Highly regular graphs Part two: On a family of strongly regular graphs by Brouwer, Ivanov and Klin

Maja Pech

Department of Mathematics and Informatics University of Novi Sad Serbia

02.07.2018

joint work with Christian Pech

Maja Pech

< ロ > < 同 > < 回 > < 回 > < 回 > <

It is about regularity

Graph type

A graph type \mathbb{T} of order (m, n) is a triple (Δ, ι, Θ) , where

- Δ and Θ graphs of order *m* and *n*, respectively, and
- ι is a graph embedding.

\mathbb{T} -regular graphs

- Γ is \mathbb{T} -regular if for all $\kappa : \Delta \hookrightarrow \Theta$ the number of $\hat{\kappa} : \Theta \hookrightarrow \Gamma$ with
- $\kappa = \hat{\kappa} \circ \iota$ is a constant $\#(\Gamma, \mathbb{T})$, independent of κ .

Remark

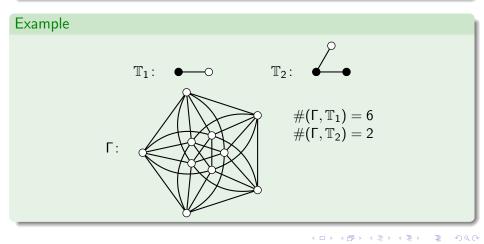
W.l.o.g., in a type $\mathbb{T} = (\Delta, \iota, \Gamma)$ we may assume that ι is the identical embedding, i.e. Δ is an induced subgraph of Θ .

イロト 不得下 イヨト イヨト 二日

It is about regularity (cont.)

How to think about it?

 (Δ, ι, Θ) may be depicted by drawing a diagram for Θ and then marking those vertices of Θ that are in Im (ι) .



(m, n)-regular graphs

Definition

 Γ is called (m, n)-regular if it is \mathbb{T} -regular for all graph types \mathbb{T} of order (k, l), where $k \leq m, l \leq n$.

Known regularity conditions

- (1,2)-regular \equiv regular
- (2,3)-regular \equiv strongly regular
- (2, t)-regular \equiv t-vertex condition (pairweise t-regular)
- (k, k+1)-regular $\equiv k$ -isoregular

< ロ > < 同 > < 回 > < 回 > < 回 > <

Homogeneity vs. regularity

Definition

 Γ is *k*-homogeneous if every isomorphism between subgraphs of order $\leq k$ extends to an automorphism.

Observation

If Γ is k-homogeneous, then it is (k, l)-regular, for every $l \ge k$.

Highly regular graphs

We call Γ highly regular if it is

- (m, n)-regular, for some $m \ge 2$, $n \ge 4$, m < n, but
- not *m*-homogeneous.

・ 同下 ・ ヨト ・ ヨト

What is known about highly regular graphs?

Almost nothing - there are very few known highly regular graphs!

Mainly:

- point graphs of partial quadrangles;
- some infinite families of graphs, uncovered by Ivanov, and Brouwer, Ivanov, Klin;
- some sporadic examples.

・ 回 ト ・ ヨ ト ・ ヨ ト

The Brouwer-Ivanov-Klin graphs $\Gamma^{(m)}$

Classical construction

- Consider the vector space \mathbb{F}_2^{2m} .
- Let $q_m : \mathbb{F}_2^{2m} \to \mathbb{F}_2$ be a non-degenerate quadric form of maximal Witt index.
- Let Q_m be the quadric defined by q_m .
- Let S_m be a maximal singular subspace of Q_m .

Define

$$\Gamma^{(m)} := (V^{(m)}, E^{(m)}),$$

where

$$egin{aligned} &\mathcal{V}^{(m)}=\mathbb{F}_2^{2m},\ &\mathcal{E}^{(m)}=\{(ar{v},ar{w})\midar{w}-ar{v}\in Q_m\setminus S_m\}. \end{aligned}$$

Maja Pech

3

(日) (同) (三) (三) (三)

Basic facts

Definition

Given Γ , and a $v \in V(\Gamma)$. Then

$$\begin{split} &\Gamma_1(v) := \langle \{ w \in V(\Gamma) \mid (v,w) \in E(\Gamma) \} \rangle_{\Gamma} & \text{first subconstituent} \\ &\Gamma_2(v) := \langle \{ w \in V(\Gamma) \setminus \{v\} \mid (v,w) \notin E(\Gamma) \} \rangle_{\Gamma} & \text{second subconstituent} \end{split}$$

First simple observations

- If Γ is vertex- transitive, then Γ has, up to isomorphism, just one first, and just one second subconstituent.
- $\Gamma^{(m)}$ is a Cayley graph w.r.t. $(\mathbb{F}_2^{2m}, +)$.
- In particular, $\Gamma^{(m)}$ is vertex-transitive.

イロン 不聞 とくほど 不良 とうせい

Timeline of $\Gamma^{(m)}$

- Γ^(m) is introduced. [(Γ⁽⁴⁾ by Ivanov), Brouwer, Ivanov, Klin 1989]
- $\Gamma_1^{(m)}$ is (2,4)-regular. [Brouwer, Ivanov, Klin 1989]
- $\Gamma_1^{(m)}$ is (3,4)-regular. [Brouwer, Ivanov, Klin 1989]
- For $m \ge 4$, Aut $(\Gamma_1^{(m)})$ has rank 4. [Brouwer, Ivanov, Klin 1989] (In particular, $\Gamma_1^{(m)}$ is NOT 2-homogeneous.)
- $\Gamma^{(m)}$ is symmetric. [lvanov 1990] (Aut ($\Gamma^{(m)}$) acts transitively on arcs.)
- $\Gamma^{(m)}$ is (2,5)-regular. [Reichard 2000]

イロト 不得下 イヨト イヨト 二日

Still unknown

Question

Are $\Gamma^{(m)}$ or $\Gamma_2^{(m)}$ 2-homogeneous?

Open problem

Is
$$\Gamma_2^{(m)}$$
 (2, 4)-regular?

Maja Pech

Towards the answer

Some thoughts, collected on a margin

- For a detailed analysis of the Γ^(m), and for its implementation in GAP a more direct construction is needed.
- Every non-degenerate quadric form on \mathbb{F}_2^{2m} has Witt index $\leq m$.
- There is, up to equivalence, just one non-degenerative form of Witt index *m*:

$$q_m(x_1,\ldots,x_m,y_1,\ldots,y_m)=\sum_{i=1}^m x_iy_i.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Let's have another look on $\Gamma^{(m)}$

Our way to construct it

• Every $ar{x} \in \mathbb{F}_2^{2m}$ can be considered as

$$egin{pmatrix} ar{x_1} \ ar{x_2}, \end{pmatrix}$$
 where $ar{x_1}, ar{x_2} \in \mathbb{F}_2^m.$

• With this convention we have

$$\begin{split} q_m(\bar{x}) &= \bar{x}_1^T \bar{x}_2, \\ Q_m &= \{ \bar{x} \mid \bar{x}_1^T \bar{x}_2 = 0 \}, \\ S_m &= \{ \bar{x} \mid \bar{x}_2 = \bar{0} \}, \\ \mathsf{E}(\mathsf{\Gamma}^{(m)}) &= \{ (\bar{x}, \bar{y}) \mid (\bar{x}_1 + \bar{y}_1)^T (\bar{x}_2 + \bar{y}_2) = 0, \bar{x}_2 \neq \bar{y}_2 \}. \end{split}$$

What brings us this point of view?

Lemma

Let $M \in GL(2m, 2)$. Then M preserves Q_m and S_m setwise iff there exist some $A \in GL(m, 2)$, and some symmetric $m \times m$ -matrix S with 0-diagonal, such that

$$M = \begin{pmatrix} A & AS \\ O & (A^T)^{-1} \end{pmatrix}.$$

(本語)と 本語(と) 本語(と

What brings us this point of view? (cont.)

Proposition

Define

$$\begin{split} \varrho_1^{(m)} &:= \{ (\bar{v}, \bar{w}) \mid \bar{v} = \bar{w} \}, \\ \varrho_2^{(m)} &:= \{ (\bar{v}, \bar{w}) \mid \bar{v} + \bar{w} \in S_m \setminus \{\bar{0}\} \}, \\ \varrho_3^{(m)} &:= \{ (\bar{v}, \bar{w}) \mid \bar{v} + \bar{w} \in Q_m \setminus S_m \}, \\ \varrho_4^{(m)} &:= \{ (\bar{v}, \bar{w}) \mid \bar{v} + \bar{w} \in \mathbb{F}_2^{2m} \setminus Q_m \}. \end{split}$$

Then $C^{(m)} = (\mathbb{F}_2^{2m}, \varrho_1^{(m)}, \varrho_2^{(m)}, \varrho_3^{(m)}, \varrho_4^{(m)})$ is a Schurian symmetric association scheme.

Moreover, considered as a relational structure, it is 3-homogeneous, i.e. every isomorphism between substructures with \leq 3 elements extends to an automorphism of $C^{(m)}$.

イロト 不得下 イヨト イヨト 二日

What brings us this point of view? (cont.)

Corollary

Either $\Gamma^{(m)}$ is 2-homogeneous or the orbitals of Aut $(\Gamma^{(m)})$ are exactly

$$\varrho_1^{(m)}, \varrho_2^{(m)}, \varrho_3^{(m)}, \varrho_4^{(m)}.$$

Maja Pech

イロト 不得 トイヨト イヨト

Questions are there to be answered...

Proposition

For $m \ge 4$, $\Gamma^{(m)}$ is not 2-homogeneous and $Aut(\Gamma_2^{(m)})$ is intransitive.

Sketch of the proof

Consider non-arcs (0, ā), (0, b), where ā ∈ S_m \ {0}, b ∈ ℝ₂^{2m} \ Q_m.
Define

$$\begin{split} \Upsilon_{\bar{a}} &:= \left\langle \left\{ \bar{x} \mid (\bar{x}, \bar{0}) \in E(\Gamma^{(m)}), (\bar{x}, \bar{a}) \not\in E(\Gamma^{(m)}) \right\} \right\rangle_{\Gamma^{(m)}} \\ \Upsilon_{\bar{b}} &:= \left\langle \left\{ \bar{x} \mid (\bar{x}, \bar{0}) \in E(\Gamma^{(m)}), (\bar{x}, \bar{b}) \notin E(\Gamma^{(m)}) \right\} \right\rangle_{\Gamma^{(m)}} \end{split}$$

- Then $\Upsilon_{\bar{a}} \cong \Gamma^{(m-1)}$, $\Upsilon_{\bar{b}}$ is (2,3)-regular, but not (3,4)-regular.
- Hence $\Upsilon_{\bar{a}} \ncong \Upsilon_{\bar{b}}$ • Now $\Upsilon_{\bar{a}} = \left(\Gamma_2^{(m)}(\bar{a})\right)_1(\bar{0})$, and $\Upsilon_{\bar{b}} = \left(\Gamma_2^{(m)}(\bar{b})\right)_1(\bar{0})$.

• Since $\Gamma_2^{(m)}(\bar{a}) \cong \Gamma_2^{(m)}(\bar{b})$, it follows that $\operatorname{Aut}(\Gamma_2^{(m)})$ is intransitive.

... and what is open should be closed

Theorem

For $m \ge 4$, $\Gamma^{(m)}$ is (3, 5)-regular.

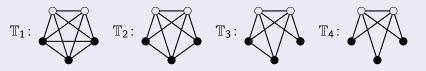
Corollary

For $m \ge 4$, $\Gamma_2^{(m)}$ is (2,4)-regular, but not 2-homogeneous.

... and what is open should be closed (cont.)

Sketch of the proof

- Since Γ^(m) is (3,4)-regular, it suffices to check regularity for graph types T of order (3,5) for which Cl(T) is 4-connected.
- The only 4-connected graph of order 5 is K_5 .
- Thus, regularity for the following types has to be proved:



• \mathbb{T}_1 -regularity follows from 3-homogeneity of $\mathcal{C}^{(m)}$.

• \mathbb{T}_2 -regularity follows from (2, 4)-regularity of $\Gamma_1^{(m)}$.

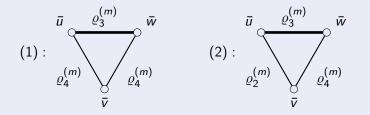
(日) (同) (日) (日) (日)

... and what is open should be closed (cont.)

Sketch of the proof (cont.)

 \mathbb{T}_3 -regularity and \mathbb{T}_4 -regularity is proved by case distinction: About $\mathbb{T}_3 = (\Delta, \iota, \Theta)$. Let $\kappa : \Delta \hookrightarrow \Gamma$.

• Two kids of embedding κ are to be distinguished:



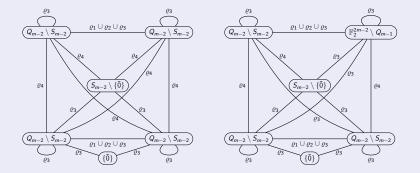
 In each case we need to count arcs in the subgraph of Γ^(m) induced by the joint neighbors of ū, v, w.

イロト イヨト イヨト イヨト

... and what is open should be closed (cont.)

Sketch of the proof (cont.)

• This can be done by studying their "reflections" in $C^{(m-2)}$:



• Now, arcs can be counted using the structure constants of $C^{(m-2)}$.

(日) (同) (日) (日) (日)