On the complexity of testing isomorphism of graphs of bounded eigenvalue multiplicity

Takunari Miyazaki

Trinity College Hartford, Connecticut

July 3, 2018

Takunari Miyazaki (Trinity College)

Bounded eigenvalue multiplicity

July 3, 2018 0 / 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Polynomial-time instances

Question. For which classes of graphs is GI in polynomial time?

It was in this context that early *group-theoretic* methods have been pioneered, notably, for:

- Graphs of bounded color multiplicity —[Babai 1979, Furst-Hopcroft-Luks 1980]
- Graphs of bounded eigenvalue multiplicity —[Babai–Grigoryev–Mount 1982]
- Graphs of bounded valence —[Luks 1980]

(日) (同) (三) (三)

Vertex-colored graphs

A vertex-colored graph X = (V, E) is equipped with a partition of V into subsets of vertices of the same color

$$V=C_1\,\dot{\cup}\,\cdots\,\dot{\cup}\,C_s.$$

- Aut(X) consists of *color-preserving* automorphisms.
- We call $|C_i|$ the *color multiplicity* of a color *i*.
- If all |C_i| ≤ k, then Aut(X) is embeddable in the direct product of s symmetric groups

$$S_k \times \cdots \times S_k$$
.

イロト イポト イヨト イヨト

Babai's tower-of-groups algorithm

If a graph X's color multiplicity $\leq k$, assuming Aut(X) is embeddable in $G := S_k \times \cdots \times S_k$, we compute

$G = G_1 \ge G_2 \ge \cdots \ge G_m \cong \operatorname{Aut}(X)$

starting from G_1 followed by G_2, G_3, \ldots , and finally G_m .

- Each index $|G_i : G_{i+1}| \le k!$.
- By Lagrange's theorem, $m = O(n \log n)$.
- It thus runs in $O(f(k)n^c)$ time.

---[Babai 1979, Furst-Hopcroft-Luks 1980]

Eigenvalues and automorphisms

Consider a graph X = (V, E) with eigenvalues $\lambda_1, \ldots, \lambda_t$ and their eigenspaces W_1, \ldots, W_t for which:

• $\mathbf{R}^n = W_1 \oplus \cdots \oplus W_t$.

• Each λ_i 's multiplicity $d_i = \dim_{\mathbf{R}}(W_i)$.

Consider the *permutation representation* of Sym(V) on \mathbf{R}^n (which permutes the coördinates of $x \in \mathbf{R}^n$). Then

 $\operatorname{Aut}(X) = \{g \in \operatorname{Sym}(V) : W_i^g = W_i \text{ for } i = 1, \dots, t\}$

so that Aut(X) is *embeddable* in

$$O(W_1) \times \cdots \times O(W_t).$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Partition-decomposition pairs

Given a graph X = (V, E), we partition V into Aut(X)-invariant subsets and decompose \mathbb{R}^n into Aut(X)-invariant subspaces *simultaneously* such that:

 $V = C_1 \dot{\cup} \cdots \dot{\cup} C_s$ $\mathbf{R}^n = W_1 \oplus \cdots \oplus W_t$

- All vectors in each $p_{W_j}(C_i)$ have the same length.
- Equivalence relations defined by p_{W_j} are "balanced".

• Each
$$\langle p_{W_j}(C_i) \rangle = 0$$
 or W_j .

Partition-decomposition pairs

Now, Aut(X) is *embeddable* in:

 $\operatorname{Sym}(C_1) \times \cdots \times \operatorname{Sym}(C_s) = \operatorname{O}(W_1) \times \cdots \times \operatorname{O}(W_t)$

If X's eigenvalue multiplicity $\leq d$, then dim_R(W_j) $\leq d$. In fact, Aut(X) is *embeddable* in

$$H_1 \times \cdots \times H_s \leq \operatorname{Sym}(C_1) \times \cdots \times \operatorname{Sym}(C_s)$$

such that each $|H_i| \leq n^d$. —[Babai–Grigoryev 1982]

However, little is known about $|C_i|$.

イロト 不得 トイヨト イヨト 二日

Fixed-parameter tractability

X's color multiplicity $\leq k$: $O(f(k)n^c)$ time X's eigenvalue multiplicity $\leq d$: $O(n^{f(d)})$ time

In general, if the bounded parameter is *not* involved in the exponent, it is called *fixed-parameter tractable*. —[Downey–Fellows 1992]

Question. Under what condition is the problem of bounded eigenvalue multiplicity "reducible" to that of bounded color multiplicity?

Takunari Miyazaki (Trinity College)

(日) (同) (三) (三)

An observation

Let X = (V, E) be a graph of *bounded eigenvalue multiplicity*.

Theorem. If Aut(X) is primitive, and the rank of Aut(X) is bounded, X admits a vertex coloring of bounded color multiplicity.

- The *rank* of Aut(X) is the number of orbits of Aut(X) on its natural action on V × V.
- *Primitive groups of small ranks* are important and well-known.

(日) (周) (三) (三)

An observation

We appeal to the following fundamental theorem:

Theorem (Delsarte–Goethals–Seidel 1977). If *S* is a finite set of points on the unit sphere in \mathbb{R}^d , and $s := |\{(x, y) : x, y \in S \text{ and } x \neq y\}|$, then

$$|S| \leq {d+s-1 \choose s} + {d+s-2 \choose s-1}$$

(where (,) denotes the usual inner product in \mathbf{R}^d).

Takunari Miyazaki (Trinity College)

(日) (同) (三) (三)

An observation

Let X = (V, E) be a graph such that Aut(X) acts *primitively* on each of its orbits.

Proposition. For X's partition-decomposition pair $V = C_1 \cup \cdots \cup C_s$ and $\mathbf{R}^n = W_1 \oplus \cdots \oplus W_t$, let r_i be the rank of $\operatorname{Aut}(X)|_{C_i}$ and $d_j = \dim_{\mathbf{R}}(W_j)$ for $i = 1, \ldots, s$ and $j = 1, \ldots, t$. For each C_i , there is W_j such that

$$|C_i| \leq \binom{d_j + r_i - 2}{r_i - 1} + \binom{d_j + r_i - 3}{r_i - 2}$$

Takunari Miyazaki (Trinity College)