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Combinatorial Objects

Definition (L. Babai, 1977)

Combinatorial objects are objects of a concrete category, i.e. the
category with a forgetful functor to the category of sets.

Definition (P. Palfy, 1987)

A combinatorial object on a (finite) set 2 is a relational structure,
i.e. a (finite) subset of QU Q% UQ3....

Definition (N. Brand, 1991)
A finite subset O of QU 2% U 22% ...

In what follows a combinatorial object will mean an ordered tuple
O :=(Ry,...,Ry) where R; C QU Q?UQ3....
Isomorphisms and automorphisms are defined in a natural way.
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Cayley Combinatorial Objects

If G < Sym(2), then Obj(G) stands for the set of all G-invariant
combinatorial objects.

Definition
Let H be a finite group, Hg < Sym(H) its right regular
representation. A combinatorial object O over H invariant under
the subgroup Hpg is called a Cayley combinatorial object.

m Cayley (di)graphs, colored Cayley digraphs,
Translation designs,

Cayley configurations,

|

|

m Group codes,
m Cayley maps,
|

etc.
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Isomorphism problem for Cayley combinatorial objects

Problem

Given a finite group H and combinatorial objects O, O’ € Obj(Hg), find
whether they are isomorphic and (if so) find an isomorphism between
them.

For any O € Obj(Hg) and f € Aut(H), the object Of is a Cayley object
over H isomorphic to O. We say that Of is Cayley isomorphic/equivalent
to O. Notation O ¢, O.

Cl-property (Babai, 1977)
A Cayley object O is called a Cl-object iff

vV 0" € Obj(Hr) O' =20 < 0’ ¢, O.

Let R be a class of combinatorial objects. A group H is called a Cl-group
w.r.t a class & (R-Cl-group for short) if any object O € R is a Cl-object.



Cayley digraphs

Definition

Let S C H be a subset of a finite group H. A Cayley digraph
Cay(H, S) has H as a vertex set; two vertices x,y € H are
connected iff xy~* € S. If S = S(-1Y and 14 ¢ S, then Cay(H, S)
is a simple undirected graph.

A colored Cayley digraph is a tuple (Cay(H, So), ..., Cay(H, Sq4))
where Sg, ..., Sy are pairwise disjoint non-empty subsets of H.
Notation, Cay(H,S),S = (So, ---, Sq).



Cayley digraphs

Definition

Let S C H be a subset of a finite group H. A Cayley digraph
Cay(H, S) has H as a vertex set; two vertices x,y € H are
connected iff xy~* € S. If S = S(-1Y and 14 ¢ S, then Cay(H, S)
is a simple undirected graph.

A colored Cayley digraph is a tuple (Cay(H, So), ..., Cay(H, Sq4))
where Sg, ..., Sy are pairwise disjoint non-empty subsets of H.
Notation, Cay(H,S),S = (So, ---, Sq).

Isomorphism between colored Cayley digraphs

Two colored Cayley digraphs Cay(H, (So, ..., S4)) and

Cay(H, (Sg; ---, S);)) are isomorphic iff there exists g € Sym(H) s.t.
Cay(H, S;)8 = Cay(H, S}),i =0,...,d. If g € Aut(H), then the
digraphs are called Cayley isomorphic.
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IP for Cayley digraphs

IP for Cayley graphs v. 1.0

Given a group H of order nand S, T C H, decide whether Cay(H, S) and
Cay(H, T) are isomorphic.

IP for Cayley graphs v. 2.0

Given two groups H, K of order nand S C H, T C K, decide whether
Cay(H, S) and Cay(K, T) are isomorphic.

Proposition

If there exists an algorithm that solves version 1.0 for all groups in a time
f(n), then

it solves version 2.0 in f(n?);

it solves the Group Isomorphism Problem in a time f(n*)
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Isomorphism problem for circulant graphs

Adam'’s conjecture (1967): Z, is a Cl-group for every n
Cay(Zn,S) = Cay(Zn, T) <= Imez: T = mS.

Minimal Counterexample (Elspas and Turner, 1970).

6 5 6 5
7 4 7 4
0 3 0 3
1 2 1 2
(2,6)(3,7)

Cay(Zs,{1,2,5}) ————— Cay(Zs,{1,6,5})
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Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Adim’s conjecture fails if n is divisible by 8 or by odd square.

Adim’s conjecture is true if

n is a prime - Elspas & Parsons;
n=2p,3p,4p - Babai 1977;

n = pq,p # q are primes - C. Godsil (1977), Klin & Pdschel
(1978), Alspach & Parsons (1979)

P4lfy’s correction of Adém's conjecture (1987):

Adam conjecture is true if n is a square free or twice square free
number.
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Addm'’s conjecture

Theorem (Palfy, 1987)

Adém'’s conjecture is true if n = 4 or gcd(n, p(n)) = 1.

Palfy’s result holds for ANY type of cyclic combinatorial objects.

Theorem (M. 1995-97)

The corrected Addm’s conjecture is true.
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Cl-groups w.r.t. digraphs (Qg—groups)

During last 50 years the classification of Cl-groups w.r.t. digraphs
was studied by many researches: B. Alspach, L.Babai, M.Conder,
E. Dobson, B. Elspas, V.N.Egorov, P.Frankl, C. Godsil, M.
Hirasaka, Y.-Q. Feng, M. Klin, I. Kovacs, C.H.Li, Z.P. Lu,
A.l.Markov, L. Nowitz, T.D. Parsons, P. Palfy, R. Poschel, C.
Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a Cl-group w.r.t. digraphs)

If H is a Cl-group w.r.t. digraphs, then H is a coprime product of
groups from the following list:

Ze

p7

Za, Qs, As, E(M,2), E(M, 4).

where M is a direct product of elementary abelian groups of odd
order.



Cl-groups w.r.t. digraphs (sufficient conditions)

The following groups are Cl-groups w.r.t. digraphs

Z,, where n is square-free or twice square-free number;
Zf,, e<b;

Z,z, X Zq,Zg X Zq where p and q are distinct primes;
Dop, Zp X Za;

Qs, Qg X Zp, As;

@ Dan, Z3 X Zin, 23 X Lg X Ly with ged(n, o(n)) =1

1. C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM
256 (2002),

2. C.H. Li, Z.P. Lu, P. Palfy, Further restrictions on the struture of
finite Cl-groups, JACO 26 (2007).
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Non-Cl groups: the cyclic case

n = p?, Alspach & Parsons, 1979;

n=pm p>2, Klin & Pdéschel, 1978;

n = 2", Muzychuk & Pdschel, 1999;

arbitrary n, Evdokimov & Ponomarenko - 2003, M.-2004.
An isomorphism problem for arbitrary cyclic combinatorial objects

of orders p? and pgq was solved by Job, Huffman and Pless in
1993,1996.
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A subset P C Sym(H) is called a solving set for a Cayley digraph
Cay(H, S) iff

VTgHCay(H, 5) = Cay(H, T) <—

< dpepCay(H,S)? = Cay(H, T).

A solving set of minimal cardinality is called a minimal solving set.
A set of permutations P C Sym(H) is called solving set for the
group H iff it is a solving set for all Cayley digraphs over H.

A group H is a &-group iff Aut(H) is a solving set for H.
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"Individual” solving set

Theorem (Babai, 1977)

A Cayley object O € Obj(Hg) is Cl iff any regular subgroup of Aut(O)
isomorphic to H is conjugate to Hg in Aut(O).

A subset S C H is a Cl-subset iff any two H-regular subgroups of
Aut(Cay(H, S)) are conjugate in Aut(Cay(H, S))

Definition
Let G < Sym(H) be an arbitrary group. A set F;,i € | of H-regular

subgroups of G is called an H-base of G iff any H-regular subgroup of G
is conjugate in G to exactly one F;.

Theorem
Let S be an arbitrary subset of H. Let F;,i € | be an H-base of the

group G := Aut(Cay(H, S))). Denote by f; € Sym(H) permutations such
that Hp = F,-ﬁ,i € . Then Ui f; Aut(H) is a solving set for Cay(H, S).
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Example

Let H = Zg and I := Cay(Zs, {1,2,5});
Then G := Aut(Cay(Zs, {1,2,5})) = (p) x (1) where
xP =x+4+1,x" =b5x;
G contains exactly two regular cyclic subgroups G:
(Zg)r = (p) and
(0),x? =bx+1 = 0=1(0,1,6,7,4,5,2,3)
(p) and (o) is a Zg-base of G;
(p) = (0)2OET) — Aut(Zg) U (2,6)(3,7) Aut(Zg) is a
solving set for Cay(Zs, {1,2,5}).
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How to construct a solving set for all Cayley graphs over H

Find the automorphism groups of all Cayley graphs over H,

Too many graphs - 2|H‘_1;—(

Different graphs may have the same automorphism group!
If |[H| is prime, then the number of distinct automorphism
groups is less than |H]|.

Klin-Poschel approach - use the method of Schur rings to find
all possible automorphism groups.
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Coherent closure of a Cayley graph

A coherent closure of a Cayley digraph is an Hg-invariant
association scheme (homogeneous coherent configuration)
(H,R={Ro, ..., Ra});

R; = Cay(H, S;) for some S; C H;

So ={e} and § = {Sy, ..., Sq} is a partition of H;

B S is a union of some §;'s;

Aut(Cay(H, S)) = ﬂ,('i:o Aut(Cay(H, S;)) =: Aut(Cay(H,S)).

These special partitions are called S-partitions of H. They are in
1-1 correspondence with Schur rings over H.
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Schur rings (algebras)

Definition (Wielandt)

Let SC H. An element S =) _ss € Q[H] is called a simple
quantity. We abbreviate {g} as g .

Schur partitions
A partition S of a group H is called an S-partition if it satisfies the
following conditions

{e} €S;

S = S where S(-1) .= {S(D| S € S}

the linear span S := (S)scs is a subalgebra of Q[H]

A subalgebra A of Q[H] arising in this way is called a Schur
algebra/ring.
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Klin-Poschel scheme for a solution of IPCG.

Find the set & of all S-partitions of H,
For each S € & find the automorphism group G := Aut(S).
Then
Find an H-base of G: Fy, ..., Fg;
Find f; € Sym(H) with Hr = F i =1, ..., k;
Set P(S) := UL, £ Aut(H);
Take [Jgcs P(S) as a solving set for Cayley digraphs over H.

This scheme successfully worked for Z,, if n is a power of an odd
prime or a product of two distinct primes.



Example: solving set for circulant graphs of order 8

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1,2,3,4,5,6,7};

{0}, {1,3,5,7}, {2,6,4};

{0}, {1,3,5,7,2,6}, {4};

{0}, {1,3,5,7}, {2,6}, {4};

{0}, {1,3,5,7}, {2}, {6}, {4};

{0}, {1,5}, {3, 7}, {2}, {6}, {4}:

{0}, {1,5}, {3, 7}, {2,6}, {4}:

{0}, {1,3}, {5,7}, {2,6}, {4};

{0}, {1,7}, {3,5}, {2,6}, {4};

{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7};



N S-partition S Aut. cyclic Solving
group bases set

1 107, {1,2.3,4,5,6,7} S ) Z

2 {0}, {1,3,5,7}, {2,6,4} 515 {p) Z:

3 {0}, {1,3.5,7,2,6}, {4} Si1 S (p) Z:

4 {0}7 {1, 3’577}7 {276}’ {4} S2 ! 52 l S2 <p> Z§

5 {0}, {1,3,5,7}, {2}, {6}, {4} $2 174 {p) Zg

6 {O}v {1’5}7 {377}7 {2}’ {6}’ {4}’ Zg.2> <P>, <U> Zg UaZB

7 {O}a {1a 5}7 {37 7}7 {276}7 {4} Zg 52 <P> Z;

8 {0}7 {1’3}’ {5’7}7 {276}7 {4} ZLg.Z <P> Zg

9 {O}a {177}7 {375}7 {276}7 {4} D16 <P> ZLg

10 | {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} Zg () Zg

Here o = (2,6)(3,7). Thus Z§ U aZj is a solving set for circulant graphs
over Zg.
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Solution of the isomorphism problem for circulant digraphs.

Theorem (Klin-Pdschel, 1978)

Let n be an odd prime power. Then

the number of Schur rings over Z,, is bounded by
nC,2 < C < 25;

there exists an efficiently constructed solving set P, for
colored circulant digraphs of order n s.t. |P,| < n®p(n)

Theorem (Muzychuk-Pdschel, 1999)

Let n = 2™. Then there exists an efficiently constructed solving set
P,, for colored circulant digraphs of order ns.t. |P,| < n€¢(n).

But if n is a square-free number, the number of S-partitions is not
polynomial in n.
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Control of H-bases

Definition

Let Hr < X <Y < Sym H be arbitrary subgroups. We say that X
controls H-bases of Y, notation X <y Y/, if any H-base of X
contains an H-base of Y.

Proposition
The following are equivalent
X2nY;

for any H-regular subgroup F < Y there exists y € Y s.t.
Fy <X;

Proposition

The relation <y is a partial order on the lattice [Hr, Sym(H)].
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Proposition
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subgroups: Zg and Zg x (o) where o(x) = 5x.
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=n-minimal subgroups.

Proposition

If H is a p-group, then every <y-minimal subgroup of Sym H is a
p-group too.

Example. The symmetric group Sym(8) has two <z,-minimal
subgroups: Zg and Zg x (o) where o(x) = 5x.

Theorem (Palfy, 1987)

If H is a cyclic group of order n, then Hg is a unique <y-minimal
subgroup iff n =4 or gcd(n, p(n)) = 1.

Theorem (M., 1999)

If H is cyclic, then each <y-minimal subgroup of X € [Hg, Sym H]
is solvable and m(X) = 7(H).



Isomorphism problem for circulant graphs

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.



Isomorphism problem for circulant graphs

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.

Theorem (M. 2004)

Let n= pi™ - ...- p,'* be a decomposition of n into a product of
prime powers. Denote by P m; a solving set for colored circulant

digraphs over Z m; . Then the set P, := P mLX e X P ok is a
solving set for coIored Cayley digraphs over L. In partlcular
|Pal < n€(n).
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Isomorphism problem for cyclic combinatorial objects

Denote 7:={0,....n—1} CZ, c=(0,1,2,...,n—1), C = (c).

Problem

Given two cyclic combinatorial objects O, O’ € Obj(C), find
whether they are isomorphic and (if so) find an isomorphism
between them.

Let n = p;--- px be a prime decomposition of n, p1 > ... > py.
Define a subgroup W, inductively:

W, — AGLl(pk) if k= 1;
ne AGL1(pk) Wn/pk if k> 1.

The action of AGL1(pk)t W, ,,, on 7 is defined via the bijection:

/ Pk

. — ) n
n3i<(q,r) € px X n/pk, wherel:qp—+r,0§r<n/pk.
k



Isomorphism problem for cyclic combinatorial objects

Theorem (M. & Ponomarenko, 2017)

The group W, is a solving set for all C-invariant combinatorial
objects. In other words, O, O’ € Obj(C) are isomorphic iff there
exists an element f € W, s.t. Of = O'.
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Isomorphism problem for cyclic combinatorial objects

Theorem (M. & Ponomarenko, 2017)

The group W, is a solving set for all C-invariant combinatorial
objects. In other words, O, O’ € Obj(C) are isomorphic iff there
exists an element f € W, s.t. Of = O'.

Unfortunately, |W,| is not polynomial in n. But the group W, is
solvable. This yields the following result.

Theorem (M. & Ponomarenko 2017)

The isomorphism of any two cyclic objects can be tested in time
polynomial in their sizes.



Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P, is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C, D < FFg
are permutation equivalent iff there exists g € P, s.t. C& = D.



Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P, is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C, D < FFg
are permutation equivalent iff there exists g € P, s.t. C& = D.

Theorem (I. Kovacs, D. Marusi¢ and M. Muzychuk, 2015)

A cyclic group is a Cl-group with respect to balanced/symmetric
configurations.
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Non-graphical combinatorial objects: Cayley maps

Definition
A Cayley map is a triple M(H, S, p) where
H is a finite group;
S C H is a symmetric subset of H;
p € Sym(S) is a rotation of S (full cycle permutation).

A rotation p determines a 2-cell embeding of the Cayley graph
Cay(H, S) into a surface.

Example: H = Zy x Z»,S = {01,10,11}, p = (01, 10, 11).




Map isomorphisms

Two Cayley maps M(H, S, p) and M(H,S’, p") are isomorphic iff
there exists a bijection f € Sym(H) s.t.

{(h,sh,p(s)h)|s € S,h e HY ={(h,sh,p'(s)h)|s € S',he H}.

Cayley isomorphism
Two Cayley maps M(H, S, p) and M(H,S’, p') are Cayley
isomorphic iff there exists f € Aut(H) s.t. ST =S and fsp = p'fs.

Classify all finite groups with Cl-property with respect to maps.




Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)
Let H be a Cl-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

LY X Ly Zg X L, Lg X Ly, Qg X Lip;

Dy X Zpe,e =1,2,3.

where m is a square-free odd number.



Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a Cl-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

Z§ X Ly Ly X Ly Lg X L, Qg X Lip;
Do 30 Do, e = 1,2, 3.

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are Cl with respect to Cayley maps.

L X Logy Loy X Ly, L X Q.



