M. Muzychuk

Ben-Gurion University of the Negev, Israel

July, 2018, Pilsen, Czech Republick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (L. Babai, 1977)

Combinatorial objects are objects of a concrete category, i.e. the category with a forgetful functor to the category of sets.

Definition (P. Pálfy, 1987)

A combinatorial object on a (finite) set Ω is a relational structure, i.e. a (finite) subset of $\Omega \cup \Omega^2 \cup \Omega^3$

Definition (N. Brand, 1991)

A finite subset O of $\Omega \cup 2^{\Omega} \cup 2^{2^{\Omega}}...$

In what follows a combinatorial object will mean an ordered tuple $O := (R_1, ..., R_d)$ where $R_i \subset \Omega \cup \Omega^2 \cup \Omega^3$ Isomorphisms and automorphisms are defined in a natural way.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

Cayley (di)graphs, colored Cayley digraphs,

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

- Cayley (di)graphs, colored Cayley digraphs,
- Translation designs,

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

- Cayley (di)graphs, colored Cayley digraphs,
- Translation designs,
- Cayley configurations,

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

- Cayley (di)graphs, colored Cayley digraphs,
- Translation designs,
- Cayley configurations,
- Group codes,

Definition

Let *H* be a finite group, $H_R \leq \text{Sym}(H)$ its right regular representation. A combinatorial object *O* over *H* invariant under the subgroup H_R is called a Cayley combinatorial object.

- Cayley (di)graphs, colored Cayley digraphs,
- Translation designs,
- Cayley configurations,
- Group codes,
- Cayley maps,
- etc.

Problem

Given a finite group H and combinatorial objects $O, O' \in Obj(H_R)$, find whether they are isomorphic and (if so) find an isomorphism between them.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem

Given a finite group H and combinatorial objects $O, O' \in Obj(H_R)$, find whether they are isomorphic and (if so) find an isomorphism between them.

For any $O \in \text{Obj}(H_R)$ and $f \in \text{Aut}(H)$, the object O^f is a Cayley object over H isomorphic to O. We say that O^f is Cayley isomorphic/equivalent to O. Notation $O \cong_{Cay} O^f$.

Problem

Given a finite group H and combinatorial objects $O, O' \in Obj(H_R)$, find whether they are isomorphic and (if so) find an isomorphism between them.

For any $O \in \text{Obj}(H_R)$ and $f \in \text{Aut}(H)$, the object O^f is a Cayley object over H isomorphic to O. We say that O^f is Cayley isomorphic/equivalent to O. Notation $O \cong_{Cay} O^f$.

CI-property (Babai, 1977)

A Cayley object O is called a CI-object iff

 $\forall \ O' \in \mathrm{Obj}(H_R) \ O' \cong O \iff O' \cong_{Cay} O.$

Problem

Given a finite group H and combinatorial objects $O, O' \in Obj(H_R)$, find whether they are isomorphic and (if so) find an isomorphism between them.

For any $O \in \text{Obj}(H_R)$ and $f \in \text{Aut}(H)$, the object O^f is a Cayley object over H isomorphic to O. We say that O^f is Cayley isomorphic/equivalent to O. Notation $O \cong_{Cay} O^f$.

CI-property (Babai, 1977)

A Cayley object O is called a CI-object iff

$$\forall \ \mathcal{O}' \in \mathrm{Obj}(\mathcal{H}_{\mathcal{R}}) \ \mathcal{O}' \cong \mathcal{O} \iff \mathcal{O}' \cong_{Cay} \mathcal{O}.$$

Definition

Let \mathfrak{K} be a class of combinatorial objects. A group H is called a Cl-group w.r.t a class \mathfrak{K} (\mathfrak{K} -Cl-group for short) if any object $O \in \mathfrak{K}$ is a Cl-object.

Cayley digraphs

Definition

Let $S \subseteq H$ be a subset of a finite group H. A Cayley digraph Cay(H, S) has H as a vertex set; two vertices $x, y \in H$ are connected iff $xy^{-1} \in S$. If $S = S^{(-1)}$ and $1_H \notin S$, then Cay(H, S) is a simple undirected graph.

A colored Cayley digraph is a tuple $(Cay(H, S_0), ..., Cay(H, S_d))$ where $S_0, ..., S_d$ are pairwise disjoint non-empty subsets of H. Notation, $Cay(H, S), S = (S_0, ..., S_d)$.

Cayley digraphs

Definition

Let $S \subseteq H$ be a subset of a finite group H. A Cayley digraph Cay(H, S) has H as a vertex set; two vertices $x, y \in H$ are connected iff $xy^{-1} \in S$. If $S = S^{(-1)}$ and $1_H \notin S$, then Cay(H, S) is a simple undirected graph.

A colored Cayley digraph is a tuple $(Cay(H, S_0), ..., Cay(H, S_d))$ where $S_0, ..., S_d$ are pairwise disjoint non-empty subsets of H. Notation, $Cay(H, S), S = (S_0, ..., S_d)$.

Isomorphism between colored Cayley digraphs

Two colored Cayley digraphs $Cay(H, (S_0, ..., S_d))$ and $Cay(H, (S'_0, ..., S'_d))$ are isomorphic iff there exists $g \in Sym(H)$ s.t. $Cay(H, S_i)^g = Cay(H, S'_i)$, i = 0, ..., d. If $g \in Aut(H)$, then the digraphs are called Cayley isomorphic.

IP for Cayley digraphs

IP for Cayley graphs v. 1.0

Given a group H of order n and S, $T \subseteq H$, decide whether Cay(H, S) and Cay(H, T) are isomorphic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

IP for Cayley digraphs

IP for Cayley graphs v. 1.0

Given a group H of order n and S, $T \subseteq H$, decide whether Cay(H, S) and Cay(H, T) are isomorphic.

IP for Cayley graphs v. 2.0

Given two groups H, K of order n and $S \subseteq H, T \subseteq K$, decide whether Cay(H, S) and Cay(K, T) are isomorphic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

IP for Cayley digraphs

IP for Cayley graphs v. 1.0

Given a group H of order n and S, $T \subseteq H$, decide whether Cay(H, S) and Cay(H, T) are isomorphic.

IP for Cayley graphs v. 2.0

Given two groups H, K of order n and $S \subseteq H, T \subseteq K$, decide whether Cay(H, S) and Cay(K, T) are isomorphic.

Proposition

If there exists an algorithm that solves version 1.0 for all groups in a time f(n), then

1 it solves version 2.0 in $f(n^2)$;

2 it solves the Group Isomorphism Problem in a time $f(n^4)$

Ádám's conjecture (1967): \mathbb{Z}_n is a CI-group w.r.t. graphs for every n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

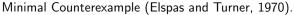
Ádám's conjecture (1967): \mathbb{Z}_n is a CI-group w.r.t. graphs for every *n*.

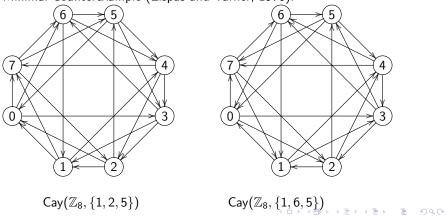
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$\operatorname{Cay}(\mathbb{Z}_n, S) \cong \operatorname{Cay}(\mathbb{Z}_n, T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$$

Ádám's conjecture (1967): \mathbb{Z}_n is a Cl-group w.r.t. graphs for every n.

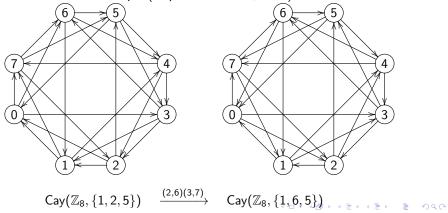
$$\operatorname{Cay}(\mathbb{Z}_n, S) \cong \operatorname{Cay}(\mathbb{Z}_n, T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$$





$$\operatorname{Cay}(\mathbb{Z}_n, S) \cong \operatorname{Cay}(\mathbb{Z}_n, T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$$

Minimal Counterexample (Elspas and Turner, 1970).



Ádám's conjecture

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if n is divisible by 8 or by odd square.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ádám's conjecture

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if *n* is divisible by 8 or by odd square.

Ádám's conjecture is true if

3 $n = pq, p \neq q$ are primes - C. Godsil (1977), Klin & Pöschel (1978), Alspach & Parsons (1979)

Ádám's conjecture

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if *n* is divisible by 8 or by odd square.

Ádám's conjecture is true if

3 $n = pq, p \neq q$ are primes - C. Godsil (1977), Klin & Pöschel (1978), Alspach & Parsons (1979)

Pálfy's correction of Ádám's conjecture (1987):

Ádám conjecture is true if n is a square free or twice square free number.

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

Pálfy's result holds for ANY type of cyclic combinatorial objects.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

Pálfy's result holds for ANY type of cyclic combinatorial objects.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (M. 1995-97)

The corrected Ádám's conjecture is true.

Cl-groups w.r.t. digraphs ($\vec{\mathfrak{G}}$ -groups)

During last 50 years the classification of CI-groups w.r.t. digraphs was studied by many researches: B. Alspach, L.Babai, M.Conder, E. Dobson, B. Elspas, V.N.Egorov, P.Frankl, C. Godsil, M. Hirasaka, Y.-Q. Feng, M. Klin, I. Kovacs, C.H.Li, Z.P. Lu, A.I.Markov, L. Nowitz, T.D. Parsons, P. Pálfy, R. Pöschel, C. Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a CI-group w.r.t. digraphs)

If H is a CI-group w.r.t. digraphs, then H is a coprime product of groups from the following list:

$$\mathbb{Z}_{p}^{e}, \mathbb{Z}_{4}, Q_{8}, A_{4}, E(M, 2), E(M, 4).$$

where M is a direct product of elementary abelian groups of odd order.

Theorem

The following groups are CI-groups w.r.t. digraphs

1 \mathbb{Z}_n where *n* is square-free or twice square-free number;

2
$$\mathbb{Z}_p^e, e \leq 5$$
;

3 $\mathbb{Z}_p^2 \times \mathbb{Z}_q, \mathbb{Z}_p^3 \times \mathbb{Z}_q$ where *p* and *q* are distinct primes;

4
$$D_{2p}, \mathbb{Z}_p \rtimes \mathbb{Z}_4;$$

$$5 \quad Q_8, Q_8 \times \mathbb{Z}_p, A_4;$$

 $D_{2n}, \mathbb{Z}_p^2 \times \mathbb{Z}_n, \mathbb{Z}_p^2 \times \mathbb{Z}_q \times \mathbb{Z}_n \text{ with } \gcd(n, \varphi(n)) = 1$

 C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM 256 (2002),
 C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of finite Cl-groups, JACO 26 (2007).

1 Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs);

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a $\vec{\mathfrak{G}}$ -group for any prime p?

- Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a $\vec{\mathfrak{G}}$ -group for any prime p?

3 Is \mathbb{Z}_p^6 a $\vec{\mathfrak{G}}$ -group?

- Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a $\vec{\mathfrak{G}}$ -group for any prime p?

- **3** Is \mathbb{Z}_p^6 a $\vec{\mathfrak{G}}$ -group?
- **4** Is a coprime product of $\vec{\mathfrak{G}}$ -groups a $\vec{\mathfrak{G}}$ -group?

- Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a $\vec{\mathfrak{G}}$ -group for any prime p?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **3** Is \mathbb{Z}_p^6 a $\vec{\mathfrak{G}}$ -group?
- **4** Is a coprime product of $\vec{\mathfrak{G}}$ -groups a $\vec{\mathfrak{G}}$ -group?
- **5** Is a dihedral group of a square-free order a $\vec{\mathfrak{G}}$ -group?

- Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a $\vec{\mathfrak{G}}$ -group, $n(p) \ge 6$ (Y.-Q. Feng & I. Kovacs); n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \le n(3) \le 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a $\vec{\mathfrak{G}}$ -group for any prime p?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **3** Is \mathbb{Z}_p^6 a $\vec{\mathfrak{G}}$ -group?
- **4** Is a coprime product of $\vec{\mathfrak{G}}$ -groups a $\vec{\mathfrak{G}}$ -group?
- **5** Is a dihedral group of a square-free order a $\vec{\mathfrak{G}}$ -group?

1
$$n = p^2$$
, Alspach & Parsons, 1979;

- **1** $n = p^2$, Alspach & Parsons, 1979;
- **2** $n = p^m, p > 2$, Klin & Pöschel, 1978;
- 3 $n = 2^m$, Muzychuk & Pöschel, 1999;
- 4 arbitrary n, Evdokimov & Ponomarenko 2003, M.-2004.

An isomorphism problem for arbitrary cyclic combinatorial objects of orders p^2 and pq was solved by Job, Huffman and Pless in 1993,1996.

Definition

A subset $P \subset Sym(H)$ is called a solving set for a Cayley digraph Cay(H, S) iff

$$\forall_{T\subseteq H} \mathsf{Cay}(H,S) \cong \mathsf{Cay}(H,T) \iff$$

$$\iff \exists_{p\in P} \operatorname{Cay}(H,S)^p = \operatorname{Cay}(H,T).$$

A solving set of minimal cardinality is called a minimal solving set. A set of permutations $P \subseteq Sym(H)$ is called solving set for the group H iff it is a solving set for all Cayley digraphs over H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A subset $P \subset Sym(H)$ is called a solving set for a Cayley digraph Cay(H, S) iff

$$\forall_{T\subseteq H} \mathsf{Cay}(H,S) \cong \mathsf{Cay}(H,T) \iff$$

$$\iff \exists_{p\in P} \operatorname{Cay}(H,S)^p = \operatorname{Cay}(H,T).$$

A solving set of minimal cardinality is called a minimal solving set. A set of permutations $P \subseteq Sym(H)$ is called solving set for the group H iff it is a solving set for all Cayley digraphs over H.

A group H is a $\vec{\mathfrak{G}}$ -group iff Aut(H) is a solving set for H.

"Individual" solving set

(ロ)、(型)、(E)、(E)、 E) の(()

"Individual" solving set

Theorem (Babai, 1977)

A Cayley object $O \in Obj(H_R)$ is Cl iff any regular subgroup of Aut(O) isomorphic to H is conjugate to H_R in Aut(O).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Babai, 1977)

A Cayley object $O \in Obj(H_R)$ is Cl iff any regular subgroup of Aut(O) isomorphic to H is conjugate to H_R in Aut(O). A subset $S \subset H$ is a Cl-subset iff any two H-regular subgroups of Aut(Cay(H, S)) are conjugate in Aut(Cay(H, S))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Babai, 1977)

A Cayley object $O \in Obj(H_R)$ is CI iff any regular subgroup of Aut(O) isomorphic to H is conjugate to H_R in Aut(O). A subset $S \subset H$ is a CI-subset iff any two H-regular subgroups of Aut(Cay(H, S)) are conjugate in Aut(Cay(H, S))

Definition

Let $G \leq \text{Sym}(H)$ be an arbitrary group. A set F_i , $i \in I$ of H-regular subgroups of G is called an H-base of G iff any H-regular subgroup of G is conjugate in G to exactly one F_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Babai, 1977)

A Cayley object $O \in Obj(H_R)$ is CI iff any regular subgroup of Aut(O) isomorphic to H is conjugate to H_R in Aut(O). A subset $S \subset H$ is a CI-subset iff any two H-regular subgroups of Aut(Cay(H, S)) are conjugate in Aut(Cay(H, S))

Definition

Let $G \leq \text{Sym}(H)$ be an arbitrary group. A set F_i , $i \in I$ of H-regular subgroups of G is called an H-base of G iff any H-regular subgroup of G is conjugate in G to exactly one F_i .

Theorem

Let S be an arbitrary subset of H. Let F_i , $i \in I$ be an H-base of the group $G := \operatorname{Aut}(\operatorname{Cay}(H, S)))$. Denote by $f_i \in \operatorname{Sym}(H)$ permutations such that $H_R = F_i^{f_i}$, $i \in I$. Then $\bigcup_{i \in I} f_i$ Aut(H) is a solving set for $\operatorname{Cay}(H, S)$.

1 Let $H = \mathbb{Z}_8$ and $\Gamma := \text{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := Cay(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G := \operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8, \{1, 2, 5\})) = \langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho} = x + 1, x^{\tau} = 5x$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3 *G* contains exactly two regular cyclic subgroups *G*: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$

Example

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := Cay(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G := \operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8, \{1, 2, 5\})) = \langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho} = x + 1, x^{\tau} = 5x$;
- 3 *G* contains exactly two regular cyclic subgroups *G*: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

4 $\langle \rho \rangle$ and $\langle \sigma \rangle$ is a \mathbb{Z}_8 -base of G;

Example

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := Cay(\mathbb{Z}_8, \{1, 2, 5\});$
- **2** Then $G := \operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8, \{1, 2, 5\})) = \langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho} = x + 1, x^{\tau} = 5x$;
- 3 *G* contains exactly two regular cyclic subgroups *G*: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$
- 4 $\langle \rho \rangle$ and $\langle \sigma \rangle$ is a \mathbb{Z}_8 -base of G;
- 5 $\langle \rho \rangle = \langle \sigma \rangle^{(2,6)(3,7)} \implies \operatorname{Aut}(\mathbb{Z}_8) \cup (2,6)(3,7) \operatorname{Aut}(\mathbb{Z}_8)$ is a solving set for $\operatorname{Cay}(\mathbb{Z}_8, \{1,2,5\})$.

How to construct a solving set for all Cayley graphs over H

How to construct a solving set for all Cayley graphs over H

1 Find the automorphism groups of all Cayley graphs over *H*;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Find the automorphism groups of all Cayley graphs over H;
 Too many graphs - 2^{|H|-1};-(

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **1** Find the automorphism groups of all Cayley graphs over H;
- **2** Too many graphs $2^{|H|-1}$;-(
- 3 Different graphs may have the same automorphism group!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **1** Find the automorphism groups of all Cayley graphs over *H*;
- **2** Too many graphs $2^{|H|-1}$;-(
- Different graphs may have the same automorphism group!
 If |H| is prime, then the number of distinct automorphism groups is less than |H|.

- **1** Find the automorphism groups of all Cayley graphs over *H*;
- **2** Too many graphs $2^{|H|-1}$;-(
- Different graphs may have the same automorphism group!
 If |H| is prime, then the number of distinct automorphism groups is less than |H|.
- Klin-Pöschel approach use the method of Schur rings to find all possible automorphism groups.

Coherent closure of a Cayley graph

(ロ)、(型)、(E)、(E)、(E)、(O)()

2
$$R_i = Cay(H, S_i)$$
 for some $S_i \subseteq H$;

2
$$R_i = Cay(H, S_i)$$
 for some $S_i \subseteq H$;

3 $S_0 = \{e\}$ and $S = \{S_0, ..., S_d\}$ is a partition of H;

2
$$R_i = Cay(H, S_i)$$
 for some $S_i \subseteq H$;

- 3 $S_0 = \{e\}$ and $S = \{S_0, ..., S_d\}$ is a partition of H;
- 4 S is a union of some S_i 's;

2
$$R_i = \operatorname{Cay}(H, S_i)$$
 for some $S_i \subseteq H$;

- 3 $S_0 = \{e\}$ and $S = \{S_0, ..., S_d\}$ is a partition of H;
- 4 S is a union of some S_i 's;
- 5 Aut(Cay(H, S)) = $\bigcap_{i=0}^{d} \operatorname{Aut}(\operatorname{Cay}(H, S_i))$

2
$$R_i = \operatorname{Cay}(H, S_i)$$
 for some $S_i \subseteq H$;

- 3 $S_0 = \{e\}$ and $S = \{S_0, ..., S_d\}$ is a partition of H;
- 4 S is a union of some S_i 's;
- **5** Aut(Cay(H, S)) = $\bigcap_{i=0}^{d}$ Aut(Cay(H, S_i)) =: Aut(Cay(H, S)).

(日)(1)</

2
$$R_i = Cay(H, S_i)$$
 for some $S_i \subseteq H$;

3 $S_0 = \{e\}$ and $S = \{S_0, ..., S_d\}$ is a partition of H;

5 Aut(Cay(H, S)) = $\bigcap_{i=0}^{d}$ Aut(Cay(H, S_i)) =: Aut(Cay(H, S)).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

These special partitions are called S-partitions of H. They are in 1-1 correspondence with Schur rings over H.

Schur rings (algebras)

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the following conditions

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the following conditions

1
$$\{e\} \in \mathcal{S};$$

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the following conditions

1
$$\{e\} \in S;$$

2 $S^{(-1)} = S$ where $S^{(-1)} := \{S^{(-1)} | S \in S\}$

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the following conditions

- 1 $\{e\} \in \mathcal{S};$
- 2 $S^{(-1)} = S$ where $S^{(-1)} := \{S^{(-1)} | S \in S\};$
- 3 the linear span $\underline{S} := \langle \underline{S} \rangle_{S \in S}$ is a subalgebra of $\mathbb{Q}[H]$

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partition S of a group H is called an S-partition if it satisfies the following conditions

1 {e} $\in S$; 2 $S^{(-1)} = S$ where $S^{(-1)} := \{S^{(-1)} | S \in S\};$

3 the linear span $\underline{S} := \langle \underline{S} \rangle_{S \in S}$ is a subalgebra of $\mathbb{Q}[H]$

A subalgebra \mathcal{A} of $\mathbb{Q}[H]$ arising in this way is called a Schur algebra/ring.

Klin-Pöschel scheme for a solution of IPCG.

Klin-Pöschel scheme for a solution of IPCG.

1 Find the set \mathfrak{S} of all S-partitions of H;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Klin-Pöschel scheme for a solution of IPCG.

- **1** Find the set \mathfrak{S} of all S-partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- **1** Find the set \mathfrak{S} of all S-partitions of *H*;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

1 Find an *H*-base of $G: F_1, ..., F_k$;

- **1** Find the set \mathfrak{S} of all S-partitions of *H*;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then

- **1** Find an *H*-base of $G: F_1, ..., F_k$;
- **2** Find $f_i \in \text{Sym}(H)$ with $H_R = F_i^{f_i}, i = 1, ..., k$;

- **1** Find the set \mathfrak{S} of all S-partitions of *H*;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then

1 Find an *H*-base of *G*: $F_1, ..., F_k$; 2 Find $f_i \in \text{Sym}(H)$ with $H_R = F_i^{f_i}$, i = 1, ..., k; 3 Set $P(S) := \bigcup_{i=1}^k f_i \text{Aut}(H)$;

- **1** Find the set \mathfrak{S} of all S-partitions of *H*;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then
 - 1 Find an *H*-base of *G*: $F_1, ..., F_k$; 2 Find $f_i \in \text{Sym}(H)$ with $H_R = F_i^{f_i}$, i = 1, ..., k; 3 Set $P(S) := \bigcup_{i=1}^k f_i \text{Aut}(H)$;

3 Take $\bigcup_{S \in \mathfrak{S}} P(S)$ as a solving set for Cayley digraphs over H.

(日)(1)</

This scheme successfully worked for \mathbb{Z}_n if *n* is a power of an odd prime or a product of two distinct primes.

The following list was generated by the computer program COCO (thanks to Misha Klin).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\{0\}, \{1, 2, 3, 4, 5, 6, 7\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2, 6, 4\}; \\ \{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2\}, \{6\}, \{4\}; \\ \{0\}, \{1, 5\}, \{3, 7\}, \{2\}, \{6\}, \{4\}; \\ \{0\}, \{1, 5\}, \{3, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 3\}, \{5, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 7\}, \{3, 5\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 7\}, \{3, 5\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}; \\ \}$$

Example

Ν	S-partition ${\cal S}$	Aut.	cyclic	Solving
		group	bases	set
1	$\{0\}, \{1, 2, 3, 4, 5, 6, 7\}$	S_8	$\langle \rho \rangle$	\mathbb{Z}_8^*
2	$\{0\}, \{1,3,5,7\}, \{2,6,4\}$	$S_2 \wr S_4$	$\langle \rho \rangle$	\mathbb{Z}_8^*
3	$\{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\}$	$S_4 \wr S_2$	$\langle \rho \rangle$	\mathbb{Z}_8^*
4	$\{0\}, \{1,3,5,7\}, \{2,6\}, \{4\}$	$S_2 \wr S_2 \wr S_2$	$\langle \rho \rangle$	\mathbb{Z}_8^*
5	$\{0\}, \{1, 3, 5, 7\}, \{2\}, \{6\}, \{4\}$	$S_2 \wr \mathbb{Z}_4$	$\langle ho angle$	\mathbb{Z}_8^*
6	$\{0\}, \{1,5\}, \{3,7\}, \{2\}, \{6\}, \{4\}$	$\mathbb{Z}_8.Z_2$	$\langle \rho \rangle, \langle \sigma \rangle$	$\mathbb{Z}_{8}^* \cup \alpha \mathbb{Z}_{8}^*$
7	$\{0\}, \{1,5\}, \{3,7\}, \{2,6\}, \{4\}$	$\mathbb{Z}_4 \wr S_2$	$\langle ho angle$	\mathbb{Z}_8^*
8	$\{0\}, \{1,3\}, \{5,7\}, \{2,6\}, \{4\}$	$\mathbb{Z}_8.\mathbb{Z}_2$	$\langle \rho \rangle$	\mathbb{Z}_8^*
9	$\{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\}$	D ₁₆	$\langle ho angle$	\mathbb{Z}_8^*
10	$\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}$	\mathbb{Z}_8	$\langle \rho \rangle$	\mathbb{Z}_8^*

Here $\alpha = (2,6)(3,7)$. Thus $\mathbb{Z}_8^* \cup \alpha \mathbb{Z}_8^*$ is a solving set for circulant graphs over \mathbb{Z}_8 .

Solution of the isomorphism problem for circulant digraphs.

Solution of the isomorphism problem for circulant digraphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

1 the number of Schur rings over \mathbb{Z}_n is bounded by $n^C, 2 \le C < 2.5$;

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

- 1 the number of Schur rings over \mathbb{Z}_n is bounded by $n^C, 2 \le C < 2.5$;
- 2 there exists an efficiently constructed solving set P_n for colored circulant digraphs of order n s.t. $|P_n| \le n^C \varphi(n)$

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

- 1 the number of Schur rings over \mathbb{Z}_n is bounded by $n^C, 2 \le C < 2.5$;
- 2 there exists an efficiently constructed solving set P_n for colored circulant digraphs of order n s.t. $|P_n| \le n^C \varphi(n)$

Theorem (Muzychuk-Pöschel, 1999)

Let $n = 2^m$. Then there exists an efficiently constructed solving set P_n for colored circulant digraphs of order n s.t. $|P_n| \le n^C \varphi(n)$.

But if n is a square-free number, the number of S-partitions is not polynomial in n.

Control of *H*-bases

Definition

Let $H_R \leq X \leq Y \leq \text{Sym } H$ be arbitrary subgroups. We say that X controls *H*-bases of Y, notation $X \leq_H Y$, if any *H*-base of X contains an *H*-base of Y.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Control of *H*-bases

Definition

Let $H_R \leq X \leq Y \leq \text{Sym } H$ be arbitrary subgroups. We say that X controls H-bases of Y, notation $X \leq_H Y$, if any H-base of X contains an H-base of Y.

Proposition

The following are equivalent

1
$$X \preceq_H Y$$
;

2 for any *H*-regular subgroup $F \leq Y$ there exists $y \in Y$ s.t. $F^{y} \leq X$;

Control of *H*-bases

Definition

Let $H_R \leq X \leq Y \leq \text{Sym } H$ be arbitrary subgroups. We say that X controls H-bases of Y, notation $X \leq_H Y$, if any H-base of X contains an H-base of Y.

Proposition

The following are equivalent

1
$$X \preceq_H Y$$
;

2 for any *H*-regular subgroup *F* ≤ *Y* there exists *y* ∈ *Y* s.t. *F^y* ≤ *X*;

Proposition

The relation \leq_H is a partial order on the lattice $[H_R, Sym(H)]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

If *H* is a *p*-group, then every \leq_H -minimal subgroup of Sym *H* is a *p*-group too.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Proposition

If *H* is a *p*-group, then every \leq_H -minimal subgroup of Sym *H* is a *p*-group too.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Proposition

If H is a p-group, then every \leq_H -minimal subgroup of Sym H is a p-group too.

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Theorem (Pálfy, 1987)

If *H* is a cyclic group of order *n*, then H_R is a unique \leq_H -minimal subgroup iff n = 4 or $gcd(n, \varphi(n)) = 1$.

Proposition

If *H* is a *p*-group, then every \leq_H -minimal subgroup of Sym *H* is a *p*-group too.

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Theorem (Pálfy, 1987)

If *H* is a cyclic group of order *n*, then H_R is a unique \leq_H -minimal subgroup iff n = 4 or $gcd(n, \varphi(n)) = 1$.

Theorem (M., 1999)

If *H* is cyclic, then each \prec_H -minimal subgroup of $X \in [H_R, \text{Sym } H]$ is solvable and $\pi(X) = \pi(H)$.

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of Schur rings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of Schur rings.

Theorem (M. 2004)

Let $n = p_1^{m_1} \cdot \ldots \cdot p_k^{m_k}$ be a decomposition of n into a product of prime powers. Denote by $P_{p_i^{m_i}}$ a solving set for colored circulant digraphs over $\mathbb{Z}_{p_i^{m_i}}$. Then the set $P_n := P_{p_1^{m_1}} \times \ldots \times P_{p_k^{m_k}}$ is a solving set for colored Cayley digraphs over \mathbb{Z}_n . In particular, $|P_n| < n^C \varphi(n)$.

Isomorphism problem for cyclic combinatorial objects

Denote
$$\overline{n} := \{0, ..., n-1\} \subseteq \mathbb{Z}$$
, $c = (0, 1, 2, ..., n-1)$, $C = \langle c \rangle$.

Isomorphism problem for cyclic combinatorial objects

Denote
$$\overline{n} := \{0, ..., n-1\} \subseteq \mathbb{Z}$$
, $c = (0, 1, 2, ..., n-1)$, $C = \langle c \rangle$.

Problem

Given two cyclic combinatorial objects $O, O' \in Obj(C)$, find whether they are isomorphic and (if so) find an isomorphism between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Isomorphism problem for cyclic combinatorial objects

Denote
$$\overline{n} := \{0, ..., n-1\} \subseteq \mathbb{Z}$$
, $c = (0, 1, 2, ..., n-1)$, $C = \langle c \rangle$.

Problem

Given two cyclic combinatorial objects $O, O' \in Obj(C)$, find whether they are isomorphic and (if so) find an isomorphism between them.

Let $n = p_1 \cdots p_k$ be a prime decomposition of $n, p_1 \ge ... \ge p_k$. Define a subgroup W_n inductively:

$$W_n := \begin{cases} AGL_1(p_k) & \text{if } k = 1; \\ AGL_1(p_k) \wr W_{n/p_k} & \text{if } k > 1. \end{cases}$$

The action of $AGL_1(p_k) \wr W_{n/p_k}$ on \overline{n} is defined via the bijection:

$$\overline{n} \ni i \leftrightarrow (q, r) \in \overline{p_k} \times \overline{n/p_k}$$
, where $i = q \frac{n}{p_k} + r, 0 \le r < n/p_k$.

Theorem (M. & Ponomarenko, 2017)

The group W_n is a solving set for all *C*-invariant combinatorial objects. In other words, $O, O' \in Obj(C)$ are isomorphic iff there exists an element $f \in W_n$ s.t. $O^f = O'$.

Theorem (M. & Ponomarenko, 2017)

The group W_n is a solving set for all *C*-invariant combinatorial objects. In other words, $O, O' \in Obj(C)$ are isomorphic iff there exists an element $f \in W_n$ s.t. $O^f = O'$.

Unfortunately, $|W_n|$ is not polynomial in n.

Theorem (M. & Ponomarenko, 2017)

The group W_n is a solving set for all *C*-invariant combinatorial objects. In other words, $O, O' \in Obj(C)$ are isomorphic iff there exists an element $f \in W_n$ s.t. $O^f = O'$.

Unfortunately, $|W_n|$ is not polynomial in *n*. But the group W_n is solvable. This yields the following result.

Theorem (M. & Ponomarenko 2017)

The isomorphism of any two cyclic objects can be tested in time polynomial in their sizes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (M., 2011)

The set P_n is also a solving set for a semisimple cyclic codes of length n. In other words, two semisimple cyclic codes $C, D \leq \mathbb{F}_q^n$ are permutation equivalent iff there exists $g \in P_n$ s.t. $C^g = D$.

Theorem (M., 2011)

The set P_n is also a solving set for a semisimple cyclic codes of length n. In other words, two semisimple cyclic codes $C, D \leq \mathbb{F}_q^n$ are permutation equivalent iff there exists $g \in P_n$ s.t. $C^g = D$.

Theorem (I. Kovacs, D. Marušič and M. Muzychuk, 2015)

A cyclic group is a CI-group with respect to balanced/symmetric configurations.

Definition

- A Cayley map is a triple $M(H, S, \rho)$ where
 - H is a finite group;
 - **2** $S \subseteq H$ is a symmetric subset of H;
 - **3** $\rho \in \text{Sym}(S)$ is a rotation of *S* (full cycle permutation).

Definition

- A Cayley map is a triple $M(H, S, \rho)$ where
 - H is a finite group;
 - **2** $S \subseteq H$ is a symmetric subset of H;
 - **3** $\rho \in \text{Sym}(S)$ is a rotation of *S* (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H, S) into a surface.

Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- 1 *H* is a finite group;
- **2** $S \subseteq H$ is a symmetric subset of H;
- **3** $\rho \in \text{Sym}(S)$ is a rotation of *S* (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H, S) into a surface.

Example: $H = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \{01, 10, 11\}, \rho = (01, 10, 11).$

Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- 1 H is a finite group;
- **2** $S \subseteq H$ is a symmetric subset of H;
- **3** $\rho \in \text{Sym}(S)$ is a rotation of *S* (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H, S) into a surface.

Example: $H = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \{01, 10, 11\}, \rho = (01, 10, 11).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Two Cayley maps $M(H, S, \rho)$ and $M(H, S', \rho')$ are isomorphic iff there exists a bijection $f \in Sym(H)$ s.t.

$$\{(h, sh, \rho(s)h) \mid s \in S, h \in H\}^f = \{(h, sh, \rho'(s)h) \mid s \in S', h \in H\}.$$

Cayley isomorphism

Two Cayley maps $M(H, S, \rho)$ and $M(H, S', \rho')$ are Cayley isomorphic iff there exists $f \in Aut(H)$ s.t. $S^f = S$ and $f_S \rho = \rho' f_S$.

Problem

Classify all finite groups with Cl-property with respect to maps.

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is isomorphic to one of the following groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\mathbb{1} \ \mathbb{Z}_2^r \times \mathbb{Z}_m, \mathbb{Z}_4 \times \mathbb{Z}_m, \mathbb{Z}_8 \times \mathbb{Z}_m, Q_8 \times \mathbb{Z}_m;$$

$$\mathbb{Z}_m \rtimes \mathbb{Z}_{2^e}, e = 1, 2, 3.$$

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is isomorphic to one of the following groups

$$1 \ \mathbb{Z}_2^r \times \mathbb{Z}_m, \mathbb{Z}_4 \times \mathbb{Z}_m, \mathbb{Z}_8 \times \mathbb{Z}_m, Q_8 \times \mathbb{Z}_m;$$

$$\mathbb{Z}_m \rtimes \mathbb{Z}_{2^e}, e = 1, 2, 3.$$

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are CI with respect to Cayley maps.

$$\mathbb{Z}_m \times \mathbb{Z}_4, \mathbb{Z}_m \times \mathbb{Z}_2^r, \mathbb{Z}_m \times Q_8.$$