Locally toroidal abstract polytopes and Y-presentations of sporadic groups

(i) Coxeter groups and C-string groups (ii) Y-shaped presentations for the Monster and its subgroups (ii) examples of (i) from (ii)

- old and hew (iv) conclusion and open problems Dima Pasechnik (University of Oxford)

Plzen, July 2018

Coxeter groups

A Coxeter group G= (gs, gz, gn) F)
of rank n is generated by n involutions gs,.., gn, subject to relations I $F = \{g_1^2, g_2^2, \dots, g_n^2, (g_1g_2)^{-12}, \dots (g_ig_i)^{-ij}\}$ (gh-1gh) Ch-1, h $e_{ij} \in \{2,3,\ldots\} \cup \{\infty\}.$ Usually drawn as a Coxeter diagram a graph on modes, node i is joined to node j by lij-2 edges. E.g. G=Sn. ooo...oo,

Classification of finite irreducible Coxeter groups Irreduabl = with connected diagram (Connected components = communing normal subgroups). $J_K = (K, K+1) -$ +ransposition $A_h \cong S_{h+1}$ 3 <h hodes $D_n \approx 2^{n-1}:S_n$ $D_{3} = A$ $E = \frac{U_{4}(2).2}{1}$ My: 0000 $B_n: \infty \longrightarrow \infty \qquad \left(\geq 2^n : S_n \right)$ F4: 0000 (Order 1152)

Affine Coxeter groups and honeycombs

Finite Coxeter groups are restricting as Lego blocks

Idea - take infinite examples, and their finite quotients. Affine Coxeter grps - finite ones, acting-on lattices.

An: oo on the nodes,

An = Z': An \widetilde{D}_{n} , \widetilde{G}_{2} : \widetilde{G}_{2} : \widetilde{G}_{3} : \widetilde{G}_{2} : \widetilde{G}_{3} : \widetilde{G}_{2} : \widetilde{G}_{3} : \widetilde{G} Honeycomb-tiling of IRn induced by embedding Z'n-R'n

C-string groups and abstract regular polytopes Finite irreducible Exeter groups - regular Polytopes An - simplices Bn - hyporcubes (and dual)
Fy - 24-cell Finite quotients of affine Coxeter groups give toroids. - examples of abstract regular Fig. Shrikhande graph (a 16-vertex non-Schurian Sir.g.) Shrikhande graph on the torus (note identification) e f g a

Parabolics, C-string groups, intersection property G=(91,...gn | I) - Coxeter group (a quotient of)

G=(91,...gi, -, gix) - parabolic subgroup

I={i,...ix}

G satisfies Intersection Property (IP) if $\forall S_{\underline{I}}, S_{\underline{J}}: S_{\underline{T}} \cap S_{\underline{J}} = S_{\underline{I}} \cap S_{\underline{J}}$ C-string group: a (quotient of) Coxeter group, with (IP), and string diagram. Abstract regular polytope: the incidence system of cosets of parabolics in a C-string group. B. Grünbaum, 197? H.M.S. Coxeter e.g. 11-cell H3=2×A5 J. Tits E. Schulte 1980 P. Mc Mullen 198?

Universal, locally X,... abstract regular polytopes

All relations are in proper paraboliss E.g. 11- cell is universal, finite Eoxeter groups are universal, etc. Closely related to thin diagram geometries (Tits-Buckenhout) with string diagram and their universal Covers.

Extremely useful to study finitely presented groups. (need not restrict to string diagrams, naturally).

Types of parabolics fixed to X - talk about locally X object. (11-Elll is locally icosahedral).

Locally toroid a.r. polytopes

* Parabolics either spherical or toroid (= finite (= finite (= finite quotients of Coxeter groups) affine (.g.) Thm. (199?, McMullen-Schulte-..) is at most 6. Today we talk about one of rank 6

Cases:

In 1996 McMullen and

Schulte published a

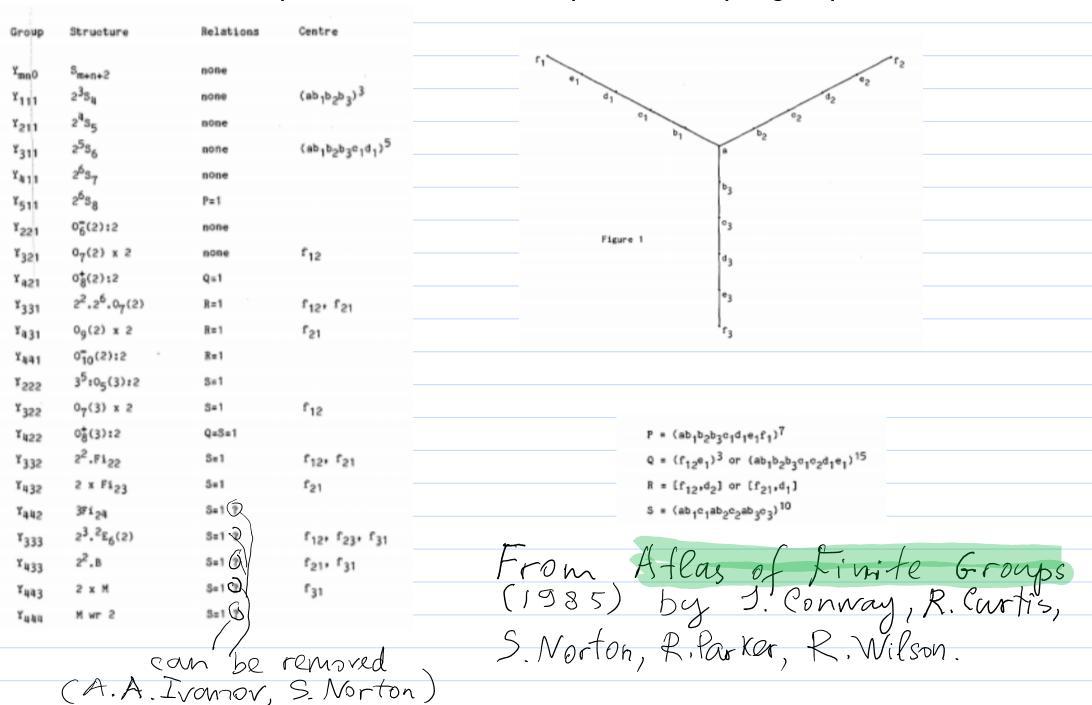
list of universal finite examples, and conjectured its completness. We give one more example (and remove a non-existent series of examples).

The known universal finite polytopes $\{\{3,3,4,3\}_s,\{3,4,3,3\}_t\}$, their groups, and (whenever they exist) "Y-overgroups".

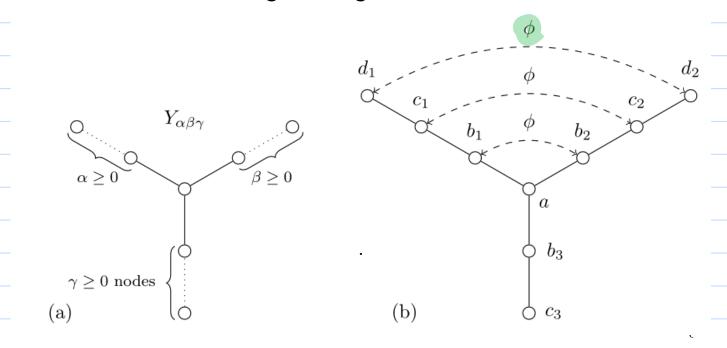
S	t	v	f	G	" Y -overgroup"
(2000)	(2000)	2^5	2^5	$[2^{15}3^2]$	$O_8^-(2):2$
(2000)	(2200)	2^5	2^7	$[2^{18}3^2]$	$2^8:O_8^-(2):2$
(2200)	(2200)	2^{11}	2^{11}	$[2^{24}3^2]$	_
(3000)	(3000)	$2^2 \cdot 3^2 \cdot 5 \cdot 13$	$2^2 \cdot 3^2 \cdot 5 \cdot 13$	$(3^2 \times L_4(3)).2^2$	_
(2200)	(3000)	$2^9 \cdot 3 \cdot 5^2 \cdot 7$	$2^3 \cdot 3^5 \cdot 5^2 \cdot 7$	$S_3 \times O_8^+(2):S_3$	Fi_{22}

- New example in Fy, and invariant sublattices are cyclic, gen. by either (y,0,0,0) or by (y,y,0,0), with $y \in 2\mathbb{Z}^+$ New example is "mixed characteristic". Modular representation is not helpful...

Y-presentations - enter sporadic simple groups



Twisting Y-diagrams



$$S=(ab_1c_1ab_2c_2ab_3c_3)^{10}, \quad f_{ij}=(ab_ib_jb_kc_ic_jd_i)^9, \text{ where } \{i,j,k\}=\{1,2,3\}$$

Subgroups that S , f_{ij} generate stay invariant under φ

Main Result

Theorem 1. Let Γ be a universal locally toroid rank 6 abstract regular polytope with vertex figures of type $\{3,4,3,3\}_{(3000)}$ and facets of type $\{3,3,4,3\}_{(2200)}$. Then Γ is the 24-fold cover of Γ_1 , where Γ_1 has $v=11200=2^6\cdot 5^2\cdot 7$ vertices and $f=14175=3^4\cdot 5^2\cdot 7$ facets, and the group $\Omega:=O_8^+(2):S_3$, of order $g=2^{13}\cdot 3^6\cdot 5^2\cdot 7$. The group of Γ is isomorphic to $S_4\times\Omega$.

The is
$$K!$$
-fold cover of Γ_1 , and

Aut(Γ_K) \cong $S_K \times S_2$.

These arise from homorphism ψ
 $\psi^* = (xy)^2 \in Ker \psi$

(only one copy of $S_Y \cong A_3$ survives due to extra relations)

Sketch of proof

Universality - computer (coset enumeration i) Big index, would be hard 20 years aga. Existense (i): Γ , exists in F_{i22} , by twisting Y_{332} , covers exist by embedding our f.p. group into $S_4 \times \Omega$.

Existence (2): I, exists by taking a permutation representation of Fy on 24 points and computing two extra matrices to obtain $\Omega \hookrightarrow GL_{24}$ (IF2). (These matries lie in the coherent configuration of Fy, this helps.)

The presentation for Aut (T).

$$\hat{b} = \prod_{i \in \{0,8,16\}} (i+3,i+8)(i+4,i+7), \quad \hat{c} = (3,6)(4,5)(11,14)(12,13)(17,24)(18,23),$$

$$\hat{d} = (5,6) \prod_{i=9}^{16} (i,i+8),$$
 $\hat{e} = (21,22) \prod_{i=1}^{8} (i,i+8).$ Fy acting on 24 points

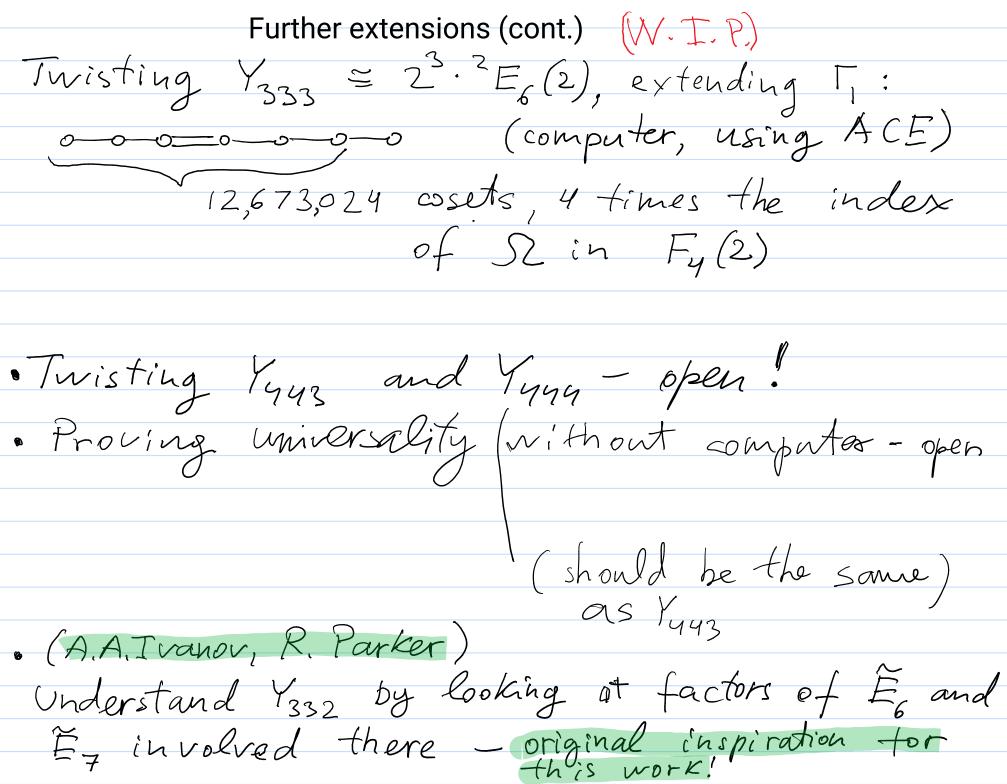
$$\hat{a} := I_3 \otimes A,$$

$$F := \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\hat{f} := \begin{pmatrix} I_8 + E_{21} & 0 & 0 \\ 0 & 0 & F \\ 0 & F & 0 \end{pmatrix}.$$

to get Si -> GL, y (F2), matrices

Further extensions $(\bigvee, \underline{1}, P,)$



Thank you!