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Gelfand-Naimark Theorem
A C*-algebra is an algebra of bounded linear operators on a Hilbert
space

Intuition
Think of algebras of finite dimensional complex matrices closed
under conjugate transpose.
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Magic unitaries

Definition
Let A be a C*-algebra. An n x n matrix P = (py5) with pj; € A is
a magic unitary if

® pij = pi; =Pjj;

(2] Zz:je[rd‘pijzzzl for all i € [n];

© > i Pij =1Iforalljen]

Remark 1. If A = C, then this is a permutation matrix.
Remark 2. These conditions imply pijpix = 0 = pjipki if j # k.

Remark 3. The matrix P is unitary.
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What is a quantum group?

e No one all-encompassing definition

e Originated in the study of the quantum inverse scattering
method

e Generally refers to some kind of noncommutative algebra with
additional structure

Woronowicz (1987): Introduced compact matrix quantum groups
Wang (1998): quantum permutation groups
Banica (2005): quantum automorphism groups of graphs
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The rough idea

Consider a group I’
Let C(I") denote the algebra of complex valued functions on I’
“Deform” C(I') by making it non-commutative

Call this deformed algebra C(I'"), where I'" is a “quantum”
version of I’
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Universal C*-algebra generated by commuting elements py;
satisfying the following:

(L pij :p%j :p?j for all ivj; P = (pij) IS a

® )  pPik =1=) ;pg forall i,j; magic unitary.

© Z Pxj = Z Pie for all i,j. — AgP =PAg.
k:k~1 €:0~j

Remark. For a magic unitary P, condition (3) is equivalent to
piiPuc = 0 if rel(i, £) # rel(j, k).

Pij + characteristic function of {mr € Aut(G) : (i) =j}.

[ [i Pin(i) + characteristic function of 7w € Aut(G).
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The “algebra of functions” on Qut(G)

Definition (C(Qut(G)))

Universal C*-algebra generated by elements py; satisfying the

following:
(L Pij :p%j :p?j for all ivj; P = (pij) IS a
® >  pik=1=2,py forall ij; magic unitary.
(3] Z Pxj = Z pie¢ for all 1,j. — AgP="PAG.
k:k~i 0:0~j

Remark. C(Qut(G)) might be commutative anyways.
= C(Qut(G)) = C(Aut(G)) and we say Qut(G) = Aut(G).

Question. What precisely is Qut(G)?
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Some notable examples

e Complete graphs: Qut(Ky,) =S}, equal to Sy, iff n < 3.

e Cycle graphs: Qut(Cy) = Aut(Cy) iff n £ 4.

Qut(nKj,) = H;" quantum hyperoctahedral group.
e Petersen graph: Qut(Pete) = Aut(Pete).

e Known for vertex transitive graphs up to 11 vertices. All
examples are classical or some product of classical and/or the
quantum groups listed above.
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Orbits and orbitals of Qut(G)
P = (pij) - the magic unitary defining Qut(G).

Two relations:
®i~jifpy #0
@ (i,0) ~2 (j, k) if pijpex #0

Lemma. Both ~; and ~; are equivalence relations.

Definition. The orbits and orbitals of Qut(G) are the equivalence
classes of ~1 and ~, respectively.

Theorem.

@ The orbitals of Qut(G) form a coherent configuration/algebra.

® The matrices in this algebra are exactly those that commute
with P.
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Let P be the magic unitary defining Qut(G). Define
C={M e cVIEVIE) . MP = PM}.

We quickly see that C
e is an algebra: M, N € C = MNP = MPN = PMN;
e contains L, J: (JP)i; = 1= (P])y forall i,j € V(G).
Lemma: M € C if and only if pigpjk # 0 = My; = Myx.

Proof. (=) Pie(MP)ikpjk = MacpiePjk
Pie(PM)ixpjk = MijpiePjx

(<) straightforward.

Corollary: M,N €€ = M*e€C& MoN € C.

Thus € is a coherent algebra.
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What does this get us?
Recall: pi;pec # 0 < (i, £), (, k) in the same orbital of Qut(G).
Determining the orbitals of Qut(G) is undecidable.

However, we can find the minimal coherent algebra/configuration
containing G in poly time using the Weisfeiler-Leman algorithm.

This is a fusion of the orbitals of Qut(G). So if (i,{) and (j, k) are
in different parts of this coherent configuration, then pijpex = 0.

Theorem. Asymptotically almost surely Qut(G) is trivial.
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Graph isomorphism as a game

Intuition: Alice and Bob want to convince a referee that G = H.

To win players need that
e x € V(G) &y € V(H), and similarly for x’,y’;

e Their vertices of G are “related” in the same way as their
vertices from H.

Claim. Alice and Bob can win this game with probability 1 if and
only if G = H,

x eV R x' eV e Referee randomly selects
/ \ x,x’ € V:=V(G) U V(H).
e Players respond with y,y’ € V.

13 /21
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Quantum graph isomorphism

Definition
We say that G and H are quantum isomorphic, and write
=4 H, if quantum players can win the isomorphism game.

Quantum strategies

e Alice and Bob share a quantum state 1.

R
xeV xX'ev e Upon receiving x, Alice measures with
Ex = {Exylyev where
/ Y Exy=1& Ey=0forallyeV.
AlyeV yev]B yev
\/\/\/\/\/\/ll) e Bob does similarly with Iy = {Fyxy/}yrev

upon receiving x’.
e Upon receiving x, x’ the probability that
players respond with y,y’ is

p(y,y’lx,x’) - <ll), (Exny’y’)lw

EXUFX/U/ = Fx/y’Exy
vx,x",y,y' eV
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Connection to quantum automorphism group

Theorem
For graphs G and H, the following are equivalent:
® T here exists a magic unitary P such that AgP = PAy;

® There exist g € V(G), h € V(H) in the same orbit of
Qut(GUH) (if G and H connected).

Theorem
It G =4 H, then there is an algebraic isomorphism ¢ of the
coherent algebras of Qut(G) and Qut(H) s.t. d(Ag) = AH.

Corollary

If G =4 H, then G and H are not distinguished by the
(2-dimensional) Weisfeiler-Leman algorithm.
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Operational interpretation of quantum orbits/orbitals

1 ~1 j - 3 a quantum strategy for the (G, G)-isomorphism game
where there is a nonzero probability of a player responding with j
upon receiving i

(1, €) ~2 (j, k) - 3 a quantum strategy for the (G, G)-isomorphism
game where there is a nonzero probability of the players responding
with j and k upon receiving i and { respectively.
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Related results of ours
@ A semidefinite relaxation of quantum isomorphisms is

equivalent to WL[2].

® G and H not distinguished by WL[2] if and only if
3'(GoH) =[V(G)I = [V(H)I.

® G and H not distinguished by WL[2] iff 3 a completely
positive, trace-preserving, unital, doubly stochastic map @

such that
O(Ag) =An.

O Non-signalling strategies are equivalent to fractional
isomorphism /WL[1].

@ Non-signalling strategies with k + 1 players is equivalent to
WLJK].

19/ 21
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Future directions

@ Which coherent configurations are “quantum Schurian”?

® We can define primitivity for quantum permutation groups.
What other properties can we define/would be useful?

© More constructions of quantum isomorphisms?

@ Smallest pair of non-isomorphic but quantum isomorphic
graphs?
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Other papers on quantum isomorphisms/automorphisms

A compositional approach to quantum functions.
arXiv:1711.07945

The Morita theory of quantum graph isomorphisms.
arXiv:1801.09705

Both by Benjamin Musto, David Reutter, and Dominic Verdon of
Oxford University.

Thank you!
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