Discrete version of Fuglede's conjecture and Pompeiu problem

Gábor Somlai Eötvös Loránd University, Budapest

Joint work with Gergely Kiss, Máté Vizer, Romanos Diogenes Malikiosis

3. July 2018. Symmetry vs. Regularity

◆ロ> ◆母> ◆注> ◆注> 注 のへで

The original problems

The discrete setting of the problems

Cyclic groups

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Take a continuous function $f : \mathbb{R}^2 \to \mathbb{C}$. The integral of f over all unit disc is zero. Pompeiu's question (1929): Does it imply that f is identically zero?

・ロト ・ 日 ・ モー・ モー・ うへぐ

Take a continuous function $f : \mathbb{R}^2 \to \mathbb{C}$. The integral of f over all unit disc is zero.

Pompeiu's question (1929): Does it imply that f is identically zero? The answer is no (already known by Pompeiu as well). So his question is the following:

Take a continuous function $f : \mathbb{R}^2 \to \mathbb{C}$. The integral of f over all unit disc is zero.

Pompeiu's question (1929): Does it imply that f is identically zero? The answer is no (already known by Pompeiu as well). So his question is the following: For which domain D the following implication holds? If the integral of a continuous function is zero on g(D) for every $g \in \mathbb{R}^2 \rtimes SO(2)$, then f is zero.

Take a continuous function $f : \mathbb{R}^2 \to \mathbb{C}$. The integral of f over all unit disc is zero.

Pompeiu's question (1929): Does it imply that f is identically zero? The answer is no (already known by Pompeiu as well). So his question is the following: For which domain D the following implication holds? If the integral of a continuous function is zero on g(D) for every $g \in \mathbb{R}^2 \rtimes SO(2)$, then f is zero. In this case D is called a **Pompeiu set** of we say that Dhas the **Pompeiu property**.

- Take a continuous function $f : \mathbb{R}^2 \to \mathbb{C}$. The integral of f over all unit disc is zero.
- Pompeiu's question (1929): Does it imply that f is identically zero? The answer is no (already known by Pompeiu as well). So his question is the following: For which domain D the following implication holds? If the integral of a continuous function is zero on g(D) for every $g \in \mathbb{R}^2 \rtimes SO(2)$, then f is zero. In this case D is called a **Pompeiu set** of we say that Dhas the **Pompeiu property**.
 - Unit disc is not a Pompeiu set.
 - Brown, Schreiber, Taylor (1973): Nonempty polygons (domains having a corner) have the Pompeiu property.
 - Ramm (2017): Every domain having a smooth boundary is Pompeiu except the unit ball.

Fuglede's conjecture

Definition A subset Ω of \mathbb{R}^2 is spectral if $L^2(\Omega)$ has an orthogonal basis consisting of exponential functions.

ション ふゆ マ キャット しょう くしゃ

Fuglede's conjecture

Definition

A subset Ω of \mathbb{R}^2 is spectral if $L^2(\Omega)$ has an orthogonal basis consisting of exponential functions.

Definition

A subset Ω of \mathbb{R}^2 tiles \mathbb{R}^2 if there is a set T, the tiling complement of Ω such that every $x \in \mathbb{R}^2$ (except for maybe a set of measure zero) can uniquely be written as $x = \omega + t$ ($\omega \in \Omega, t \in T$).

うして ふゆう ふほう ふほう ふしつ

Fuglede's conjecture

Definition

A subset Ω of \mathbb{R}^2 is spectral if $L^2(\Omega)$ has an orthogonal basis consisting of exponential functions.

Definition

A subset Ω of \mathbb{R}^2 tiles \mathbb{R}^2 if there is a set T, the tiling complement of Ω such that every $x \in \mathbb{R}^2$ (except for maybe a set of measure zero) can uniquely be written as $x = \omega + t$ ($\omega \in \Omega, t \in T$).

Fuglede proved that in some special cases (e.g. T is a lattice, Ω is open) the previous two properties are equivalent. He conjectured (1974) that the two properties are equivalent for every domain.

Discrete version of the problems

▶ Pompieu: Let G be a finite (countable) abelian group, S a (finite) subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$?

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Discrete version of the problems

- ▶ Pompieu: Let G be a finite (countable) abelian group, S a (finite) subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$?
- ▶ Fuglede: S tiles G if and only if there exists $T \subseteq G$ such that every element of G can be uniquely written as s + t ($s \in S, t \in T$).

Discrete version of the problems

- ▶ Pompieu: Let G be a finite (countable) abelian group, S a (finite) subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$?
- ▶ Fuglede: S tiles G if and only if there exists $T \subseteq G$ such that every element of G can be uniquely written as s + t $(s \in S, t \in T)$. The exponential functions are the irreducible representations of G.
- ► Orthogonality comes from the usual scalar product of L²-functions restricted to S.

Why is the discrete version of the problem interesting?

Tao disproved one of the two directions (Spectral-Tile) of Fuglede's conjecture. He started to investigate the discrete version of the conjecture.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

Tao disproved one of the two directions (Spectral-Tile) of Fuglede's conjecture. He started to investigate the discrete version of the conjecture.

His reformulation of the spectral property for finite abelian groups:

Let S be a spectral set.

H is a $k \times k$ submatrix of the character table of the finite abelian group. The rows of H are indexed by the elements of the spectral set S the columns are indexed by the elements of the spectrum. Then the resulting matrix is a complex Hadamard matrix.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Take S be a basis of \mathbb{Z}_2^{12} . Then the prescribed Hadamard matrix can be achived as the submatrix of the character table so S is a spectral set, while 12 does not divide 2^{12} so S does not tile \mathbb{Z}_2^{12} .

Take S be a basis of \mathbb{Z}_2^{12} . Then the prescribed Hadamard matrix can be achived as the submatrix of the character table so S is a spectral set, while 12 does not divide 2^{12} so S does not tile \mathbb{Z}_2^{12} . Tao's original idea gives the same for \mathbb{Z}_3^5 using complex Hadamard matrices.

Take S be a basis of \mathbb{Z}_2^{12} . Then the prescribed Hadamard matrix can be achived as the submatrix of the character table so S is a spectral set, while 12 does not divide 2^{12} so S does not tile \mathbb{Z}_2^{12} . Tao's original idea gives the same for \mathbb{Z}_3^5 using complex Hadamard matrices.

He lifted up this counterexample for the continuous case.

Elementary abelian groups

- ▶ The other direction was disproved using by Kolountzakis and Matolcsi (2006).
- ► Matolcsi (2005): Counterexample for the Spectral-Tile direction for elementary abelian groups of rank 4.
- ► Farkas, Matolcsi and Móra (2006): The continuous version of the original conjecture does not hold in ℝ³.
- ▶ Iosevich, Mayeli, Pakianathan (2017): Fuglede's conjecture holds for Z²_p.

Elementary abelian groups

- The other direction was disproved using by Kolountzakis and Matolcsi (2006).
- ► Matolcsi (2005): Counterexample for the Spectral-Tile direction for elementary abelian groups of rank 4.
- ► Farkas, Matolcsi and Móra (2006): The continuous version of the original conjecture does not hold in ℝ³.
- Iosevich, Mayeli, Pakianathan (2017): Fuglede's conjecture holds for Z²_p.
 We managed to reprove this result using simple methods.

Recall: Let G be a finite (countable group) abelian group, S a subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$?

うして ふゆう ふほう ふほう ふしつ

Recall: Let G be a finite (countable group) abelian group, S a subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$? Immediate from this that S is a non-Pompeiu set if and only if the adjacency matrix of Cay(G, S) is singular. Its eigenvalues (G is abelian) are of the form $\sum_{s \in S} \chi(s)$, where $\chi \in Irr(G)$.

Recall: Let G be a finite (countable group) abelian group, S a subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$? Immediate from this that S is a non-Pompeiu set if and only if the adjacency matrix of Cay(G, S) is singular. Its eigenvalues (G is abelian) are of the form $\sum_{s \in S} \chi(s)$, where $\chi \in Irr(G)$. This shows that the Pompeiu problem for finite abelain groups itself is not extremely interesting.

Recall: Let G be a finite (countable group) abelian group, S a subset of G. Does there exists a nontrivial function from G to \mathbb{C} with $\sum_{s \in S} f(x+s) = 0$ for every $x \in G$? Immediate from this that S is a non-Pompeiu set if and only if the adjacency matrix of Cay(G, S) is singular. Its eigenvalues (G is abelian) are of the form $\sum_{s \in S} \chi(s)$, where $\chi \in Irr(G)$. This shows that the Pompeiu problem for finite abelain groups itself is not extremely interesting.

However, the connection of the problems is transparent since orthogonality of characters restricted to S means:

$$0 = \sum_{s \in S} \chi_1(s) \bar{\chi_2}(s) = \sum_{s \in S} (\chi_1 \bar{\chi_2})(s).$$

 $\chi_1 \bar{\chi_2}$ is also a character of G.

1 dimensional case of Fuglede's conjecture

$$\begin{split} \mathbf{T} &- \mathbf{S}(\mathbb{R}) \Leftrightarrow \mathbf{T} - \mathbf{S}(\mathbb{Z}) \Leftrightarrow \mathbf{T} - \mathbf{S}(\mathbb{Z}_{\mathbb{N}}), \\ \\ &\mathbf{S} - \mathbf{T}(\mathbb{R}) \Rightarrow \mathbf{S} - \mathbf{T}(\mathbb{Z}) \Rightarrow \mathbf{S} - \mathbf{T}(\mathbb{Z}_{\mathbb{N}}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

1 dimensional case of Fuglede's conjecture

$$\mathbf{T} - \mathbf{S}(\mathbb{R}) \Leftrightarrow \mathbf{T} - \mathbf{S}(\mathbb{Z}) \Leftrightarrow \mathbf{T} - \mathbf{S}(\mathbb{Z}_{\mathbb{N}}),$$

$$\mathbf{S} - \mathbf{T}(\mathbb{R}) \Rightarrow \mathbf{S} - \mathbf{T}(\mathbb{Z}) \Rightarrow \mathbf{S} - \mathbf{T}(\mathbb{Z}_{\mathbb{N}}).$$

If S is a finite subset of \mathbb{Z} , which is also a tile and T is a tiling complement, then T is periodic $(T + n = T \text{ for some } n \in \mathbb{N})$. Thus we are left to understand the tiles of finite cyclic groups.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

▶ The natural version of the conjecture: Let *n* be square free. Then $S \subset \mathbb{Z}_n$ tiles \mathbb{Z}_n if and only if *S* is a complete set of coset representatives for some subgroup of \mathbb{Z}_n .

ション ふゆ マ キャット マックシン

- ▶ The natural version of the conjecture: Let *n* be square free. Then $S \subset \mathbb{Z}_n$ tiles \mathbb{Z}_n if and only if *S* is a complete set of coset representatives for some subgroup of \mathbb{Z}_n .
- ▶ The generalization: Let $n \in \mathbb{N}$. $S \subset \mathbb{Z}_n$ tiles \mathbb{Z}_n if and only if the following two conditions hold

ション ふゆ マ キャット マックシン

- ▶ The natural version of the conjecture: Let *n* be square free. Then $S \subset \mathbb{Z}_n$ tiles \mathbb{Z}_n if and only if *S* is a complete set of coset representatives for some subgroup of \mathbb{Z}_n .
- ▶ The generalization: Let $n \in \mathbb{N}$. $S \subset \mathbb{Z}_n$ tiles \mathbb{Z}_n if and only if the following two conditions hold

Definition

The mask polynomial (an object in $\mathbb{Q}[x]/(x^n-1)$) of a set $S \subseteq \mathbb{Z}_n$ is $S(x) = \sum_{s \in S} x^s$.

 H_S is the set of prime powers r^a dividing n such that $\Phi_{r^a}(x) \mid S(x)$.

(T1)
$$|S| = S(1) = \prod_{d \in H_S} \Phi_d(1).$$

(T2) For pairwise relative prime elements s_i of H_S , $\Phi_{\prod s_i} \mid S(x)$.

Theorem Let $S \subseteq \mathbb{Z}_n$. If (T1) and (T2) hold, then S tiles \mathbb{Z}_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Theorem

Let $S \subseteq \mathbb{Z}_n$. If (T1) and (T2) hold, then S tiles \mathbb{Z}_n .

This theorem has turned out to be the main tool to prove the Spectral-Tile direction of Fuglede's conjecture in many cases.

ション ふゆ マ キャット マックシン

Theorem

Let $S \subseteq \mathbb{Z}_n$. If (T1) and (T2) hold, then S tiles \mathbb{Z}_n .

This theorem has turned out to be the main tool to prove the Spectral-Tile direction of Fuglede's conjecture in many cases. The generalization of Coven-Meyerowitz conjecture is that the converse of the statement of the theorem also holds.

うして ふゆう ふほう ふほう ふしつ

Theorem

Let $S \subseteq \mathbb{Z}_n$. If (T1) and (T2) hold, then S tiles \mathbb{Z}_n .

This theorem has turned out to be the main tool to prove the Spectral-Tile direction of Fuglede's conjecture in many cases. The generalization of Coven-Meyerowitz conjecture is that the converse of the statement of the theorem also holds. There is an argument on Tao's blog by (Izabella Laba) claiming that Conjecture 1 holds but an independent proof was uploaded recently to Arxiv by Ruxi Shi (29. 05. 2018.).

Our results

Previous results on cyclic groups:

- ▶ Fuglede's conjecture holds for \mathbb{Z}_p (trivial).
- ▶ Fuglede's conjecture holds for \mathbb{Z}_{p^m} (Laba).
- \blacktriangleright Kolountzakis-Malikiosis: Fuglede's conjecture holds for $\mathbb{Z}_{p^mq}.$

Theorem

Let p, q and r be different primes.

- 1. Fuglede's conjecture holds for $\mathbb{Z}_{p^mq^2}$.
- 2. Fuglede's conjecture holds for \mathbb{Z}_{pqr} .

The latter result was independently proved by Ruxi Shi (2018).

Using certain reduction steps we obtain the following.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Using certain reduction steps we obtain the following. Let S be a spectral set with Λ the spectrum.

- 1. $0 \in S, 0 \in \Lambda$ and each of S and Λ generates $\mathbb{Z}_{p^nq^2}$. Moreover $S(\xi_{p^mq^l}) = 0$
- Both S can be written as the disjoint union of Z_p-cosets and Z_q-cosets and this holds the intersections of S with each Z_{pq}-cosets as well. This comes from the description of non-Pompeiu sets.
- 3. There is a \mathbb{Z}_{pq} -coset which intersects S and its complement. Further the intersection is the union of \mathbb{Z}_p -cosets. The same holds for another \mathbb{Z}_{pq} -coset with \mathbb{Z}_q -cosets as well.

Using certain reduction steps we obtain the following. Let S be a spectral set with Λ the spectrum.

- 1. $0 \in S, 0 \in \Lambda$ and each of S and Λ generates $\mathbb{Z}_{p^nq^2}$. Moreover $S(\xi_{p^mq^l}) = 0$
- Both S can be written as the disjoint union of Z_p-cosets and Z_q-cosets and this holds the intersections of S with each Z_{pq}-cosets as well. This comes from the description of non-Pompeiu sets.
- 3. There is a \mathbb{Z}_{pq} -coset which intersects S and its complement. Further the intersection is the union of \mathbb{Z}_p -cosets. The same holds for another \mathbb{Z}_{pq} -coset with \mathbb{Z}_q -cosets as well.

4. (Λ, S) is also a spectral pair

Using certain reduction steps we obtain the following. Let S be a spectral set with Λ the spectrum.

- 1. $0 \in S, 0 \in \Lambda$ and each of S and Λ generates $\mathbb{Z}_{p^nq^2}$. Moreover $S(\xi_{p^mq^l}) = 0$
- Both S can be written as the disjoint union of Z_p-cosets and Z_q-cosets and this holds the intersections of S with each Z_{pq}-cosets as well. This comes from the description of non-Pompeiu sets.
- 3. There is a \mathbb{Z}_{pq} -coset which intersects S and its complement. Further the intersection is the union of \mathbb{Z}_p -cosets. The same holds for another \mathbb{Z}_{pq} -coset with \mathbb{Z}_q -cosets as well.

- 4. (Λ, S) is also a spectral pair
- 5. Spectral implies (T1) and (T2) implies Tile. Works for $\mathbb{Z}_{p^mq^2}$.

Method for pqr

- ► One has to handle small sets |S| ≤ 5 separately using the theory of complex Hadamard matrices.
- ► The case when $S(\xi_{pqr}) \neq 0$ requires some finite geometry argument.
- If $S(\xi_{pqr}) = 0$, then we use a generalization of 2. from the prevolus page:
 - S is the weighted sum of cosets of \mathbb{Z}_p , \mathbb{Z}_q and \mathbb{Z}_r with rational weights.

Method for pqr

- ► One has to handle small sets |S| ≤ 5 separately using the theory of complex Hadamard matrices.
- ► The case when $S(\xi_{pqr}) \neq 0$ requires some finite geometry argument.
- If $S(\xi_{pqr}) = 0$, then we use a generalization of 2. from the prevolus page:

S is the weighted sum of cosets of \mathbb{Z}_p , \mathbb{Z}_q and \mathbb{Z}_r with rational weights.

If the weights are nonnegative, then the argument is similar to the one for $p^m q^2$.

If some of the weights are negative, then S is huge:

 $|S| \ge (p-1)(q-1) + r - 1$, where r > p, q.