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The Weisfeiler-Leman Dimension

Definition
The Weisfeiler-Leman dimension of a graph G is the smallest k ∈ N for

which

(choose one)

I the k-dimensional Weisfeiler-Leman algorithm distinguishes G from

every other graph, [Babai]

I the graph is definable in fixed point logic with counting using at

most k + 1 variables C k+1 [Cai,Fürer,Immerman](1992)

I spoiler wins the bijective k + 1 pebble game

[Cai,Fürer,Immerman](1992)

I the k-th level (±1) of the Sherali-Adams hierarchy solves some

suitable constraint system for isomorphism of G

[Malkin][Atserias,Maneva][Grohe,Otto](2012)

I the graph is uniquely determined by homomorphism counts to it of

graphs of treewidth at most k [Dell,Grohe,Rattan] (2018)

I k players can win the quantum isomorphism game with a

non-signaling strategy [Lupini,Roberson] (2018+)
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[Cai,Fürer,Immerman](1992)

I the k-th level (±1) of the Sherali-Adams hierarchy solves some

suitable constraint system for isomorphism of G

[Malkin][Atserias,Maneva][Grohe,Otto](2012)

I the graph is uniquely determined by homomorphism counts to it of

graphs of treewidth at most k [Dell,Grohe,Rattan] (2018)

I k players can win the quantum isomorphism game with a

non-signaling strategy [Lupini,Roberson] (2018+)

Pascal Schweitzer WL-dimension and isomorphism testing 2



The Weisfeiler-Leman Dimension

Definition
The Weisfeiler-Leman dimension of a graph G is the smallest k ∈ N for

which (choose one)

I the k-dimensional Weisfeiler-Leman algorithm distinguishes G from

every other graph, [Babai]

I the graph is definable in fixed point logic with counting using at

most k + 1 variables C k+1 [Cai,Fürer,Immerman](1992)
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[Cai,Fürer,Immerman](1992)

I the k-th level (±1) of the Sherali-Adams hierarchy solves some

suitable constraint system for isomorphism of G

[Malkin][Atserias,Maneva][Grohe,Otto](2012)

I the graph is uniquely determined by homomorphism counts to it of

graphs of treewidth at most k [Dell,Grohe,Rattan] (2018)

I k players can win the quantum isomorphism game with a

non-signaling strategy [Lupini,Roberson] (2018+)

Pascal Schweitzer WL-dimension and isomorphism testing 2



The Weisfeiler-Leman Dimension

Definition
The Weisfeiler-Leman dimension of a graph G is the smallest k ∈ N for

which (choose one)

I the k-dimensional Weisfeiler-Leman algorithm distinguishes G from

every other graph, [Babai]

I the graph is definable in fixed point logic with counting using at

most k + 1 variables C k+1 [Cai,Fürer,Immerman](1992)
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Bounds on the WL-dimension

Theorem (Cai, Fürer, Immerman (1992))

There is an infinite family of 3-regular graphs whose WL-dimension is

linear in the number of vertices.

Theorem (Grohe (2012))

The WL-dimension in every graph class with a forbidden minor is

bounded.

Examples

I trees

I planar graphs

I graphs embeddable on a fixed surface.

I graphs of bounded tree width

I Kt-minor-free graphs
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WL-dimension of Planar graphs

Theorem (Kiefer, Ponomarenko, S. (2017))

Planar graphs have WL-dimension at most 3.

(previously ≤ 14 [Verbitsky] (2006) [Redies] (2014))

Two step proof:

1.) reduce to 3-connected graphs

2.) handle 3-connected graphs (use Tutte’s Spring Embedder)
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WL-dimension of non-3-connected graphs

For a graph G let dimWL(G ) denote its Weisfeiler-Leman dimension.

Lemma
Let G be a graph.

I If dimWL(G ) ≥ 2 then dimWL(G ) is the maximum dimWL(C ) over all

connected components C of G .

I If dimWL(G ) ≥ 2 then dimWL(G ) is the maximum dimWL((C , χ))
over all vertex-colored 2-connected components C of G .

I If dimWL(G ) ≥ 3 then dimWL(G ) is the maximum dimWL((C , χ))
over all vertex/edge-colored 3-connected components C of G .
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Automorphisms of 3-connected planar graphs

Tutte’s Spring Embedder

some physics 

Lemma (Kiefer, Ponomarenko, S. (2017))

Let G be a planar graph. If vertices end up at different locations in the

Spring Embedder then they have different colors under 1-dim WL.
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Fixing number of planar graphs

Fixing number of a graph is the number of vertices that need to be fixed

to destroy all automorphisms.

Theorem (Kiefer, Ponomarenko, S. (2017))

The 3-connected planar graphs with fixing number 3 are:
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Loos’ apartment:

cuboctahedron

fixing number 2
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Graphs identified by color refinement

A graph has WL-dimension 1, if it is distinguished from every

non-isomorphic graph by color refinement (1-dim WL).

We say the graph is identified.

Question:

Which graphs are identified by color refinement?

I trees

I almost all graphs [Babai, Erdős, Selkow] (1980)
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The flip of a graph

The flip of G is the vertex-colored graph obtained as follows:

I Consider the coarsest equitable partition of G .

I Complement edges within a class if this reduces number of edges.

I Complement edges between classes if this reduces number of edges.

�ip
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Bouquet Forest

To obtain a bouquet, take 5 copies (T1, v1), . . . , (T5, v5) of a rooted tree

(T , v) and connect them via a 5-cycle on {v1, . . . , v5}.

A bouquet forest is a disjoint union of vertex-colored trees and

non-isomorphic vertex-colored bouquets.
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Characterization via bouquet forests

Theorem (Kiefer, S., Selman (2015))

A graph is identified by color refinement if and only if its flip is a bouquet

forest.

Similar results were independently obtained by

[Arvind, Köbler, Rattan, Verbitsky].
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Corollaries

Corollary
Given a graph on n vertices and m edges, one can decide in time

O((m + n) log n) whether it is identified by color refinement.

Corollary
If a graph is identified by color refinement, then its coarsest equitable

partition is the orbit partition.

Corollary
If a graph is identified by color refinement, then all vertex-colored

versions of it are also identified.

Side remark:

The last two statements do not hold for higher dimensional

Weisfeiler-Leman algorithms.
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Regular graphs that are identified

Lemma
A regular graph is identified if it has no edges, is a perfect matching a

5-cycle, or a complement of one of these graphs.
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Biregular graphs that are identified

Recall: A graph is (d1, d2)-biregular if it has a bipartition (V1,V2) such

that vertices in Vi have exactly di neighbors in the other class.

Lemma
A bipartite (k , `)-biregular graph is identified by color refinement if and

only if k ≤ 1, ` ≤ 1 or the bipartite complement has these properties.

P �Q P ≡ Q P � Q
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Conditions on the skeleton (Illustration)
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Characterization via the skeleton

Call a color class P an exception if it induces a 5-cycle, a matching or the

complement of a matching.

Theorem (Kiefer, S., Selman (2015))

A graph G with stable coloring χ is identified by color refinement if and

only if the following hold:

1. Each color class induces a graph identified by color refinement (i.e.,

empty graph, matching, a 5-cycle, or the complement of such),

2. for all pairs of distinct color classes P and Q we

have P �Q, P ≡ Q, P � Q or Q � P,

3. the skeleton SG is a forest,

4. there is no path P0,P1, . . . ,Pt in SG with P0 � P1 and Pt−1 � Pt

5. there is no path P0,P1, . . . ,Pt in SG where P0 � P1 and Pt is an

exception, and

6. in every connected component of SG there is at most one exception.
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Generalization to relational structures

We can investigate which relational structures are identified by color

refinement.

It suffices to consider edge colored partially oriented complete graphs

(i.e., rainbows).
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Regular structures identified

Theorem (Kiefer, S., Selman)

Let G be an color-regular rainbow.Then color refinement identifies G if

and only if G is

1. an undirected complete graph with only one edge color,

2. undirected and has two edge colors, one of which induces a perfect

matching, or

3. one of the following objects:

Cases 2 and 3 are called exceptions.
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A bipartite exception

I There is a new kind of biregular exception on 6 vertices:

The exception P ≡33 Q involving two color classes
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Classification of identified sturctures

Theorem (Kiefer, S., Selman)

Let G be a rainbow. Then G is identified by color refinement if and only

if the following hold:

1. Each color class of the stable coloring induces a graph identified

by color refinement

2. for all distinct pairs of color classes of the stable coloring P and Q

we have P �Q, P ≡ Q, P � Q, Q � P or P ≡33 Q,

3. the skeleton SG is a forest,

4. there is no path P0,P1, . . . ,Pt in SG with P0 � P1 and Pt−1 � Pt ,

5. there is no path P0,P1, . . . ,Pt in SG where P0 � P1 and Pt is an

exception, and

6. in every connected component of SG there is at most one exception.
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Consequences of the classification

Corollary
Given a rainbow on n vertices we can decide whether it is identified by

color refinement in time O(n2 log n).

Corollary
If a rainbow is identified by color refinement, then all its fissions are also

identified.
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Iteration number

How many rounds can the WL-process take to stabilize?

I An obvious upper bound is nk − 1.

I For each k , a linear lower bound Ω(n) is known. [Fürer] (2001)

I For k > 2, better lower bounds are known only for relational

structures. [Berkholz,Nordström] (2016)

I For k = 2 there is an upper bound of n2/ log n. ← now
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Upper bound for classical WL iterations

Theorem (Kiefer, S.)

The number of iterations of the 2-dimensional Weisfeiler-Leman

algorithm on n-vertex graphs is at most O(n2/ log(n)).

Two step proof:

1. big vertex color classes

2. small vertex color classes

Pascal Schweitzer WL-dimension and isomorphism testing 29



Big color classes
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Big color classes
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Big color classes
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Small color classes

Lemma
For configurations with vertex color class size at most k the number of

iterations of the 2-dimensional Weisfeiler-Leman algorithm on n-vertex

graphs is at most 2O(k) · n.
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Small color classes

Lemma
For configurations with vertex color class size at most k the number of
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Small color classes
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Prize Money

Prize for a proof that GI ∈ P or that GI /∈ P!

+ 225 Euro230 Euro
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