Invariants for efficiently computing the autotopism group of a partial Latin rectangle

Daniel Kotlar

Tel-Hai College, Israel

joint work with

Eiran Danan, Raúl M. Falcón, Trent G. Marbach, Rebecca J. Stones

Symmetry vs Regularity, Pilsen, 2018

 $L \in PLR(r, s, n)$

- r = number of rows
- s = number of columns
- n = number of symbols

 $L \in PLR(r, s, n)$

- r = number of rows
- s = number of columns
- n = number of symbols

1	•	2	•	•	•	3	•	
2	•	•	4	1	5	6	•	
•	1	5	3	•	4			
•	2	•	5	•	3	•	4	
4	3	•	•	5	•	1	•	2
•	•	•	•	2	•	•	1	3

 \in PLR(6,9,7)

 $L \in PLR(r, s, n)$

- r = number of rows
- s = number of columns

n = number of symbols

1	•	2	•	•	•	3	•	•
2	•	•	4	1	5	6	•	
	1	5	3	•	4			•
•	2	•	5	•	3	•	4	•
4	3	•	•	5	•	1	•	2
•	•	•	•	2	•	•	1	3

 \in PLR(6,9,7)

The entry set of LEnt $(L) := \{(i, j, L[i, j]) : i \in [r], j \in [s], L[i, j] \in [n]\}$

Isotopisms and autotopisms

$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n$$
 an isotopism

 $\Theta: \mathrm{PLR}(r, s, n) \to \mathrm{PLR}(r, s, n)$

- lpha permutes the rows
- β permutes the columns
- γ permutes the symbols

If $\Theta(L) = L$ then Θ is an autotopism of L

Atop(L) = The autotopy group of L

Computing Atop(L)

The partial Latin rectangle graph (Falcon and Stones, Disc. Math. 2017)

Compute Atop(L) by computing graph automorphisms.

Use 'nauty' (McKay, Meynert, Myrvold, JCD 2007) and its variants

Two stages in Computing Atop(L)

 Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity.

Two stages in Computing Atop(L)

- Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity.
- 2. Compute Atop(L) using backtracking methods mostly non-polynomial time complexity.

Two stages in Computing Atop(L)

- 1. Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity.
- 2. Compute Atop(L) using backtracking methods mostly non-polynomial time complexity.

System of partitions $\mathfrak{P} = \left(\mathcal{P}_{row}, \mathcal{P}_{col}, \mathcal{P}_{sym} \right)$

System of partitions
$$\mathfrak{P} = \left(\mathcal{P}_{row}, \mathcal{P}_{col}, \mathcal{P}_{sym} \right)$$

 \mathfrak{P} is invariant if and only if each of its components is invariant under Atop(L)

System of partitions

$$\mathfrak{P} = \left(\mathcal{P}_{row}, \mathcal{P}_{col}, \mathcal{P}_{sym} \right)$$

 \mathfrak{P} is invariant if and only if each of its components is invariant under Atop(L)

Example:

the types system $\mathfrak{P}_{T} = (\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3})$:

- \mathcal{P}_1 is defined by the number of entries in the rows
- \mathcal{P}_2 is defined by the number of entries in the columns \mathcal{P}_3 is defined by the number of appearances of each
 - ² is defined by the number of appearances of each symbol

How to obtain invariant systems?

How to obtain invariant systems?

Aim: find the finest possible invariant system of partitions

How to obtain invariant systems?

Aim: find the finest possible invariant system of partitions

How?

- 1) Start with $\mathfrak{P} = \mathfrak{P}_{S}(L)$ the trivial system of partitions
- 2) Apply refinement methods

 $\mathfrak{P} = (\mathcal{P}_{row}, \mathcal{P}_{col}, \mathcal{P}_{sym})$ induces a partition $E(\mathfrak{P})$ on Ent(L):

 $\mathfrak{P} = \left(\mathcal{P}_{\text{row}}, \mathcal{P}_{\text{col}}, \mathcal{P}_{\text{sym}}\right) \text{ induces a partition } E\left(\mathfrak{P}\right) \text{ on } \text{Ent}(L):$ $(i, j, L[i, j])) \sim_{E(\mathfrak{P})} (i', j', L[i', j']) \Leftrightarrow \begin{cases} i \sim_{\mathcal{P}_{\text{row}}} i' \\ j \sim_{\mathcal{P}_{\text{col}}} j' \\ L[i, j] \sim_{\mathcal{P}_{\text{sym}}} L[i', j'] \end{cases}$

$$\mathfrak{P} = \left(\mathcal{P}_{\text{row}}, \mathcal{P}_{\text{col}}, \mathcal{P}_{\text{sym}}\right) \text{ induces a partition } E\left(\mathfrak{P}\right) \text{ on } \text{Ent}(L):$$

$$(i, j, L[i, j])) \sim_{E(\mathfrak{P})} (i', j', L[i', j']) \Leftrightarrow \begin{cases} i \sim_{\mathcal{P}_{\text{row}}} i' \\ j \sim_{\mathcal{P}_{\text{col}}} j' \\ L[i, j] \sim_{\mathcal{P}_{\text{sym}}} L[i', j'] \end{cases}$$

1) Label the elements of Ent(L) by their part in $E(\mathfrak{P})$

$$\mathfrak{P} = \left(\mathcal{P}_{\text{row}}, \mathcal{P}_{\text{col}}, \mathcal{P}_{\text{sym}}\right) \text{ induces a partition } E\left(\mathfrak{P}\right) \text{ on } \text{Ent}(L):$$

$$(i, j, L[i, j])) \sim_{E(\mathfrak{P})} (i', j', L[i', j']) \Leftrightarrow \begin{cases} i \sim_{\mathcal{P}_{\text{row}}} i' \\ j \sim_{\mathcal{P}_{\text{col}}} j' \\ L[i, j] \sim_{\mathcal{P}_{\text{sym}}} L[i', j'] \end{cases}$$

- 1) Label the elements of Ent(L) by their part in $E(\mathfrak{P})$
- 2) Define the natural refinement $N(\mathfrak{P}) = (N(\mathcal{P}_{row}), N(\mathcal{P}_{col}), N(\mathcal{P}_{sym}))$ where

 $N(\mathcal{P}_{row})$ is define by the multisets of labels in the rows

- $N(\mathcal{P}_{col})$ is define by the multisets of labels in the columns
- $N(\mathcal{P}_{col})$ is define by the multisets of labels corresponding to the symbols

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- ullet

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $N(\mathfrak{P})$

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $N(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $N(\mathfrak{P}') \leq N(\mathfrak{P})$

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $N(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $N(\mathfrak{P}') \leq N(\mathfrak{P})$

Can continue the process until it stops: $N[\mathfrak{P}] \leq \ldots \leq N(N(\mathfrak{P})) \leq N(\mathfrak{P}) \leq \mathfrak{P},$

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $N(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $N(\mathfrak{P}') \leq N(\mathfrak{P})$

Can continue the process until it stops: $N[\mathfrak{P}] \leq \ldots \leq N(N(\mathfrak{P})) \leq N(\mathfrak{P}) \leq \mathfrak{P},$

Examples: $N(\mathfrak{P}_{S}) = \mathfrak{P}_{T}$ $N(N(\mathfrak{P}_{S})) = \mathfrak{P}_{SEI}$ the types partition the Strong Entry Invariants partition (Falcon and Stones, 2017)

- $N(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $N(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $N(\mathfrak{P}') \leq N(\mathfrak{P})$

Can continue the process until it stops:

$$N[\mathfrak{P}] \leq \ldots \leq N(N(\mathfrak{P})) \leq N(\mathfrak{P}) \leq \mathfrak{P},$$

Examples: $N(\mathfrak{P}_{S}) = \mathfrak{P}_{T}$ $N(N(\mathfrak{P}_{S})) = \mathfrak{P}_{SEI}$ the types partition the Strong Entry Invariants partition (Falcon and Stones, 2017) Disadvantage: when starting from \mathfrak{P}_{S} it is useless for very dense PLRs

for two rows r_1, r_2 in a PLR, construct a vertex-and-edgecolored bipartite graph $G_{r_1, r_2}(L)$ as illustrated here:

for two rows r_1, r_2 in a PLR, construct a vertex-and-edgecolored bipartite graph $G_{r_1, r_2}(L)$ as illustrated here:

Similar constructions for two columns and two symbols. (for symbols consider $L^{(1,3)}$, the PLR obtained by swapping the 1st and 3rd coordinates in Ent(L))

for two rows r_1, r_2 in a PLR, construct a vertex-and-edgecolored bipartite graph $G_{r_1, r_2}(L)$ as illustrated here:

Similar constructions for two columns and two symbols. (for symbols consider $L^{(1,3)}$, the PLR obtained by swapping the 1st and 3rd coordinates in Ent(L))

Can try it here: <u>http://plr.telhai.ac.il/Home/VisualSimulation</u>

for two rows r_1, r_2 in a PLR, construct a vertex-and-edgecolored bipartite graph $G_{r_1, r_2}(L)$ as illustrated here:

Similar constructions for two columns and two symbols. (for symbols consider $L^{(1,3)}$, the PLR obtained by swapping the 1st and 3rd coordinates in Ent(L))

Can try it here: <u>http://plr.telhai.ac.il/Home/VisualSimulation</u>

Remark: can be viewed as a generalization of cycles in partial permutations

The two-line representations

$$\mathcal{R}_{\text{row}}(L) = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & \ddots & r_{kl} & \\ & & r_{ij} & & \\ & & & & 0 \end{bmatrix}$$

The two-line representations

The two-line representations

(Define $\mathcal{R}_{col}(L)$ and $\mathcal{R}_{sym}(L)$ analogously)

The two-line graph (TLG) refinement

The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_r, \mathcal{P}_c, \mathcal{P}_s)$ an adequate system

The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_r, \mathcal{P}_c, \mathcal{P}_s)$ an adequate system suppose $\mathcal{P}_r = \{P_1, P_2, \dots, P_k\}$ The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_r, \mathcal{P}_c, \mathcal{P}_s)$ an adequate system suppose $\mathcal{P}_r = \{P_1, P_2, \dots, P_k\}$

The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_{r}, \mathcal{P}_{c}, \mathcal{P}_{s})$ an adequate system suppose $\mathcal{P}_r = \{P_1, P_2, \dots, P_k\}$ $\mathcal{P}_{1} \quad \mathcal{P}_{2} \quad \mathcal{P}_{i} \quad \mathcal{P}_{k}$ $\mathcal{R}_{row}(L) = \begin{bmatrix} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_{r}, \mathcal{P}_{c}, \mathcal{P}_{s})$ an adequate system suppose $\mathcal{P}_r = \{P_1, P_2, \dots, P_k\}$

The two-line graph (TLG) refinement $\mathfrak{P} = (\mathcal{P}_{r}, \mathcal{P}_{c}, \mathcal{P}_{s})$ an adequate system suppose $\mathcal{P}_r = \{P_1, P_2, \dots, P_k\}$ $\mathcal{P}_{1} \quad \mathcal{P}_{2} \quad \mathcal{P}_{i} \quad \mathcal{P}_{k}$ $\mathcal{R}_{row}(L) = \prod_{\substack{r_{1} \\ r_{2} \\ s112}} \prod_{\substack{422 \\ r_{2} \\ s112}} \dots \prod_{\substack{6 \ 12 \ 9 \\ 12 \ 9 \ 6}} \prod_{\substack{r_{1} \\ r_{2} \\ s112}} \mathcal{P}_{i} \quad \mathcal{P}_{i} \quad$

analogous definitions for $G(\mathcal{P}_{c})$ and $G(\mathcal{P}_{s})$

 $G(\mathfrak{P}) = (G(\mathcal{P}_{r}), G(\mathcal{P}_{c}), G(\mathcal{P}_{s}))$

- $G(\mathfrak{P}) \leq \mathfrak{P}$
- ullet

- $G(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $G(\mathfrak{P})$

- $G(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $G(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $G(\mathfrak{P}') \leq G(\mathfrak{P})$

- $G(\mathfrak{P}) \leq \mathfrak{P}$
- If \mathfrak{P} is invariant so is $G(\mathfrak{P})$
- If $\mathfrak{P}' \leq \mathfrak{P}$ then $G(\mathfrak{P}') \leq G(\mathfrak{P})$

Can continue the process until it stops:

 $G[\mathfrak{P}] \leq \ldots \leq G(G(\mathfrak{P})) \leq G(\mathfrak{P}) \leq \mathfrak{P},$

Not much is known about the relation between the refinements G and N. However, it is easy to see

Not much is known about the relation between the refinements G and N. However, it is easy to see

$G(\mathfrak{P}_{\mathrm{S}}) \leq N(\mathfrak{P}_{\mathrm{S}})$

Not much is known about the relation between the refinements G and N. However, it is easy to see

$G(\mathfrak{P}_{S}) \leq N(\mathfrak{P}_{S})$ $\bigcup G[\mathfrak{P}_{S}] \leq N[\mathfrak{P}_{S}]$

Not much is known about the relation between the refinements G and N. However, it is easy to see

 $G(\mathfrak{P}_{S}) \leq N(\mathfrak{P}_{S})$ $[\mathbf{P}_{S}] \leq N[\mathfrak{P}_{S}]$

This does not mean that the natural refinement is redundant. It is possible to have

 $N(G[\mathfrak{P}]) < G[\mathfrak{P}]$

Complexity

The average complexity of the TLG refinement for $L \in PLR(r, s, n)$ is $\mathcal{O}(M^3 \log M)$, where $M = \max(r, s, n)$

Performance on random PLRs

Works well for dense PLRs and (full) Latin rectangles.

 What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)?

- What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)?
- Find other refinement methods.

- What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)?
- Find other refinement methods.
- What is the most efficient way to conduct the subsequent search?

Т	•	Η	•	Α	•	Ν	K	•
•	•	•	Y	0	•	U	•	
•	F	•	0	•	R	•	•	•
•	Υ	0	•	•	U	•	R	•
•	Т	•	•	•	•	•	•	•
Α	•	Т	Ε	Ν	•	I	0	Ν
•	•	•	•	•	Т	•	•	•