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Our source of interest, the Pompeiu problem

Take a continuous function f : R2 → C. The integral of f over
all unit disc is zero.
Pompeiu’s question (1929): Does it imply that f is identically
zero?

The answer is no (already known by Pompeiu as well).
So his question is the following: For which domain D the
following implication holds? If the integral of a continuous
function is zero on g(D) for every g ∈ R2 o SO(2), then f is
zero. In this case D is called a Pompeiu set of we say that D
has the Pompeiu property.

I Unit disc is not a Pompeiu set.
I Brown, Schreiber, Taylor (1973): Nonempty polygons

(domains having a corner) have the Pompeiu property.
I Ramm (2017): Every domain having a smooth boundary is

Pompeiu except the unit ball.
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Fuglede’s conjecture

Definition
A subset Ω of R2 is spectral if L2(Ω) has an orthogonal basis
consisting of exponential functions.

Definition
A subset Ω of R2 tiles R2 if there is a set T , the tiling
complement of Ω such that every x ∈ R2 (except for maybe a
set of measure zero) can uniquely be written as x = ω + t
(ω ∈ Ω, t ∈ T ).
Fuglede proved that in some special cases (e.g. T is a lattice, Ω
is open) the previous two properties are equivalent. He
conjectured (1974) that the two properties are equivalent for
every domain.
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Discrete version of the problems

I Pompieu: Let G be a finite (countable) abelian group, S a
(finite) subset of G. Does there exists a nontrivial function
from G to C with

∑
s∈S f(x+ s) = 0 for every x ∈ G?

I Fuglede: S tiles G if and only if there exists T ⊆ G such
that every element of G can be uniquely written as s+ t
(s ∈ S, t ∈ T ). The exponential functions are the
irreducible representations of G.

I Orthogonality comes from the usual scalar product of
L2-functions restricted to S.
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Why is the discrete version of the problem interesting?

Tao disproved one of the two directions (Spectral-Tile) of
Fuglede’s conjecture. He started to investigate the discrete
version of the conjecture.

His reformulation of the spectral property for finite abelian
groups:
Let S be a spectral set.
H is a k × k submatrix of the character table of the finite
abelian group. The rows of H are indexed by the elements of
the spectral set S the columns are indexed by the elements of
the spectrum. Then the resulting matrix is a complex
Hadamard matrix.
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Scketch of the proof

The original construction used the existence of a 12 ∗ 12
Hadamard matrix: for Z12

2 the Spectral-Tile direction of the
conjecture is false.

Take S be a basis of Z12
2 . Then the prescribed Hadamard matrix

can be achived as the submatrix of the character table so S is a
spectral set, while 12 does not divide 212 so S does not tile Z12

2 .
Tao’s original idea gives the same for Z5

3 using complex
Hadamard matrices.
He lifted up this counterexample for the continuous case.
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Elementary abelian groups

I The other direction was disproved using by Kolountzakis
and Matolcsi (2006).

I Matolcsi (2005): Counterexample for the Spectral-Tile
direction for elementary abelian groups of rank 4.

I Farkas, Matolcsi and Móra (2006): The continuous version
of the original conjecture does not hold in R3.

I Iosevich, Mayeli, Pakianathan (2017): Fuglede’s conjecture
holds for Z2

p.

We managed to reprove this result using simple methods.
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Reformulation of Pompeiu problem, Connection of the
problems.

Recall: Let G be a finite (countable group) abelian group, S a
subset of G. Does there exists a nontrivial function from G to C
with

∑
s∈S f(x+ s) = 0 for every x ∈ G?

Immediate from this that S is a non-Pompeiu set if and only if
the adjacency matrix of Cay(G,S) is singular. Its eigenvalues
(G is abelian) are of the form

∑
s∈S χ(s), where χ ∈ Irr(G).

This shows that the Pompeiu problem for finite abelain groups
itself is not extremely interesting.
However, the connection of the problems is transparent since
orthogonality of characters restricted to S means:

0 =
∑
s∈S

χ1(s)χ̄2(s) =
∑
s∈S

(χ1χ̄2)(s).

χ1χ̄2 is also a character of G.
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1 dimensional case of Fuglede’s conjecture

T− S(R)⇔ T− S(Z)⇔ T− S(ZN),

S−T(R)⇒ S−T(Z)⇒ S−T(ZN).

If S is a finite subset of Z, which is also a tile and T is a tiling
complement, then T is periodic (T + n = T for some n ∈ N).
Thus we are left to understand the tiles of finite cyclic groups.
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Coven-Meyerowitz conjecture 1

I The natural version of the conjecture:
Let n be square free. Then S ⊂ Zn tiles Zn if and only if S
is a complete set of coset representatives for some subgroup
of Zn.

I The generalization:
Let n ∈ N. S ⊂ Zn tiles Zn if and only if the following two
conditions hold

Definition
The mask polynomial (an object in Q[x]/(xn − 1)) of a set
S ⊆ Zn is S(x) =

∑
s∈S x

s .
HS is the set of prime powers ra dividing n such that
Φra(x) | S(x).

(T1) |S| = S(1) =
∏

d∈HS
Φd(1).

(T2) For pairwise relative prime elements si of HS , Φ∏
si | S(x).
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Coven-Meyerowitz conjecture 2

Theorem
Let S ⊆ Zn. If (T1) and (T2) hold, then S tiles Zn.

This theorem has turned out to be the main tool to prove the
Spectral-Tile direction of Fuglede’s conjecture in many cases.
The generalization of Coven-Meyerowitz conjecture is that the
converse of the statement of the theorem also holds.
There is an argument on Tao’s blog by (Izabella Laba) claiming
that Conjecture 1 holds but an independent proof was uploaded
recently to Arxiv by Ruxi Shi (29. 05. 2018.).
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Our results

Previous results on cyclic groups:
I Fuglede’s conjecture holds for Zp (trivial).
I Fuglede’s conjecture holds for Zpm (Laba).
I Kolountzakis-Malikiosis: Fuglede’s conjecture holds for

Zpmq.

Theorem
Let p, q and r be different primes.
1. Fuglede’s conjecture holds for Zpmq2.
2. Fuglede’s conjecture holds for Zpqr.

The latter result was independently proved by Ruxi Shi (2018).



Method for pmql

Using certain reduction steps we obtain the following.

Let S be a spectral set with Λ the spectrum.

1. 0 ∈ S, 0 ∈ Λ and each of S and Λ generates Zpnq2 .
Moreover S(ξpmql) = 0

2. Both S can be written as the disjoint union of Zp-cosets
and Zq-cosets and this holds the intersections of S with
each Zpq-cosets as well.
This comes from the description of non-Pompeiu sets.

3. There is a Zpq-coset which intersects S and its complement.
Further the intersection is the union of Zp-cosets. The same
holds for another Zpq-coset with Zq-cosets as well.

4. (Λ, S) is also a spectral pair
5. Spectral implies (T1) and (T2) implies Tile. Works for

Zpmq2 .
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Method for pqr

I One has to handle small sets |S| ≤ 5 separately using the
theory of complex Hadamard matrices.

I The case when S(ξpqr) 6= 0 requires some finite geometry
argument.

I If S(ξpqr) = 0, then we use a generalization of 2. from the
prevoius page:
S is the weighted sum of cosets of Zp, Zq and Zr with
rational weights.

If the weights are nonnegative, then the argument is similar
to the one for pmq2.
If some of the weights are negative, then S is huge:
|S| ≥ (p− 1)(q − 1) + r − 1, where r > p, q.
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