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Partial Latin Rectangle

L e PLR(r,s,n)

7 = number of rows
S = number of columns

n = number of symbols

2 .| .| . |3
21 - -|14]1|5]|6

€ PLR(6,9,7)

The entry set of L
Ent(L)={(, j, L[7, jD:ielr], jels]. Lli, jl €[n]}



Isotopisms and autotopisms

O=(a,B,7)eS. xS, xS anisotopism
®:PLR(7,s,n) > PLR(r,s,n)

o permutes the rows
IB permutes the columns
¥ permutes the symbols

If ®(L)=L then ® isan autotopism of L
Atop(L) = The autotopy group of L



Computing Atop(L)

The partial Latin rectangle graph
(Falcon and Stones, Disc. Math. 2017)

Example:

L -

Compute Atop(L) by computing graph
automorphismes.

Use ‘nauty’ (McKay, Meynert, Myrvold, JCD 2007) and its
variants
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1. Use invariants to partition rows, columns,
symbols and entries in order to narrow down the
search - polynomial time complexity.
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System of partitions
B =(PyyPots P

row >’ col? sym)

‘B is invariant if and only if each of its components is
invariant under Atop(L)

Example:
the types system P, =(P, B, R,) :
R is defined by the number of entries in the rows
P, is defined by the number of entries in the columns

P, is defined by the number of appearances of each
symbol
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How to obtain invariant systems?

Aim: find the finest possible invariant
system of partitions

How?

1)  Start with B =1, (L) the trivial system
of partitions

2)  Apply refinement methods



The natural refinement

P =(Poy-Pui- P

row C Sym

) induces a partition E(‘B) on Ent(L):
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The natural refinement

row > 7 col? ¥ sym

513:(73 PP ) induces a partition E(‘B) on Ent(L):

. of
l P, l

(i, o LI D) ~ gy @GS LEL jD €3 j~p T
Lli, jl~5 LI’ j'

1) Label the elements of Ent(L) by their partin E(p)

2) Define the natural refinement N(P3) :(N(ROW),N(RM),N(PM))
where

N(P._.)is define by the multisets of labels in the rows

row

N(R

col

N(P

col

) is define by the multisets of labels in the columns

) is define by the multisets of labels corresponding to
the symbols
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* If P'<P then N(P')<N(P)
Can continue the process until it stops:

N[PB]<...<N(N(B))< N(B)<PB.

Examples: N(CBy) =B, N(N(ms)):?sm
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the types partition the Strong Entry Invariants partition
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The natural refinement

* N(P)<'P
e If P isinvariantsois N(B)

* If P'<P then N(P')<N(P)
Can continue the process until it stops:

N[PB]<...<N(N(B))< N(B)<PB.

Examples: N(CBy) =B, N(N(ms)):?sm
1

the types partition the Strong Entry Invariants partition
(Falcon and Stones, 2017)

Disadvantage: when starting from ‘5, it is useless for
very dense PLRs



Two-line graphs

for two rows 7,7, in a PLR, construct a vertex-and-edge-
colored bipartite graph G_ _ (L) as illustrated here:

2

3

4

1

3

S

§

wWo ws wWe
(V) () the

uwy u

M
thyq (

/4
Ly

11



Two-line graphs

for two rows 7,7, in a PLR, construct a vertex-and-edge-
colored bipartite graph G_ _ (L) as illustrated here:
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Similar constructions for two columns and two symbols.

(for symbols consider L'*” | the PLR obtained by
swapping the 15t and 3" coordinates in Ent(L))
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Two-line graphs

for two rows 7,7, in a PLR, construct a vertex-and-edge-
colored bipartite graph G_ _ (L) as illustrated here:
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Similar constructions for two columns and two symbols.

(for symbols consider L'*” | the PLR obtained by
swapping the 15t and 3" coordinates in Ent(L))

Can try it here: http://plr.telhai.ac.il/Home/VisualSimulation
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Two-line graphs

for two rows 7,7, in a PLR, construct a vertex-and-edge-
colored bipartite graph G_ _ (L) as illustrated here:

2113 -16
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Similar constructions for two columns and two symbols.

(for symbols consider L'*” | the PLR obtained by
swapping the 15t and 3" coordinates in Ent(L))

Can try it here: http://plr.telhai.ac.il/Home/VisualSimulation

Remark: can be viewed as a generalization of cycles in
partial permutations
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he two-line representations

R..(L)=

TOW Y.

(Define R_,(L) and R, (L) analogously)

Sym
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he two-line graph (

LG) refinement

PB=(P.R.,P.) anadequate system

suppose

R..(L)=

Irow

A

P =(B.P....E)

b,

P

P

k




he two-line graph (TLG) refinement

B=(P,R.P) anadequate system
suppose P ={P,P,...,P}
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he two-line graph (

LG) refinement

B=(P,R.P) anadequate system
suppose P ={P,P,...,P}

R\B| B | P

Rrow(L)?’ill?,z 422 6129

I"23112 2472 1296

h~p I

’/i ~G(R) 1"2 e {the multisets

agree in each part
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he two-line graph (TLG) refinement

B=(P,R.P) anadequate system
suppose P ={P,P,...,P}

R\B| B | R

1 r, < ! i "
Rrow (L)?,l 139 422 61 o I G(RP) "2 the mt.JItlsets
agree in each part
r,B112| 242 1296

analogous definitions for G(?) and G(R)

G(¥)=(G(R).G(R).G(R))

13
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* GCP)<P
e If P isinvariant sois G(P)



The TLG refinement

* GOP)=P
* If P isinvariant sois G(B)

* If P'<P then G(P')<G(P)



The TLG refinement

* GCP)<P
e If P isinvariant sois G(P)

* If P'<P then G(P')<G(P)
Can continue the process until it stops:

G[P]<...<G(G(P))< G(B)<B.
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G vs. N

Not much is known about the relation between the
refinements G and N. However, it is easy to see

G(Bs) < N(E)

G[%] < N[%]

This does not mean that the natural refinement is
redundant. It is possible to have

N(G[B])<G[%]



Complexity

The average complexity of the TLG refinement for
L ePLR(r,s,n) is O(M’ log M), where M =max(r,s,n)



Performance on random PLRs

0 , il
8 16 24 32 10 18 56 61 m

1000 random PLRs in PLR(8,8,8;m) for each m

Works well for dense PLRs and (full) Latin rectangles.
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Problems for further study

 What is the best combination of the operators N and
G (in terms of best refinement and lowest
complexity)?

* Find other refinement methods.

 What is the most efficient way to conduct the
subsequent search?
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