d*)
 - If $\lambda \le \gamma k/2$, then **spectral tool** works. Recall: mindeg $(X) \ge n\left(1 - \frac{q+\xi}{k}\right)$

Let X be DRG of fixed diameter d.

- 🗕 If distinguishing number tool works. 🗸
- 2 Else:
 - μ < εk
 - *a_i* approximate eigenvalues well
 - + inequalities involving parameters b_i and c_i
 - $\Rightarrow X \text{ is an expander with spectral gap} > \gamma k$ (0 < γ < 1 constant dependent on *d*)
 - If $\lambda \le \gamma k/2$, then **spectral tool** works. Recall: mindeg $(X) \ge n\left(1 - \frac{q+\xi}{k}\right)$
 - 2 If $\lambda > \gamma k/2$, then X is geometric.

Theorem (Delsarte 1973)

X - DRG, θ_{min} - smallest eigenvalue, C - clique in X. Then

$$|C| \leq 1 - \frac{k}{\theta_{min}}$$

Definition

A clique of size
$$1 - \frac{k}{\theta_{min}}$$
 is called a **Delsarte clique**.

Definition

- Graph X contains clique geometry, if ∃ C a collection of max. cliques s.t. ∀ edge is in precisely 1 clique C ∈ C.
- If all $C \in \mathscr{C}$ are **Delsarte clique**, DRG X is **geometric**.

Theorem (Metsch 1995)

Let X be a graph. Some system of inequalities on parameters of X implies that it has **clique geometry**.

Lemma (Spielman, Babai-Wilmes, Cor. to Metsch criteria)

If X satisfies $k\mu = o(\lambda^2)$, then X has clique geometry.

Lemma (Corollary to Metsch criteria)

Let *X* be DRG and $m \in \mathbb{N}$ with

•
$$(m-1)(\lambda + 1) < k \le m(\lambda + 1),$$

•
$$\lambda \geq \frac{1}{2}m(m+1)\mu$$
.

Then X is **geometric** with smallest eigenvalue -m.

Theorem (K 2018)

 $\forall d \ge 3 \exists \gamma_d > 0, m_d, s.t.$ for any primitive DRG X of diameter d one of the following is true:

- $online (\operatorname{Aut}(X)) \geq \gamma_d n.$
- ② X is geometric with smallest eigenvalue m, where m ≤ m_d.

Furthermore, it is possible to take

$$m_d = \lfloor 2(d-1)(d-2)^{\log_2(d-2)} \rfloor$$

More on Distinguishing numbers

Lemma (Properties of distinguishing number)

- D(u, v) depends only on the color c(u, v) = i, so we can define D(i) := D(u, v).
- 2 $D(u, v) \le D(u, w) + D(w, v)$.
- $D(X) \ge \frac{D(i)}{\operatorname{diam}(i)}$, where $\operatorname{diam}(i)$ is an undirected diameter color-i constituent.

Distinguishing number for DRG

Recall, $D(X) \ge D(1)/d$. Recall, $k_i = |N_i(v)|$. We have,

 $k_i \ge \frac{n-1}{d}$ for some $i \implies$ We want: $k - a_i \ge \Omega(k)$ for all i. Bad case: $k - a_i$ is small for some i. But: $k = a_i + b_i + c_i$, so b_i and c_i are small. \implies we can do spectral analysis.

Distinguishing number for DRG

Case 1: $k - a_i \ge \Omega(k)$ for all *i*.

Lemma

Let X be DRG of diameter d. Suppose for some $1 \le i \le d$

$$b_{i-1} \geq \alpha k$$
, $c_i \geq \beta k$.

Then

$$D(X) \ge rac{\min(lpha, eta)}{d^2}n$$

Matrices are entry-wise close \Rightarrow their eigenvalues are close

Theorem (Ostrowski 1960)

Let $A, B \in M_n(\mathbb{C})$. $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of A $\mu_1, \mu_2, ..., \mu_n$ are eigenvalues of B.

$$M = \max\{|(A)_{ij}|, |(B)_{ij}| : 1 \le i, j \le n\}, \quad \delta = \frac{1}{nM} \sum_{i=1}^{n} \sum_{j=1}^{n} |(A)_{ij} - (B)_{ij}|.$$

Then, there exists a permutation $\sigma \in S_n$ such that

$$|\lambda_i - \mu_{\sigma(i)}| \le 2(n+1)^2 M \delta^{1/n}$$
, for all $1 \le i \le n$.

The eigenvalues of X are the eigenvalues of T(X)

$$T(X) = \begin{pmatrix} a_0 & b_0 & 0 & 0 & 0 & 0 & \dots \\ c_1 & a_1 & b_1 & 0 & 0 & 0 & \dots \\ \hline 0 & c_2 & a_2 & b_2 & 0 & 0 & \dots \\ \hline 0 & 0 & c_3 & a_3 & b_3 & & & \\ \dots & \dots & & & \vdots & \dots & \\ \dots & 0 & 0 & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\ \dots & 0 & 0 & 0 & 0 & c_d & a_d \end{pmatrix}$$

Suppose that $b_i < \varepsilon k$ and $c_i < \varepsilon k$ for some *i*.

The eigenvalues of X are the eigenvalues of T(X)

	(a_0)	b_0	0	0	0	0)
	0	a_1	b_1	0	0	0	
	0	0	a 2	0	0	0	
$T(X) \approx$	0	0	<i>C</i> 3	a_3	0		
					:		
		0	0	0	<i>C</i> _{<i>d</i>-1}	<i>a</i> _{d-1}	0
		0	0	0	0	Cd	a _d)

Suppose that $b_i < \varepsilon k$ and $c_i < \varepsilon k$ for some *i*.

The eigenvalues of X are the eigenvalues of T(X)

$$T(X) = \begin{pmatrix} a_0 & b_0 & 0 & 0 & 0 & 0 & \dots \\ \hline c_1 & a_1 & b_1 & 0 & 0 & 0 & \dots \\ \hline 0 & c_2 & a_2 & b_2 & 0 & 0 & \dots \\ \hline 0 & 0 & c_3 & a_3 & b_3 & & & \\ \dots & \dots & & & \vdots & \dots & \\ \dots & 0 & 0 & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\ \dots & 0 & 0 & 0 & 0 & c_d & a_d \end{pmatrix}$$

Suppose that $b_i < \varepsilon k$ and $c_i < \varepsilon k$ for some *i*.

Eigenvalues are close to the a_i

$$| heta_j - a_{\tau(j)}| \le 2(d+2)^2 \epsilon^{1/(d+1)} k$$
, for all $1 \le j \le n$.

The eigenvalues of X are the eigenvalues of T(X)

$$T(X) = \begin{pmatrix} a_0 & b_0 & 0 & 0 & 0 & 0 & \dots \\ \hline c_1 & a_1 & b_1 & 0 & 0 & 0 & \dots \\ \hline 0 & c_2 & a_2 & b_2 & 0 & 0 & \dots \\ \hline 0 & 0 & c_3 & a_3 & b_3 & & & \\ \dots & \dots & & & \vdots & \dots & \\ \dots & 0 & 0 & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\ \dots & 0 & 0 & 0 & 0 & c_d & a_d \end{pmatrix}$$

Suppose that $b_i < \varepsilon k$ and $c_i < \varepsilon k$ for some *i*.

Eigenvalues are close to the a_i

We know $a_i \approx k$. So for large **spectral gap**: **Need:** $(\forall j \neq i) \ k - a_j \ge \Omega(k) \Rightarrow$ **Need:** $(\forall j \neq i) \ b_j$ or $c_j \ge \Omega(k)$ **Idea:** If b_j is large and c_{j+1} is small, then b_{j+1} or c_{j+2} is large.

Lemma (K. 2018)

Let X be a primitive DRG, $d \ge 3$. Let $1 \le j \le d - 2$ and $\alpha_j > \varepsilon > 0$. Suppose that $c_{j+1} \le \varepsilon k$ and $b_j \ge \alpha_j k$. Denote $C = \frac{\alpha_j}{\varepsilon}$, then for any $1 \le s \le j + 1$

$$b_{j+1}\left(\sum_{t=1}^{s}\frac{1}{b_{t-1}}+\sum_{t=1}^{j+2-s}\frac{1}{b_{t-1}}\right)+c_{j+2}\sum_{t=1}^{j+1}\frac{1}{b_{t-1}}\geq 1-\frac{4}{C-1}.$$

Proof of lemma

Consider graph Y, s.t. V(Y) = V(X) and

$$u \sim_Y v \quad \Leftrightarrow \quad d_X(u,v) \leq j+1.$$

Take $d_X(v, w) = j + 2$, $d_X(u, v) = s$ and $d_X(w, u) = j + 2 - s$.

Triangle inequality for distinguishing numbers for u, v, w

$$\Rightarrow \lambda_{s}^{Y} + \lambda_{j+2-s}^{Y} \le k^{Y} + \mu_{j+2}^{Y}$$

Here $\lambda_i^{\mathbf{Y}} := |\mathbf{N}^{\mathbf{Y}}(\mathbf{p}) \cap \mathbf{N}^{\mathbf{Y}}(\mathbf{q})|$ for $d_X(p,q) = i$ and $i \le j+1$, $\mu_{j+2}^{\mathbf{Y}} := |\mathbf{N}^{\mathbf{Y}}(\mathbf{p}) \cap \mathbf{N}^{\mathbf{Y}}(\mathbf{q})|$ for $d_X(p,q) = j+2$.

$$\lambda_{s}^{Y} + \lambda_{j+2-s}^{Y} \leq k^{Y} + \mu_{j+2}^{Y}$$

Parameter λ_i^{γ} can be bounded with the expression that involves the number of paths that

- start at *u*, have length *i*.
- end at distance *i* from *u*.
- end at distance $\geq j + 2$ from *v*.

Where $d_X(u, v) = j + 1$.

Proof of lemma

For d(u, v) = j + 1 bound the number of paths that

- start at u, have length i.
- end at distance *i* from *u*.
- end at distance $\geq j + 2$ from *v*.

Observe

- At step *h* there are at most b_{h-1} ways to continue.
- ② $\exists t \leq i$ s.t at step we enter $N_{j+2}(v)$, so $\leq b_{j+1}$ choices.

Hence the number of paths is at most

$$\prod_{h=1}^{i} b_{h-1} \sum_{t=1}^{i} \frac{b_{j+1}}{b_{t-1}}$$

Proof of lemma

Hence the number of paths is at most

$$\prod_{h=1}^{i} b_{h-1} \sum_{t=1}^{i} \frac{b_{j+1}}{b_{t-1}}$$

Therefore, inequality

$$\lambda_{s}^{Y} + \lambda_{j+2-s}^{Y} \leq k^{Y} + \mu_{j+2}^{Y}$$

will lead us to:

Lemma

$$\frac{b_{j+1}}{b_{j+1}}\left(\sum_{t=1}^{s}\frac{1}{b_{t-1}}+\sum_{t=1}^{j+2-s}\frac{1}{b_{t-1}}\right)+\frac{c_{j+2}}{\sum_{t=1}^{j+1}\frac{1}{b_{t-1}}}\geq 1-\frac{4}{C-1}.$$

Theorem (K. 2018)

 $\forall d \ge 3 \exists \gamma_d > 0, m_d, s.t.$ for any primitive DRG X of diameter d one of the following is true:

• mindeg(Aut(X))
$$\geq \gamma_d n$$
.

2 *X* is geometric with smallest eigenvalue -m, where $m \le m_d$.

Furthermore, it is possible to take

$$m_d = \lfloor 2(d-1)(d-2)^{\log_2(d-2)} \rfloor.$$

Proof summary

Case 1: $\exists \gamma > 0$: $a_i \le k - \gamma k \Rightarrow$ **Distinguishing number** \checkmark **Case 2**: $\exists a_i$ close to k

 $\therefore \quad \theta_j \approx \mathbf{a}_{\ell(j)}$

We show: b_j large and c_{j+1} small $\implies b_{j+1}$ or c_{j+2} large.

$$\therefore \forall j \neq i \quad a_j \leq k - \gamma k \quad \text{for some } 0 < \gamma < 1$$

⇒ Spectral gap

Case 2a: $\lambda < \gamma k/2 \implies \Omega(k)$ **Spectral tool** works.

$$\operatorname{mindeg}(X) \ge n \left(1 - \frac{q + \xi}{k}\right)$$

Case 2b: $\lambda \ge \gamma k/2 \implies$ **geometric** by Metsch

Previous theorem says: in exceptional cases $\theta_{min} \ge -4$. More careful analysis:

- we do not need primitivity;
- in exceptional cases $\theta_{min} \ge -3$.

Theorem (Bang, Koolen 2010)

A geometric distance-regular graph with smallest eigenvalue -3, diameter $d \ge 3$ and $\mu \ge 2$ and n > 96.

- **1** The Hamming graph H(3, s), where $s \ge 3$, or
- 2 The Johnson graph J(s,3), where $s \ge 6$.

Case $\mu = 1$ is analyzed separately via **Bang's classification**.

Theorem (K. 2018)

Let X be a DRG of diam. 3. Then one of the following is true.

- mindeg $(\operatorname{Aut}(X)) \ge \Omega(n)$.
- 2 X is the Johnson graph J(s,3) for $s \ge 7$, or the Hamming graph H(3, s) for $s \ge 3$.
- 3 X is the cocktail-party graph.

Conjecture (Bang, Koolen 2010)

 $m \ge 2$, \forall geometric DRG with $\theta_{min} = -m$, diam $d \ge 3$ and $\mu \ge 2$ is

- a Johnson graph, or
- a Hamming graph, or
- a Grassmann graph, or
- a bilinear forms graph, or
- the number of vertices is bounded.

If true \Rightarrow we will have **complete classification** for DRG of fixed diameter *d* with sublinear mindeg(Aut), except the case $\mu = 1$.

General setup: coherent configurations

Bohdan Kivva, UChicago On the automorphism groups of PCC

Theorem (Cameron 1982 , form of Maróti 2002)

If G is a primitive permutation group of degree n > 24, then one of the following is true.

■ *G* is a *Cameron group*, *i.e.*, $(A_m^{(k)})^d \le G \le S_m^{(k)} \wr S_d$ for some *m*, *k*, *d* ∈ **N**.

$$|G| \le n^{1 + \log(n)}$$

Theorem (Liebeck 1984)

If G is a primitive permutation group of degree n, then one of the following is true.

G is a Cameron group

2 mindeg
$$(G) \ge \frac{n}{9\log_2(n)}$$
.

Both results depend on the CFSG.

Orbital configurations

A group $G \leq \text{Sym}(\Omega)$ induce an action on $\Omega \times \Omega$. Orbits of this action - **orbitals**.

Orbital (schurian) configuration $\mathfrak{X}(G) = (\Omega, Orbitals)$. Observation: it is a coherent configuration.

 $G \leq \operatorname{Aut}(\mathfrak{X}(G))$

Large primitive groups \Rightarrow \Rightarrow (orbital) PCC with many automorphisms

Orbital config. of Cameron groups = **Cameron schemes**. **Conjecture**(Babai):

PCC with many automorphisms \Rightarrow it is orbital CC for large primitive group

Conjectures for PCC (Babai) : different layering

Conjecture: Order

 $\forall \varepsilon > 0$, for *n* large enough, and PCC \mathfrak{X} on *n* vertices

 $|\operatorname{Aut}(\mathfrak{X})| \ge \exp(n^{\varepsilon}) \quad \Rightarrow \quad \mathfrak{X} \text{ is a Cameron scheme.}$

Conjecture: Minimal degree

 $\forall r \ge 2 \exists \gamma_r > 0 \text{ s.t. if } \mathfrak{X} \text{ is a PCC of rank } r \text{ on } n \text{ vertices}$

mindeg(Aut(\mathfrak{X})) < $\gamma_r n \Rightarrow \mathfrak{X}$ is a Cameron scheme.

Conjecture: Thickness

 $\forall \varepsilon > 0$, for *n* large enough, and PCC \mathfrak{X} on *n* vertices

 $\theta(\operatorname{Aut}(\mathfrak{X})) \geq n^{\varepsilon} \quad \Rightarrow \quad \mathfrak{X} \text{ is a Cameron scheme.}$

Order vs thickness:

$$|G| \ge \frac{1}{2}\theta(G)! \ge \exp[\theta(G)(\ln \theta(G) - 1)]$$

Theorem (Babai, Cameron, Pálfy 1982)

If G is a primitive permutation group of degree n, then

$$|G| = n^{O(\theta(G))} = \exp[\theta(G)O(\ln(n))].$$

Large minimal degree \Rightarrow small thickness

Lemma (Wielandt 1934)

 $G \leq S_n$ and minimal degree satisfies mindeg $(G) \geq \Omega(n)$

 $\theta(G) \leq O(\log(n)).$

Known Progress: in terms of the order

Conjecture: Order (Babai)

 $\forall \varepsilon > 0$, for *n* large enough, and PCC \mathfrak{X} on *n* vertices

 $|\operatorname{Aut}(\mathfrak{X})| \ge \exp(n^{\varepsilon}) \implies \mathfrak{X} \text{ is a Cameron scheme.}$

Case $\varepsilon > \frac{1}{2}$: confirmed by László Babai in 1981.

Case $\varepsilon > \frac{1}{3}$: confirmed by X. Sun and J. Wilmes in 2014.

John Wilmes

Xiaorui Sun

Conjecture: Minimal degree (Babai)

 $\forall r \ge 2 \exists \gamma_r > 0$ s.t. if \mathfrak{X} is a PCC of rank *r* on *n* vertices

mindeg(Aut(\mathfrak{X})) < $\gamma_r n \Rightarrow \mathfrak{X}$ is a Cameron scheme.

For r = 3, i.e. SRG - confirmed by Babai in 2014

For r = 4 - confirmed in this paper

Theorem (K. 2018)

Let \mathfrak{X} be a PCC of rank 4 on n vertices . Then one of the following is true.

- mindeg $(\operatorname{Aut}(\mathfrak{X})) \geq \Omega(n)$.
- 2 \mathfrak{X} is a Hamming or a Johnson scheme.

Coherent configurations of rank 4

Primitive coherent configurations of rank 4:

• CC induced by diameter 3 DRG; $\sqrt{\sqrt{}}$

Primitive coherent configurations of rank 4:

- CC induced by diameter 3 DRG; $\sqrt{\sqrt{}}$
- CC with two oriented constituents \Rightarrow undirected constituent is SRG
 - \Rightarrow only complements to $T_2(s)$ and $L_2(s)$ are interesting. \checkmark

Primitive coherent configurations of rank 4:

- CC induced by diameter 3 DRG; $\sqrt{\sqrt{}}$
- CC with two oriented constituents
 ⇒ undirected constituent is SRG
 ⇒ only complements to T₂(s) and L₂(s) are interesting. √
- CC with three undirected constituents of diam 2. ?
 ⇒ Distinguishing number+spectral analysis+Metsch for X₁, X₂, X_{1,2} shows that one of them is SRG or a line graph
 ⇒ we can do more careful spectral analysis combined with Metsch

 \Rightarrow mindeg(Aut(\mathfrak{X})) $\geq \Omega(n)$. \checkmark

Conjecture (Babai)

Let \mathfrak{X} be a non-Cameron PCC on *n* vertices. Then

- $\theta(\operatorname{Aut}(\mathfrak{X})) \leq \log(n)^c$ (polylogarithmic)
- ② $|\operatorname{Aut}(\mathfrak{X})| \le \exp(\log(n)^c)$ (quasipolynomial)

Progress:

For part (1):

- Babai did for rank 3 (2014)
- This paper give for rank 4

For part (2):

if RHS relaxed to $exp(n^{\varepsilon})$

- Babai in 1981 for $\varepsilon > 1/2$
- Sun, Wilmes in 2014 for ε > 1/3.

Problem (Bang-Koolen conjecture)

Classify all geometric DRGs of diam d with $\theta_{min} = -m$.

Problem

Classify all geometric DRGs of diameter d with $\theta_{min} = -m$ with sublinear mindeg(Aut).

Problem

We know that all geometric DRGs with diam d and mindeg(Aut) $\leq \gamma n$ have $\theta_{min} \geq -m_d \approx -d^{\log d}$. Improve m_d (ideally to $m_d = d$).

Problem

Does there exist an infinite sequence of PCC \mathfrak{X} of rank $r \ge 4$, s.t. one of the constituents is the complement to J(n,2)? If yes, what is the smallest $r \ge 4$?

Problem

Let \mathfrak{X} be a PCC of small rank r. Assume $D(\mathfrak{X}) < \varepsilon n$. Can we show "reasonable" spectral gap for at least one of the constituent graphs of \mathfrak{X} ?