Diagonal limits of cubes over a finite alphabet

Bogdana Oliynyk

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

Pilsen, July 2, 2018

Let $B = \{b_1, \ldots, b_q\}$ be an alphabet, $q \ge 2$. Denote by $H_n(q)$ the *Hamming space* of dimension *n* on alphabet *B*. This space consists of all *n*-tuples (a_1, \ldots, a_n) , $a_i \in B$, $1 \le i \le n$, where the distance d_{H_n} between two *n*-tuples is equal to the number of coordinates where they differ.

The scaled Hamming space $\hat{H}_n(q)$ have the same set of points, but the distance is defined as $\frac{1}{n}d_{H_n}$.

A sequence of positive integers $\tau = (m_1, m_2, ...)$ is called *divisible* if $m_i | m_{i+1}$ for all $i \in \mathbb{N}$. Denote by $(s_1, s_2, ...)$ the sequence of ratios of the sequence τ , i.e.

$$s_1 = m_1, \qquad s_{i+1} = \frac{m_{i+1}}{m_i}, \ i \ge 1.$$

For any $i \ge 1$ define an isometric embedding $\psi_{s_i} : \hat{H}_{m_i}(q) \to \hat{H}_{m_{i+1}}(q)$ by the rule:

$$\psi_{s_i}(x_1,\ldots,x_{m_i})=(\underbrace{x_1,\ldots,x_{m_i}|x_1,\ldots,x_{m_i}|\ldots|x_1,\ldots,x_{m_i}}_{s_i\cdot m_i}).$$

Then the sequence τ determines the directed system of scaled Hamming spaces on the alphabet B

$$\langle \hat{H}_{m_i}(q), \psi_{s_i} \rangle_{i \in \mathbb{N}}$$

with the diagonal embeddings ψ_{s_i} , $i \ge 1$.

The limit space of the directed system

$$\mathcal{H}(au, \boldsymbol{q}) = \lim_{\longrightarrow} \langle \hat{H}_{m_i}(\boldsymbol{q}), \psi_{\boldsymbol{s}_i} \rangle$$

is called a *diagonal limit* of the sequence of spaces \hat{H}_{m_i} , $i \ge 1$. We call the metric space $(\mathcal{H}(\tau, q))$ the τ -periodic Hamming space over the alphabet B.

- In [1] Peter J. Cameron and Sam Tarzi considered $H(\tau, 2)$ over alphabet $\{0, 1\}$.
 - H(\(\tau, 2\)) isometric to the space of finite unions of half-open subintervals of the interval [0, 1) with some special rational endpoints;
 - ^(a) Completions of $H(\tau, 2)$ independent of choice of τ ;
 - Solution For any τ the space $H(\tau, 2)$ is homogeneous.

In [2] periodic Hamming spaces $H(\tau, 2)$ over alphabet $\{0, 1\}$ were regarded as spaces of clopen subsets of boundaries of spherically homogeneous rooted trees.

In [1] P. J. Cameron and S. Tarzi formulated the questions:

- (a) Is there an other representation of H(au,q), q>2 ?
- ^(a) Are completions of diagonal limits Hamming spaces $\mathcal{H}(\tau, q)$ on alphabet *B* independent of choice of τ ?

Let T be an infinite locally finite spherically homogeneous rooted tree with the root v_0 , n be some nonnegative integer. A spherically homogeneous rooted tree T is uniquely defined by its *spherical index*, i.e. by an infinite sequence of positive integers $[s_1; s_2; \ldots,]$ such that s_i is the number of edges joining a vertex of the (i - 1)th level with vertices of the *i*th level, $i \ge 1$. If the tree (T, v_0) has spherical index $[s_1; s_2; \ldots,]$ then the sequence $|L_i| = m_i, i \ge 1$, is divisible. The boundary ∂T of a tree T is the set of infinite rooted paths. Define a distance ρ on the set ∂T as

$$\rho(\gamma_1, \gamma_2) = \begin{cases} \frac{1}{k+1}, & \text{if } \gamma_1 \neq \gamma_2 \\ 0, & \text{if } \gamma_1 = \gamma_2 \end{cases},$$

where k is the length of the common beginning of rooted paths γ_1 and γ_2 .

Define the Bernoulli measure μ on the Borel σ -algebra of ∂T_{τ} by the rule:

$$\mu(C_{\nu})=\frac{1}{n_{\nu}},$$

where n_v is the number of vertices of T_{τ} on the level containing the vertex v, C_v is cylindrical set corresponding to v (see [3]).

Introduce the discrete metric ρ on the alphabet *B*, i.e.

$$\varrho(b_i, b_j) = \begin{cases} 1, & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases},$$

for all $1 \le i, j \le q$. The metric ϱ induces the discrete topology on B. Denote by $C(\partial T_{\tau}, B)$ the set of all continuous functions from the space ∂T_{τ} to the space B. Define a metric $d_{\mu}: C(\partial T_{\tau}, B) \times C(\partial T_{\tau}, B) \to \mathbb{R}^+$ by putting

$$d_{\mu}(f,g) = \mu(\Sigma_f \bigtriangleup \Sigma_g),$$

where $f, g \in C(\partial T_{\tau}, B)$ and the symmetric difference of $\Sigma_f = \{f^{-1}(b_i), 1 \leq i \leq q\}$ and $\Sigma_g = \{g^{-1}(b_i), 1 \leq i \leq q\}$ defined by the rule:

$$\Sigma_f riangle \Sigma_g = igcup_{i
eq j} (f^{-1}(b_i) \cap g^{-1}(b_j)).$$

Theorem [4]

The τ -periodic Hamming space $\mathcal{H}(\tau, q)$ on the alphabet B is isometric to the space of all continuous functions $C(\partial T_{\tau}, B)$ with the metric d_{μ} .

This theorem is the answer to the question (A).

The following statement is the answer to the question (B).

Corollary [4]

For every infinite strictly increasing divisible sequence $\tau = (m_1, m_2, ...)$ the completion of the space $\mathcal{H}(\tau, q)$ is isometric to the completion of the space $\mathcal{H}(\beta, q)$, where $\beta = (2, 4, 8, ...)$.

- P. J. Cameron, S. Tarzi, *Limits of cubes*, Topology and its Applications, V. 155, Is. 14, 2008, pp. 1454–1461.
- B. V. Oliynyk, V. I. Sushchanskii The isometry groups of Hamming spaces of periodic sequences, Siberian Mathematical Journal, Vol. 54, N. 1, 2013, pp. 124–136.
- R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, Automata, dynamical systems, and groups (Russian), Proc. Steklov Inst. Math., V. 231, 2000, pp. 128–203.
- B. Oliynik, *The diagonal limits of Hamming spaces*, Algebra and Discrete Math., Vol. **15**, N. **2**, 2013, pp. 229–236.

Thank you for your attention!