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Schurian polynomial approximation schemes

Schurian polynomial approximation schemes (SPAS),
Ponomarenko et. al., 1999

Definition (SPAS)

For each i ∈ N we let Xi be some map from the set of coherent
algebras over V to itself. We say that X = {Xi | i ∈ N} is a SPAS
if for every coherent algebra W the following hold:

X1(W ) = W ≤ X2(W ) ≤ . . . ≤ Xn(W ) = . . . = Sch(W ).

For all i ≤ j and coherent algebras W , Xi (Xj(W )) = Xj(W ).

The standard basis for Xi (W ) is computable in time nO(i)

with n = |V |.

Definition (Equivalence of SPAS)

We say that X and Y are equivalent SPAS if there are maps
µ, ν : N→ N such that for any coherent algebra W
Xν(k)(W ) ≤ Yk(W ) ≤ Xµ(k)(W ).
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Schurian polynomial approximation schemes

How strong is WL as a SPAS?

For any coherent algebra W

Ponomarenko, Evdokimov, 1999

WLk(W ) ≤W
k ≤WL3k(W )

Dawar, Vagnozzi 2018

WLk−r (W ) ≤WLk, r (W ) ≤WLk+r−1(W )

where WLk, r arises from labelling k-tuples with multisets of maps
t : [k](r) → range(f ) as opposed to t : [k]→ range(f ) as in WLk .
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Schurian polynomial approximation schemes

A hypothesis a la Church-Turing?

Hypothesis

Any reasonable Schurian polynomial approximation scheme is
equivalent to WL.

FALSE
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Schurian polynomial approximation schemes

Invertible map refinements

χ-matrix

For each t : [k](2) → range(f ), ~v ∈ V k , define the matrix χt
~v

labelled by V to have (u, v) entry equal to 1 if
t(τ) = f (~v〈τ, (u, v)〉) for all τ ∈ [k](2).

IMk stability condition

~u ≡k,F
IM ~v if there is a matrix S ∈ GLV (F such that for every

t : [k](2) → range(f ) we have that Sχt
~vS

−1 = χt
~u.
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Schurian polynomial approximation schemes

Theorem

Consider IM over C. Then for any coherent algebra W

WLk−2(W ) ≤ IMk(W ) ≤WLk(W ).

Theorem

Consider IM over Zp. Then for any coherent algebra W

WLk−2(W ) ≤ IMk(W ).
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Schurian polynomial approximation schemes

Constructions

Theorem (Cai-Fürer-Immerman, 1992)

For every k there are graphs G such that χ(G ) and χ̃(G ) are not
isomorphic but χ(G ) ≡WL χ̃(G ).

Theorem (Holm, 2012)

Let p, q be distinct primes. Then for each k there are graphs G
such that Hk(G ) ≡IM

p
kH̃

k(G ) but are distinguished by IMq
k .

Thus we cannot expect relations of the form
IMp

k (W ) ≤WLf (k)(W ) or IMp
k (W ) ≤ IMq

f (k)(W ).
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Schurian polynomial approximation schemes

Open questions

Too many
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