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A. Atserias, L. Mančinska, R. Šámal, S. Severini, and A. Varvitsiotis

Quantum and Non-signalling Graph Isomorphisms
arXiv:1611.09837



C∗-algebras

Gelfand-Naimark Theorem
A C∗-algebra is an algebra of bounded linear operators on a Hilbert
space

Intuition
Think of algebras of finite dimensional complex matrices closed
under conjugate transpose.
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Magic unitaries

Definition
Let A be a C∗-algebra. An n×n matrix P = (pij) with pij ∈ A is
a magic unitary if

1 pij = p
2
ij = p

∗
ij;

2
∑
j∈[n] pij = I for all i ∈ [n];

3
∑
i∈[n] pij = I for all j ∈ [n].

Remark 1. If A = C, then this is a permutation matrix.

Remark 2. These conditions imply pijpik = 0 = pjipki if j 6= k.

Remark 3. The matrix P is unitary.
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What is a quantum group?

• No one all-encompassing definition

• Originated in the study of the quantum inverse scattering
method

• Generally refers to some kind of noncommutative algebra with
additional structure

Woronowicz (1987): Introduced compact matrix quantum groups

Wang (1998): quantum permutation groups

Banica (2005): quantum automorphism groups of graphs
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The rough idea

Consider a group Γ

Let C(Γ) denote the algebra of complex valued functions on Γ

“Deform” C(Γ) by making it non-commutative

Call this deformed algebra C(Γ+), where Γ+ is a “quantum”
version of Γ
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The algebra of functions on Aut(G)

Definition (C(Aut(G)))

Universal C∗-algebra generated by commuting elements pij
satisfying the following:

1 pij = p
2
ij = p

∗
ij for all i, j;

2
∑
k pik = I =

∑
` p`j for all i, j;

3

∑
k :k∼i

pkj =
∑
` :`∼j

pi` for all i, j.

}
—

P = (pij) is a
magic unitary.

AGP = PAG.

Remark. For a magic unitary P, condition (3) is equivalent to

pijp`k = 0 if rel(i, `) 6= rel(j,k).

pij 7→ characteristic function of {π ∈ Aut(G) : π(i) = j}.∏
i piπ(i) 7→ characteristic function of π ∈ Aut(G).
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The “algebra of functions” on Qut(G)

Definition (C(Qut(G)))

Universal C∗-algebra generated by elements pij satisfying the
following:

1 pij = p
2
ij = p

∗
ij for all i, j;

2
∑
k pik = I =

∑
` p`j for all i, j;

3

∑
k :k∼i

pkj =
∑
` :`∼j

pi` for all i, j.

}
—

P = (pij) is a
magic unitary.

AGP = PAG.

Remark. C(Qut(G)) might be commutative anyways.
⇒ C(Qut(G)) = C(Aut(G)) and we say Qut(G) = Aut(G).

Question. What precisely is Qut(G)?
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Some notable examples

• Complete graphs: Qut(Kn) = S
+
n , equal to Sn iff n 6 3.

• Cycle graphs: Qut(Cn) = Aut(Cn) iff n 6= 4.

• Qut(nK2) = H
+
n quantum hyperoctahedral group.

• Petersen graph: Qut(Pete) = Aut(Pete).

• Known for vertex transitive graphs up to 11 vertices. All
examples are classical or some product of classical and/or the
quantum groups listed above.
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Orbits and orbitals of Qut(G)

P = (pij) - the magic unitary defining Qut(G).

Two relations:

1 i ∼1 j if pij 6= 0

2 (i, `) ∼2 (j,k) if pijp`k 6= 0

Lemma. Both ∼1 and ∼2 are equivalence relations.

Definition. The orbits and orbitals of Qut(G) are the equivalence
classes of ∼1 and ∼2 respectively.

Theorem.

1 The orbitals of Qut(G) form a coherent configuration/algebra.

2 The matrices in this algebra are exactly those that commute
with P.
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Let P be the magic unitary defining Qut(G). Define

C = {M ∈ CV(G)×V(G) :MP = PM}.

We quickly see that C

• is an algebra: M,N ∈ C ⇒ MNP =MPN = PMN;

• contains I, J: (JP)ij = I = (PJ)ij for all i, j ∈ V(G).

Lemma: M ∈ C if and only if pi`pjk 6= 0⇒Mij =M`k.

Proof. (⇒) pi`(MP)ikpjk =M`kpi`pjk

pi`(PM)ikpjk =Mijpi`pjk

(⇐) straightforward.

Corollary: M,N ∈ C ⇒ M∗ ∈ C & M ◦N ∈ C.

Thus C is a coherent algebra.
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What does this get us?

Recall: pijp`k 6= 0⇔ (i, `), (j,k) in the same orbital of Qut(G).

Determining the orbitals of Qut(G) is undecidable.

However, we can find the minimal coherent algebra/configuration
containing G in poly time using the Weisfeiler-Leman algorithm.

This is a fusion of the orbitals of Qut(G). So if (i, `) and (j,k) are
in different parts of this coherent configuration, then pijp`k = 0.

Theorem. Asymptotically almost surely Qut(G) is trivial.
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Quantum Isomorphisms
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Graph isomorphism as a game

Intuition: Alice and Bob want to convince a referee that G ∼= H.

R

BA

• Referee randomly selects
x, x ′ ∈ V := V(G) t V(H).

• Players respond with y,y ′ ∈ V.

To win players need that

• x ∈ V(G)⇔ y ∈ V(H), and similarly for x ′,y ′;

• Their vertices of G are “related” in the same way as their
vertices from H.

Claim. Alice and Bob can win this game with probability 1 if and
only if G ∼= H.
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Quantum graph isomorphism

Definition
We say that G and H are quantum isomorphic, and write
G ∼=q H, if quantum players can win the isomorphism game.

Quantum strategies

R

BA

x ′ ∈ Vx ∈ V

y ∈ V y ′ ∈ V

ψ

ExyFx ′y ′ = Fx ′y ′Exy
∀x, x ′,y,y ′ ∈ V

• Alice and Bob share a quantum state ψ.

• Upon receiving x, Alice measures with
Ex = {Exy}y∈V where∑
y∈V

Exy = I & Exy � 0 for all y ∈ V.

• Bob does similarly with Fx′ = {Fx′y′ }y′∈V
upon receiving x ′.

• Upon receiving x, x ′ the probability that
players respond with y,y ′ is

p(y,y ′|x, x ′) = 〈ψ, (ExyFx′y′)ψ〉
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Connection to quantum automorphism group

Theorem
For graphs G and H, the following are equivalent:

1 G ∼=q H;

2 There exists a magic unitary P such that AGP = PAH;

3 There exist g ∈ V(G), h ∈ V(H) in the same orbit of
Qut(G ∪H) (if G and H connected).

Theorem
If G ∼=q H, then there is an algebraic isomorphism φ of the
coherent algebras of Qut(G) and Qut(H) s.t. φ(AG) = AH.

Corollary

If G ∼=q H, then G and H are not distinguished by the
(2-dimensional) Weisfeiler-Leman algorithm.
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Example

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001
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Operational interpretation of quantum orbits/orbitals

i ∼1 j - ∃ a quantum strategy for the (G,G)-isomorphism game
where there is a nonzero probability of a player responding with j
upon receiving i

(i, `) ∼2 (j,k) - ∃ a quantum strategy for the (G,G)-isomorphism
game where there is a nonzero probability of the players responding
with j and k upon receiving i and ` respectively.
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Related results of ours

1 A semidefinite relaxation of quantum isomorphisms is
equivalent to WL[2].

2 G and H not distinguished by WL[2] if and only if

ϑ ′(G �H) = |V(G)| = |V(H)|.

3 G and H not distinguished by WL[2] iff ∃ a completely
positive, trace-preserving, unital, doubly stochastic map Φ
such that

Φ(AG) = AH.

4 Non-signalling strategies are equivalent to fractional
isomorphism/WL[1].

5 Non-signalling strategies with k+ 1 players is equivalent to
WL[k].
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Future directions

1 Which coherent configurations are “quantum Schurian”?

2 We can define primitivity for quantum permutation groups.
What other properties can we define/would be useful?

3 More constructions of quantum isomorphisms?

4 Smallest pair of non-isomorphic but quantum isomorphic
graphs?
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Other papers on quantum isomorphisms/automorphisms

A compositional approach to quantum functions.
arXiv:1711.07945

The Morita theory of quantum graph isomorphisms.
arXiv:1801.09705

Both by Benjamin Musto, David Reutter, and Dominic Verdon of
Oxford University.

Thank you!
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