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William Burnside (2.7.1852 - 21.8.1927)

Theorem
A transitive permutation group of prime
degree is doubly transitive or solvable.
On the properties of groups of odd order. Proc.
London Math. Soc. XXXIII (1900)

Theorem
A permutation group of prime power
degree n = pm containing a cycle of
order n is either doubly transitive or
imprimitive.
Theory of Groups of Finite Order. (1911)
Proof uses character theory.

W. Burnside conjectured that an analogous result holds for every permutation
group of degree n that contains a regular Abelian subgroup of order n. FALSE!
(counterexample exists) but TRUE if the regular subgroup is cyclic. (I. Schur)
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Issai Schur (10.1.1875 - 10.1.1941)

on the tombstone:
Yeshiyahu Schur
Professor of Mathematics
4 Shevet 5635 (10.1.1875)
12 Tevet 5701 (11.1.1941

[starting 10.1., 6 p.m.]

)
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In memoriam Issai Schur
Mikhail Klin – Andy Woldar

(Tel Aviv 1996)
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Theorem
The following theorem of I. Schur generalizes the result of W. Burnside
(case n = pm) and partially answers his conjecture:

Theorem
Let G be a permutation group of degree n where n is not a prime.
If G contains a cycle P of order n then G is either doubly transitive
or imprimitive.
I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen. (1933)
“The proof of this theorem, which sounds so simple, turns out to be rather
difficult. B u r n s i d e proves the theorem for the case of prime powers using
character theory which requires working with roots of unity. I prove this
theorem avoiding irrationalities of any kind. Suggested by B u r n s i d e ’s
conjecture in the first place the general case of any regular permutation group
H embedded in a group G of the same degree will be studied. This implies a
decomposition of elements of H into certain sub-complexes which I denote by
primary complexes of H. The fact that these complexes have the “ring
property” plays a major role (§2).” (p. 598)

Such complexes with “ring property” were later called Schur-rings and, for
short, S-rings by H. Wielandt (1949, 1969)
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Transitivity modules
Let a permutation group (G ,M) (i.e., G ≤ Sym(M)) contain a regular
subgroup H. Then one can assume M = H, i.e., G ≤ Sym(H).
Let {T0, . . . ,Tr−1} := 1-Orb(Ge) be the 1-orbits of the stabilizer Ge ,
(e ∈ H unit element).
Let Z(H) denote the group ring 〈Z(H); +, ∗〉 consisting of formal sums∑

h∈H αhh, αh ∈ Z.

Definition The submodule of Z(H) generated by the 1-orbits of the
stabilizer Ge (T :=

∑
t∈T t ∈ Z(H), T ⊆ H)

S(G ,H) := 〈T0, . . . ,Tr−1〉Z

is called the transitivity module of (G ,H).

Theorem (I. Schur 1933): S(G ,H) is an S-ring.
Contrary to the intuition of I. Schur not every S-ring is the transitivity
module of a group (G ,H)
– counterexamples by H. Wielandt (1954), e.g., for H = Z5 × Z5.
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Helmut Wielandt (19.12.1910 - 14.2.2001)

“The proof given by Mr Schur is rather dif-
ficult ... Schurs’s methods are nevertheless
sufficient to supply a shorter proof of the
more general theorem”:
Theorem (H. Wielandt 1935): If a per-
mutation group G of degree n, where n
is not a prime number, contains a regu-
lar abelian subgroup H, at least one of
whose Sylow subgroups is cyclic, then G
is either doubly transitive of imprimitive.

From Helmut Wielandt’s acceptance of membership of the Heidelberger
Akademie der Wissenschaften (1961):
“But it is unmistakable that questions about finite structures are again
coming to the force also in other areas of mathematics ... I am convinced
that the ‘finite’ direction will be reunited with the mainstream in the
course of the next few decades.”

(q.e.d., e.g. by this conference here)
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Lev Arkad’evič Kalužnin (31.1.1914 - 6.12.1990)

Mixa Klin - Lev Arkad~eviq Kalu�nin - Reinhard Pöschel

Kiev 1978
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Some history: Burnside - Schur - Wielandt Some more history and the characterization of (non)-Schurian S-rings

Schurian S-rings and Schur-groups
Lev Arkad’evič Kalužnin (influence of I. Schur and his lectures, 1933–36
in Berlin)
−→ M. Klin, R. Pöschel (starting 1971/72)
Problems of H. Wielandt (on S-rings, e.g., how to characterize schurian
S-rings among all S-rings) −→
R. Pöschel, Untersuchungen von S-Ringen, insbesondere im
Gruppenring von p-Gruppen. (Math. Nachr. 60(1974), 1–27)
(Investigations of S-rings, in particular in the group ring of p-groups)
“unfortunate” notions: schurscher S-Ring (schurian S-ring) for S-rings
being the transitivity module of a group.
schurartige Gruppe (schurian group, Schur-group) for a group H such
that each S-ring over H is schurian.

Theorem. A finite p-group (p ≥ 5 prime) is schurian if and only if
it is cyclic.
Corollary. Each group with a non-cyclic p-Sylow-subgroup (p ≥ 5
prime) is not schurian.
Further, an explicit description of S-rings over Zpm can be given.
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Some history: Burnside - Schur - Wielandt Some more history and the characterization of (non)-Schurian S-rings

A Galois connection
The automorphism property (concerning permutations and binary
relations (graphs)) induces a Galois connection:

S-rings S groups G ≥ H

S 7−→ AutS automorphism group
transitivity module S(G ,H) ←− [ (G ,H)

Galois closures

(In general: S 6= S(AutS,H), i.e., S is not Schurian)

Schurian S-rings 2-closed permutation groups

S(AutS,H) G (2) := Aut Inv(2) G
= Aut 2-OrbG

Wielandt’s question: How to characterize Schurian S-rings?

Answer: Theorems by M. Krasner, L.A. Kalužnin et al.:
Inv AutQ = [Q]KA Krasner algebra generated by Q

S Schurian ⇐⇒ “closed under first order formulas”
Pilsen, July 5, 2018 R. Pöschel, I. Schur, H. Wielandt and schurian S-rings (12/17)
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Some history: Burnside - Schur - Wielandt Some more history and the characterization of (non)-Schurian S-rings

Example of a non-schurian S-ring

Wielandt’s counterexample H := Z5 × Z5

T0 = {(0, 0)}

Φ0 = ∆ = {((x , y), (x , y)) | x , y ∈ Z5}

T1 = {(x , 0) | x ∈ Z5} \ T0

Φ1 = {((x1, y), (x2, y)) | x1, x2, y ∈ Z5} \∆

T2 = {(0, y) | y ∈ Z5} \ T0

Φ2 = {((x , y1), (x , y2)) | x , y1, y2 ∈ Z5} \∆

T3 = {(x , x) | x ∈ Z5} \ T0

Φ3 = {((x1, y1), (x2, y2)) | x2 − x1 = y2 − y1} \∆

T4 = H \
3⋃

i=0

Ti

Φ4 = H × H \
3⋃

i=0

Φi

Fact: S := 〈T0,T1,T2,T3,T4〉Z is an S-ring (easy to check).
But: S is not schurian!
Proof. Recall the 1-1-correspondence between and 2-OrbG :
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S is a non-schurian S-ring

Φ1

Φ1

Φ3

Φ2

Φ2

(d1, d2)

(c1, c2)

(x2, y2)(x1, y1)

first order formula

Φ0 = ∆ = {(x , x) | x ∈ Z5}
Φ1 = {((x1, y), (x2, y)) | x1, x2, y ∈ Z5} \∆

Φ2 = {((x , y1), (x , y2)) | x , y1, y2 ∈ Z5} \∆

Φ3 = {((x1, y1), (x2, y2)) | x2 − x1 = y2 − y1} \∆

Φ4 = H × H \
3⋃

i=0

Φi

((x1, y1), (x2, y2)) ∈ Φ :⇐⇒ ∃c1, c2, d1, d1

x1 = c1, y1 = d2, c2 = y2, d1 = x2,

d1 − c1 = d2 − c2

⇐⇒ x2 − x1 = y1 − y2

(x , y) ∈ T ⇐⇒ ((x , y), (0, 0)) ∈ Φ ⇐⇒ y = −x

Thus, e.g., (1, 4) ∈ T4 ∩ T , but T4 * T since (1, 2) ∈ T4 \ T ,
consequently, S is non-schurian.
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Φ3 = {((x1, y1), (x2, y2)) | x2 − x1 = y2 − y1} \∆

Φ4 = H × H \
3⋃

i=0

Φi

((x1, y1), (x2, y2)) ∈ Φ :⇐⇒ ∃c1, c2, d1, d1

x1 = c1, y1 = d2, c2 = y2, d1 = x2,

d1 − c1 = d2 − c2

⇐⇒ x2 − x1 = y1 − y2

(x , y) ∈ T ⇐⇒ ((x , y), (0, 0)) ∈ Φ ⇐⇒ y = −x

Thus, e.g., (1, 4) ∈ T4 ∩ T , but T4 * T since (1, 2) ∈ T4 \ T ,
consequently, S is non-schurian.
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just a photo: We like S-rings

(Dresden 2012)
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Happy Birthday to you Misha!
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