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Combinatorial Objects

Definition (L. Babai, 1977)

Combinatorial objects are objects of a concrete category, i.e. the
category with a forgetful functor to the category of sets.

Definition (P. Pálfy, 1987)

A combinatorial object on a (finite) set Ω is a relational structure,
i.e. a (finite) subset of Ω ∪ Ω2 ∪ Ω3....

Definition (N. Brand, 1991)

A finite subset O of Ω ∪ 2Ω ∪ 22Ω
....

In what follows a combinatorial object will mean an ordered tuple
O := (R1, ...,Rd) where Ri ⊂ Ω ∪ Ω2 ∪ Ω3....
Isomorphisms and automorphisms are defined in a natural way.



Cayley Combinatorial Objects

If G ≤ Sym(Ω), then Obj(G ) stands for the set of all G -invariant
combinatorial objects.

Definition

Let H be a finite group, HR ≤ Sym(H) its right regular
representation. A combinatorial object O over H invariant under
the subgroup HR is called a Cayley combinatorial object.

Cayley (di)graphs, colored Cayley digraphs,

Translation designs,

Cayley configurations,

Group codes,

Cayley maps,

etc.
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Isomorphism problem for Cayley combinatorial objects

Problem

Given a finite group H and combinatorial objects O,O ′ ∈ Obj(HR), find
whether they are isomorphic and (if so) find an isomorphism between
them.

For any O ∈ Obj(HR) and f ∈ Aut(H), the object O f is a Cayley object
over H isomorphic to O. We say that O f is Cayley isomorphic/equivalent
to O. Notation O ∼=Cay O f .

CI-property (Babai, 1977)

A Cayley object O is called a CI-object iff

∀ O ′ ∈ Obj(HR) O ′ ∼= O ⇐⇒ O ′ ∼=Cay O.

Definition

Let K be a class of combinatorial objects. A group H is called a CI-group
w.r.t a class K (K-CI-group for short) if any object O ∈ K is a CI-object.
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Cayley digraphs

Definition

Let S ⊆ H be a subset of a finite group H. A Cayley digraph
Cay(H, S) has H as a vertex set; two vertices x , y ∈ H are
connected iff xy−1 ∈ S . If S = S (−1) and 1H 6∈ S , then Cay(H,S)
is a simple undirected graph.

A colored Cayley digraph is a tuple (Cay(H, S0), ...,Cay(H,Sd))
where S0, ...,Sd are pairwise disjoint non-empty subsets of H.
Notation, Cay(H,S),S = (S0, ...,Sd).

Isomorphism between colored Cayley digraphs

Two colored Cayley digraphs Cay(H, (S0, ...,Sd)) and
Cay(H, (S ′0, ...,S

′
d)) are isomorphic iff there exists g ∈ Sym(H) s.t.

Cay(H,Si )
g = Cay(H,S ′i ), i = 0, ..., d . If g ∈ Aut(H), then the

digraphs are called Cayley isomorphic.
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IP for Cayley digraphs

IP for Cayley graphs v. 1.0

Given a group H of order n and S ,T ⊆ H, decide whether Cay(H,S) and
Cay(H,T ) are isomorphic.

IP for Cayley graphs v. 2.0

Given two groups H,K of order n and S ⊆ H,T ⊆ K , decide whether
Cay(H,S) and Cay(K ,T ) are isomorphic.

Proposition

If there exists an algorithm that solves version 1.0 for all groups in a time
f (n), then

1 it solves version 2.0 in f (n2);

2 it solves the Group Isomorphism Problem in a time f (n4)
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Isomorphism problem for circulant graphs

Ádám’s conjecture (1967): Zn is a CI-group w.r.t. graphs for every n.

Cay(Zn,S) ∼= Cay(Zn,T ) ⇐⇒ ∃m∈Z∗
n
T = mS .

Minimal Counterexample (Elspas and Turner, 1970).
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Isomorphism problem for circulant graphs
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Ádám’s conjecture

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám’s conjecture fails if n is divisible by 8 or by odd square.

Ádám’s conjecture is true if

1 n is a prime - Elspas & Parsons;

2 n = 2p, 3p, 4p - Babai 1977;

3 n = pq, p 6= q are primes - C. Godsil (1977), Klin & Pöschel
(1978), Alspach & Parsons (1979)

Pálfy’s correction of Ádám’s conjecture (1987):

Ádám conjecture is true if n is a square free or twice square free
number.
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Ádám’s conjecture

Theorem (Pálfy, 1987)

Ádám’s conjecture is true if n = 4 or gcd(n, ϕ(n)) = 1.

Pálfy’s result holds for ANY type of cyclic combinatorial objects.

Theorem (M. 1995-97)

The corrected Ádám’s conjecture is true.
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The corrected Ádám’s conjecture is true.
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CI-groups w.r.t. digraphs (~G-groups)

During last 50 years the classification of CI-groups w.r.t. digraphs
was studied by many researches: B. Alspach, L.Babai, M.Conder,
E. Dobson, B. Elspas, V.N.Egorov, P.Frankl, C. Godsil, M.
Hirasaka, Y.-Q. Feng, M. Klin, I. Kovacs, C.H.Li, Z.P. Lu,
A.I.Markov, L. Nowitz, T.D. Parsons, P. Pálfy, R. Pöschel, C.
Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a CI-group w.r.t. digraphs)

If H is a CI-group w.r.t. digraphs, then H is a coprime product of
groups from the following list:

Ze
p, Z4,Q8,A4,E (M, 2),E (M, 4).

where M is a direct product of elementary abelian groups of odd
order.



CI-groups w.r.t. digraphs (~G-groups)

During last 50 years the classification of CI-groups w.r.t. digraphs
was studied by many researches: B. Alspach, L.Babai, M.Conder,
E. Dobson, B. Elspas, V.N.Egorov, P.Frankl, C. Godsil, M.
Hirasaka, Y.-Q. Feng, M. Klin, I. Kovacs, C.H.Li, Z.P. Lu,
A.I.Markov, L. Nowitz, T.D. Parsons, P. Pálfy, R. Pöschel, C.
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CI-groups w.r.t. digraphs (sufficient conditions)

Theorem

The following groups are CI-groups w.r.t. digraphs

1 Zn where n is square-free or twice square-free number;

2 Ze
p, e ≤ 5 ;

3 Z2
p × Zq,Z3

p × Zq where p and q are distinct primes;

4 D2p,Zp o Z4;

5 Q8,Q8 × Zp,A4;

6 D2n,Z2
p × Zn,Z2

p × Zq × Zn with gcd(n, ϕ(n)) = 1

1. C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM
256 (2002),
2. C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of
finite CI-groups, JACO 26 (2007).



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group,

n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs);

n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);

n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

~G-group, n(p) ≥ 6 (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3
(G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a ~G-group for any

prime p?

3 Is Z6
p a ~G-group?

4 Is a coprime product of ~G-groups a ~G-group?

5 Is a dihedral group of a square-free order a ~G-group?



Non-CI groups: the cyclic case

1 n = p2, Alspach & Parsons, 1979;

2 n = pm, p > 2, Klin & Pöschel, 1978;

3 n = 2m, Muzychuk & Pöschel, 1999;

4 arbitrary n, Evdokimov & Ponomarenko - 2003, M.-2004.

An isomorphism problem for arbitrary cyclic combinatorial objects
of orders p2 and pq was solved by Job, Huffman and Pless in
1993,1996.
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4 arbitrary n, Evdokimov & Ponomarenko - 2003, M.-2004.

An isomorphism problem for arbitrary cyclic combinatorial objects
of orders p2 and pq was solved by Job, Huffman and Pless in
1993,1996.



Solving sets

Definition

A subset P ⊂ Sym(H) is called a solving set for a Cayley digraph
Cay(H, S) iff

∀T⊆HCay(H,S) ∼= Cay(H,T ) ⇐⇒

⇐⇒ ∃p∈PCay(H,S)p = Cay(H,T ).

A solving set of minimal cardinality is called a minimal solving set.
A set of permutations P ⊆ Sym(H) is called solving set for the
group H iff it is a solving set for all Cayley digraphs over H.

A group H is a ~G-group iff Aut(H) is a solving set for H.
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”Individual” solving set

Theorem (Babai, 1977)

A Cayley object O ∈ Obj(HR) is CI iff any regular subgroup of Aut(O)
isomorphic to H is conjugate to HR in Aut(O).
A subset S ⊂ H is a CI-subset iff any two H-regular subgroups of
Aut(Cay(H,S)) are conjugate in Aut(Cay(H,S))

Definition

Let G ≤ Sym(H) be an arbitrary group. A set Fi , i ∈ I of H-regular
subgroups of G is called an H-base of G iff any H-regular subgroup of G
is conjugate in G to exactly one Fi .

Theorem

Let S be an arbitrary subset of H. Let Fi , i ∈ I be an H-base of the
group G := Aut(Cay(H,S))). Denote by fi ∈ Sym(H) permutations such
that HR = F fi

i , i ∈ I . Then ∪i∈I fi Aut(H) is a solving set for Cay(H,S).
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Example

1 Let H = Z8 and Γ := Cay(Z8, {1, 2, 5});

2 Then G := Aut(Cay(Z8, {1, 2, 5})) = 〈ρ〉o 〈τ〉 where
xρ = x + 1, xτ = 5x ;

3 G contains exactly two regular cyclic subgroups G :
(Z8)R = 〈ρ〉 and
〈σ〉, xσ = 5x + 1 =⇒ σ = (0, 1, 6, 7, 4, 5, 2, 3)

4 〈ρ〉 and 〈σ〉 is a Z8-base of G ;

5 〈ρ〉 = 〈σ〉(2,6)(3,7) =⇒ Aut(Z8) ∪ (2, 6)(3, 7) Aut(Z8) is a
solving set for Cay(Z8, {1, 2, 5}).
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How to construct a solving set for all Cayley graphs over H

1 Find the automorphism groups of all Cayley graphs over H;

2 Too many graphs - 2|H|−1;-(

3 Different graphs may have the same automorphism group!

If |H| is prime, then the number of distinct automorphism
groups is less than |H|.

4 Klin-Pöschel approach - use the method of Schur rings to find
all possible automorphism groups.
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Coherent closure of a Cayley graph

1 A coherent closure of a Cayley digraph is an HR -invariant
association scheme (homogeneous coherent configuration)
(H,R = {R0, ...,Rd});

2 Ri = Cay(H,Si ) for some Si ⊆ H;

3 S0 = {e} and S = {S0, ...,Sd} is a partition of H;

4 S is a union of some Si ’s;

5 Aut(Cay(H, S)) =
⋂d

i=0 Aut(Cay(H,Si )) =: Aut(Cay(H,S)).

These special partitions are called S-partitions of H. They are in
1-1 correspondence with Schur rings over H.
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Schur rings (algebras)

Definition (Wielandt)

Let S ⊆ H. An element S :=
∑

s∈S s ∈ Q[H] is called a simple
quantity. We abbreviate {g} as g .

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the
following conditions

1 {e} ∈ S;

2 S(−1) = S where S(−1) := {S (−1) |S ∈ S};
3 the linear span S := 〈S〉S∈S is a subalgebra of Q[H]

A subalgebra A of Q[H] arising in this way is called a Schur
algebra/ring.
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Klin-Pöschel scheme for a solution of IPCG.

1 Find the set S of all S-partitions of H;

2 For each S ∈ S find the automorphism group G := Aut(S).
Then

1 Find an H-base of G : F1, ...,Fk ;
2 Find fi ∈ Sym(H) with HR = F fi

i , i = 1, ..., k;

3 Set P(S) :=
⋃k

i=1 fi Aut(H);

3 Take
⋃
S∈S P(S) as a solving set for Cayley digraphs over H.

This scheme successfully worked for Zn if n is a power of an odd
prime or a product of two distinct primes.
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Example: solving set for circulant graphs of order 8

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1, 2, 3, 4, 5, 6, 7};
{0}, {1, 3, 5, 7}, {2, 6, 4} ;
{0}, {1, 3, 5, 7, 2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2, 6}, {4} ;
{0}, {1, 3}, {5, 7}, {2, 6}, {4} ;
{0}, {1, 7}, {3, 5}, {2, 6}, {4} ;
{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} ;



Example

N S-partition S Aut. cyclic Solving
group bases set

1 {0}, {1, 2, 3, 4, 5, 6, 7} S8 〈ρ〉 Z∗8
2 {0}, {1, 3, 5, 7}, {2, 6, 4} S2 o S4 〈ρ〉 Z∗8
3 {0}, {1, 3, 5, 7, 2, 6}, {4} S4 o S2 〈ρ〉 Z∗8
4 {0}, {1, 3, 5, 7}, {2, 6}, {4} S2 o S2 o S2 〈ρ〉 Z∗8
5 {0}, {1, 3, 5, 7}, {2}, {6}, {4} S2 o Z4 〈ρ〉 Z∗8
6 {0}, {1, 5}, {3, 7}, {2}, {6}, {4} Z8.Z2 〈ρ〉, 〈σ〉 Z∗8 ∪ αZ∗8
7 {0}, {1, 5}, {3, 7}, {2, 6}, {4} Z4 o S2 〈ρ〉 Z∗8
8 {0}, {1, 3}, {5, 7}, {2, 6}, {4} Z8.Z2 〈ρ〉 Z∗8
9 {0}, {1, 7}, {3, 5}, {2, 6}, {4} D16 〈ρ〉 Z∗8

10 {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} Z8 〈ρ〉 Z∗8

Here α = (2, 6)(3, 7). Thus Z∗8 ∪ αZ∗8 is a solving set for circulant graphs

over Z8.



Solution of the isomorphism problem for circulant digraphs.

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

1 the number of Schur rings over Zn is bounded by
nC , 2 ≤ C < 2.5;

2 there exists an efficiently constructed solving set Pn for
colored circulant digraphs of order n s.t. |Pn| ≤ nCϕ(n)

Theorem (Muzychuk-Pöschel, 1999)

Let n = 2m. Then there exists an efficiently constructed solving set
Pn for colored circulant digraphs of order n s.t. |Pn| ≤ nCϕ(n).

But if n is a square-free number, the number of S-partitions is not
polynomial in n.
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Control of H-bases

Definition

Let HR ≤ X ≤ Y ≤ SymH be arbitrary subgroups. We say that X
controls H-bases of Y , notation X �H Y , if any H-base of X
contains an H-base of Y .

Proposition

The following are equivalent

1 X �H Y ;

2 for any H-regular subgroup F ≤ Y there exists y ∈ Y s.t.
F y ≤ X ;

Proposition

The relation �H is a partial order on the lattice [HR ,Sym(H)].
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�H-minimal subgroups.

Proposition

If H is a p-group, then every �H -minimal subgroup of SymH is a
p-group too.

Example. The symmetric group Sym(8) has two ≺Z8-minimal
subgroups: Z8 and Z8 o 〈σ〉 where σ(x) = 5x .

Theorem (Pálfy, 1987)

If H is a cyclic group of order n, then HR is a unique �H -minimal
subgroup iff n = 4 or gcd(n, ϕ(n)) = 1.

Theorem (M., 1999)

If H is cyclic, then each ≺H -minimal subgroup of X ∈ [HR ,SymH]
is solvable and π(X ) = π(H).
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Isomorphism problem for circulant graphs

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.

Theorem (M. 2004)

Let n = pm1
1 · ... · p

mk
k be a decomposition of n into a product of

prime powers. Denote by Pp
mi
i

a solving set for colored circulant

digraphs over Zp
mi
i

.Then the set Pn := Pp
m1
1
× ...× Pp

mk
k

is a

solving set for colored Cayley digraphs over Zn. In particular,
|Pn| < nCϕ(n).
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Isomorphism problem for cyclic combinatorial objects

Denote n := {0, ..., n − 1} ⊆ Z, c = (0, 1, 2, ..., n − 1), C = 〈c〉.

Problem

Given two cyclic combinatorial objects O,O ′ ∈ Obj(C ), find
whether they are isomorphic and (if so) find an isomorphism
between them.

Let n = p1 · · · pk be a prime decomposition of n, p1 ≥ ... ≥ pk .
Define a subgroup Wn inductively:

Wn :=

{
AGL1(pk) if k = 1;

AGL1(pk) oWn/pk if k > 1.

The action of AGL1(pk) oWn/pk on n is defined via the bijection:

n 3 i ↔ (q, r) ∈ pk × n/pk , where i = q
n

pk
+ r , 0 ≤ r < n/pk .
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Isomorphism problem for cyclic combinatorial objects

Theorem (M. & Ponomarenko, 2017)

The group Wn is a solving set for all C -invariant combinatorial
objects. In other words, O,O ′ ∈ Obj(C ) are isomorphic iff there
exists an element f ∈Wn s.t. O f = O ′.

Unfortunately, |Wn| is not polynomial in n. But the group Wn is
solvable. This yields the following result.

Theorem (M. & Ponomarenko 2017)

The isomorphism of any two cyclic objects can be tested in time
polynomial in their sizes.
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Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set Pn is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C ,D ≤ Fn

q

are permutation equivalent iff there exists g ∈ Pn s.t. C g = D.

Theorem (I. Kovacs, D. Marus̆ic̆ and M. Muzychuk, 2015)

A cyclic group is a CI-group with respect to balanced/symmetric
configurations.
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Non-graphical combinatorial objects: Cayley maps

Definition

A Cayley map is a triple M(H, S , ρ) where

1 H is a finite group;

2 S ⊆ H is a symmetric subset of H;

3 ρ ∈ Sym(S) is a rotation of S (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph
Cay(H, S) into a surface.

Example: H = Z2 × Z2,S = {01, 10, 11}, ρ = (01, 10, 11).
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Map isomorphisms

Definition

Two Cayley maps M(H,S , ρ) and M(H,S ′, ρ′) are isomorphic iff
there exists a bijection f ∈ Sym(H) s.t.

{(h, sh, ρ(s)h) | s ∈ S , h ∈ H}f = {(h, sh, ρ′(s)h) | s ∈ S ′, h ∈ H}.

Cayley isomorphism

Two Cayley maps M(H,S , ρ) and M(H,S ′, ρ′) are Cayley
isomorphic iff there exists f ∈ Aut(H) s.t. S f = S and fSρ = ρ′fS .

Problem

Classify all finite groups with CI-property with respect to maps.



CI-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

1 Zr
2 × Zm,Z4 × Zm,Z8 × Zm,Q8 × Zm;

2 Zm o Z2e , e = 1, 2, 3.

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are CI with respect to Cayley maps.

Zm × Z4,Zm × Zr
2,Zm × Q8.



CI-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

1 Zr
2 × Zm,Z4 × Zm,Z8 × Zm,Q8 × Zm;

2 Zm o Z2e , e = 1, 2, 3.

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are CI with respect to Cayley maps.

Zm × Z4,Zm × Zr
2,Zm × Q8.


