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It is about regularity

Graph type

A graph type T of order (m, n) is a triple (∆, ι,Θ), where

∆ and Θ graphs of order m and n, respectively, and

ι is a graph embedding.

T-regular graphs

Γ is T-regular if for all κ : ∆ ↪→ Θ the number of κ̂ : Θ ↪→ Γ with
κ = κ̂ ◦ ι is a constant #(Γ,T), independent of κ.

Remark

W.l.o.g., in a type T = (∆, ι, Γ) we may assume that ι is the identical
embedding, i.e. ∆ is an induced subgraph of Θ.
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It is about regularity (cont.)

How to think about it?

(∆, ι,Θ) may be depicted by drawing a diagram for Θ and then marking
those vertices of Θ that are in Im(ι).

Example

T1 : T2 :

Γ :

#(Γ,T1) = 6
#(Γ,T2) = 2
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(m, n)-regular graphs

Definition

Γ is called (m, n)-regular if it is T-regular for all graph types T of order
(k , l), where k ≤ m, l ≤ n.

Known regularity conditions

(1, 2)-regular ≡ regular

(2, 3)-regular ≡ strongly regular

(2, t)-regular ≡ t-vertex condition (pairweise t-regular)

(k, k + 1)-regular ≡ k-isoregular
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Homogeneity vs. regularity

Definition

Γ is k-homogeneous if every isomorphism between subgraphs of order
≤ k extends to an automorphism.

Observation

If Γ is k-homogeneous, then it is (k, l)-regular, for every l ≥ k .

Highly regular graphs

We call Γ highly regular if it is

(m, n)-regular, for some m ≥ 2, n ≥ 4, m < n, but

not m-homogeneous.
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What is known about highly regular graphs?

Almost nothing - there are very few known highly regular graphs!

Mainly:

point graphs of partial quadrangles;

some infinite families of graphs, uncovered by Ivanov, and Brouwer,
Ivanov, Klin;

some sporadic examples.
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The Brouwer-Ivanov-Klin graphs Γ(m)

Classical construction

Consider the vector space F2m
2 .

Let qm : F2m
2 → F2 be a non-degenerate quadric form of maximal

Witt index.

Let Qm be the quadric defined by qm.

Let Sm be a maximal singular subspace of Qm.

Define
Γ(m) := (V (m),E (m)),

where

V (m) = F2m
2 ,

E (m) = {(v̄ , w̄) | w̄ − v̄ ∈ Qm \ Sm}.
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Basic facts

Definition

Given Γ, and a v ∈ V (Γ). Then

Γ1(v) :=〈{w ∈ V (Γ) | (v ,w) ∈ E (Γ)}〉Γ first subconstituent

Γ2(v) :=〈{w ∈ V (Γ) \ {v} | (v ,w) 6∈ E (Γ)}〉Γ second subconstituent

First simple observations

If Γ is vertex- transitive, then Γ has, up to isomorphism, just one first,
and just one second subconstituent.

Γ(m) is a Cayley graph w.r.t.
(
F2m

2 ,+
)
.

In particular, Γ(m) is vertex-transitive.
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Timeline of Γ(m)

Γ(m) is introduced. [(Γ(4) by Ivanov), Brouwer, Ivanov, Klin 1989]

Γ
(m)
1 is (2, 4)-regular. [Brouwer, Ivanov, Klin 1989]

Γ
(m)
1 is (3, 4)-regular. [Brouwer, Ivanov, Klin 1989]

For m ≥ 4, Aut
(

Γ
(m)
1

)
has rank 4. [Brouwer, Ivanov, Klin 1989]

(In particular, Γ
(m)
1 is NOT 2-homogeneous.)

Γ(m) is symmetric. [Ivanov 1990]
(Aut

(
Γ(m)

)
acts transitively on arcs.)

Γ(m) is (2, 5)-regular. [Reichard 2000]
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Still unknown

Question

Are Γ(m) or Γ
(m)
2 2-homogeneous?

Open problem

Is Γ
(m)
2 (2, 4)-regular?
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Towards the answer

Some thoughts, collected on a margin

For a detailed analysis of the Γ(m), and for its implementation in GAP
a more direct construction is needed.

Every non-degenerate quadric form on F2m
2 has Witt index ≤ m.

There is, up to equivalence, just one non-degenerative form of Witt
index m:

qm(x1, . . . , xm, y1, . . . , ym) =
m∑
i=1

xiyi .
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Let’s have another look on Γ(m)

Our way to construct it

Every x̄ ∈ F2m
2 can be considered as

(
x̄1

x̄2,

)
where x̄1, x̄2 ∈ Fm

2 .

With this convention we have

qm(x̄) =x̄T1 x̄2,

Qm ={x̄ | x̄T1 x̄2 = 0},
Sm ={x̄ | x̄2 = 0̄},

E (Γ(m)) ={(x̄ , ȳ) | (x̄1 + ȳ1)T (x̄2 + ȳ2) = 0, x̄2 6= ȳ2}.
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What brings us this point of view?

Lemma

Let M ∈ GL(2m, 2). Then M preserves Qm and Sm setwise iff there exist
some A ∈ GL(m, 2), and some symmetric m ×m-matrix S with
0-diagonal, such that

M =

(
A AS
O (AT )−1

)
.
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What brings us this point of view? (cont.)

Proposition

Define

%
(m)
1 :={(v̄ , w̄) | v̄ = w̄},

%
(m)
2 :={(v̄ , w̄) | v̄ + w̄ ∈ Sm \ {0̄}},

%
(m)
3 :={(v̄ , w̄) | v̄ + w̄ ∈ Qm \ Sm},

%
(m)
4 :={(v̄ , w̄) | v̄ + w̄ ∈ F2m

2 \ Qm}.

Then C(m) = (F2m
2 , %

(m)
1 , %

(m)
2 , %

(m)
3 , %

(m)
4 ) is a Schurian symmetric

association scheme.
Moreover, considered as a relational structure, it is 3-homogeneous, i.e.
every isomorphism between substructures with ≤ 3 elements extends to an
automorphism of C(m).
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What brings us this point of view? (cont.)

Corollary

Either Γ(m) is 2-homogeneous or the orbitals of Aut(Γ(m)) are exactly

%
(m)
1 , %

(m)
2 , %

(m)
3 , %

(m)
4 .
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Questions are there to be answered. . .

Proposition

For m ≥ 4, Γ(m) is not 2-homogeneous and Aut(Γ
(m)
2 ) is intransitive.

Sketch of the proof

Consider non-arcs (0̄, ā), (0̄, b̄), where ā ∈ Sm \ {0̄}, b̄ ∈ F2m
2 \ Qm.

Define

Υā :=
〈{

x̄ | (x̄ , 0̄) ∈ E (Γ(m)), (x̄ , ā) 6∈ E (Γ(m))
}〉

Γ(m)

Υb̄ :=
〈{

x̄ | (x̄ , 0̄) ∈ E (Γ(m)), (x̄ , b̄) 6∈ E (Γ(m))
}〉

Γ(m)

Then Υā
∼= Γ(m−1), Υb̄ is (2, 3)-regular, but not (3, 4)-regular.

Hence Υā 6∼= Υb̄

Now Υā =
(

Γ
(m)
2 (ā)

)
1

(0̄), and Υb̄ =
(

Γ
(m)
2 (b̄)

)
1

(0̄).

Since Γ
(m)
2 (ā) ∼= Γ

(m)
2 (b̄), it follows that Aut(Γ

(m)
2 ) is intransitive.
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. . . and what is open should be closed

Theorem

For m ≥ 4, Γ(m) is (3, 5)-regular.

Corollary

For m ≥ 4, Γ
(m)
2 is (2, 4)-regular, but not 2-homogeneous.
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. . . and what is open should be closed (cont.)

Sketch of the proof

Since Γ(m) is (3, 4)-regular, it suffices to check regularity for graph
types T of order (3, 5) for which Cl(T) is 4-connected.

The only 4-connected graph of order 5 is K5.

Thus, regularity for the following types has to be proved:

T1 : T2 : T3 : T4 :

T1-regularity follows from 3-homogeneity of C(m).

T2-regularity follows from (2, 4)-regularity of Γ
(m)
1 .
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. . . and what is open should be closed (cont.)

Sketch of the proof (cont.)

T3-regularity and T4-regularity is proved by case distinction:
About T3 = (∆, ι,Θ). Let κ : ∆ ↪→ Γ.

Two kids of embedding κ are to be distinguished:

(1) :

v̄

w̄ū %
(m)
3

%
(m)
4 %

(m)
4

(2) :

v̄

w̄ū %
(m)
3

%
(m)
2 %

(m)
4

In each case we need to count arcs in the subgraph of Γ(m) induced
by the joint neighbors of ū, v̄ , w̄ .
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. . . and what is open should be closed (cont.)

Sketch of the proof (cont.)

This can be done by studying their ”reflections” in C(m−2):

Sm−2 \ {0̄}

Qm−2 \ Sm−2 Qm−2 \ Sm−2

Qm−2 \ Sm−2Qm−2 \ Sm−2

{0̄}

%4

%4

%4

%1 ∪ %2 ∪ %3

%4

%4

%4

%3

%3

%1 ∪ %2 ∪ %3

%3

%3

%3 %3

%3%3

Sm−2 \ {0̄}

Qm−2 \ Sm−2 F2m−2
2 \ Qm−1

Qm−2 \ Sm−2Qm−2 \ Sm−2

{0̄}

%4

%3

%4

%1 ∪ %2 ∪ %3

%3

%3

%4

%3

%3

%1 ∪ %2 ∪ %3

%3

%3

%3 %3

%3%3

Now, arcs can be counted using the structure constants of C(m−2).
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