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Ent( ) : {( , , [ , ]) : [ ], [ ], [ , ] [ ]}L i j L i j i r j s L i j n= ∈ ∈ ∈
The entry set of L



Isotopisms and autotopisms

( , , )

PLR( , , ) PLR( , ): ,

r s nS S S

r s n r s n

α β γΘ = ∈ × ×

Θ →
α permutes the rows

β permutes the columns

γ permutes the symbols

If                      then      is an autotopism of        ( )L LΘ = Θ L

Atop( )L = The autotopy group of L

an isotopism
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Computing Atop( )L

1 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅25 ⋅

41 ⋅ ⋅3

The partial Latin rectangle graph 
(Falcon and Stones, Disc. Math. 2017)

Compute                by computing  graph 

automorphisms.

Atop( )L
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2

1

1

4

Use ‘nauty’ (McKay, Meynert, Myrvold, JCD 2007) and its 

variants

Example:
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Two stages in Computing 

1. Use invariants to partition rows, columns, 
symbols and entries in order to narrow down the 
search - polynomial time complexity.
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System of partitions
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( )row col sym,,=P P P P

is invariant if and only if each of its components is 

invariant under

P

Atop( )L

the types system                               :( )T 1 32, ,=P P P P

1P is defined by the number of entries in the rows

2P is defined by the number of entries in the columns

3P is defined by the number of appearances of each 

symbol

Example:
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Aim: find the finest possible invariant 

system of partitions

Aim: find the finest possible invariant 

system of partitions

How?

1) Start with                   the trivial system 

of partitions

2) Apply refinement methods

How?

1) Start with                   the trivial system 

of partitions

2) Apply refinement methods

S( )L=P P
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( )row col sym,,=P P P P induces a partition            on             : Ent( )L

row

col

sym

( )

~

( , , [ , ])) ~ ( , , [ , ]) ~

[ , ] ~ [ , ]
E

i i

i j L i j i j L i j j j

L i j L i j

 ′
′ ′ ′ ′ ′⇔ 

′ ′

P

P

P

P

( )E P
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The natural refinement
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( )row col sym,,=P P P P induces a partition            on             : Ent( )L

row

col

sym

( )

~

( , , [ , ])) ~ ( , , [ , ]) ~

[ , ] ~ [ , ]
E

i i

i j L i j i j L i j j j

L i j L i j

 ′
′ ′ ′ ′ ′⇔ 

′ ′

P

P

P

P

( )E P

1) Label the elements of               by their part in ( )E PEnt( )L

( )row col sym( ) ( ), ( ), ( )N N N N=P P P P2) Define the natural refinement 

where  

row( )N P is define by the multisets of labels in the rows

col( )N P is define by the multisets of labels in the columns

col( )N P is define by the multisets of labels corresponding to 

the symbols
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The natural refinement

•

• If        is invariant so is  

• If                then

10

P ( )N P

( )N ≤P P

' ≤P P ( ) ( )'N N≤P P

[ ] ( )( ) ( ) ,N N N N≤ …≤ ≤ ≤P P P P

Can continue the process until it stops:

Disadvantage: when starting from       it is useless for 

very dense PLRs

Examples: 
S T( )N =P P S SEI( ( ))N N =P P

the types partition the Strong Entry Invariants partition 

(Falcon and Stones, 2017)

SP



Two-line graphs

for two rows          in a PLR, construct a vertex-and-edge-
colored bipartite graph                as illustrated here:
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Two-line graphs

for two rows          in a PLR, construct a vertex-and-edge-
colored bipartite graph                as illustrated here:

Similar constructions for two columns and two symbols.

(for symbols consider          , the PLR obtained by 
swapping the 1st and 3rd coordinates in              )

11

1 2,r r

(1,3)L
Ent( )L

1 2, ( )rrG L

Can try it here: http://plr.telhai.ac.il/Home/VisualSimulation

Remark: can be viewed as a generalization of cycles in 

partial permutations
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The two-line representations
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row

0
0

( )

0

kl

ij

r
L

r

 
 
 

=  
 
  

⋱
R

, ,ij kl i j k lr Gr G= ⇔ ≃

(Define             and                analogously)col ( )LR sym ( )LR
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row ( )L

 
 
 =  
 
  

R
r

r

1 2

1 ( ) 2

~
~G

r r
r r


⇔ 
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( )r c, , s=P P P P an adequate system

r 1 2{ , , , }kP P P…=Psuppose

1P 2P iP kP

…
the multisets 

agree in each part1r

2r

1 1 3 2

3 1 1 2

4 2 2

2 4 2

6  12  9

12  9  6

analogous definitions for             and ( )cG P ( )sG P

( ) ( ) ( ) ( )( )r c ,, sG G G G=P P P P
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G vs. N 

Not much is known about the relation between the 
refinements G and N. However, it is easy to see

15

S S( ) ( )G N≤P P

[ ] [ ]S SG N≤P P

This does not mean that the natural refinement is 

redundant. It is possible to have 

[ ]( ) [ ]N G G<P P



Complexity

The average complexity of the TLG refinement for                              

is                       , where                           
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PLR( , , )L r s n∈ 3( log )M MO max( , , )M r s n=



Performance on random PLRs

17

%
 o

p
ti

m
a

l

1000 random PLRs in PLR(8,8,8;m) for each m

Works well for dense PLRs and (full) Latin rectangles.

[ ]SN G  P

[ ]SN P[ ]SG P
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Problems for further study

• What is the best combination of the operators N and 
G (in terms of best refinement and lowest 
complexity)?

• Find other refinement methods.

• What is the most efficient way to conduct the 
subsequent search?
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 ⋅KN ⋅A ⋅H ⋅T

 ⋅U ⋅OY ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅R ⋅O ⋅F ⋅

 ⋅R ⋅U ⋅ ⋅OY ⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅T ⋅

NOI ⋅NET ⋅A

 ⋅ ⋅ ⋅T ⋅ ⋅ ⋅ ⋅ ⋅


