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Semidefinite programming . . .

generalization of linear programming (LP)

unifies linear and quadratic programming problems

arise naturally as relaxation of discrete optimization problems

can be efficiently solved by interior-point-methods

applications:

global and combinatorial optimization
eigenvalue optimization
robust optimization
circuit design
coding theory
finance
signal processing
chemical engineering
sensor network localization, etc.
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Where is SDP?

LP

NLP
convex

SDP
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Primal SDP

Primal problem:

min tr(CX )

s.t. tr(AiX ) = bi , ∀ i = 1, . . . ,m

X � 0

where C ,Ai ∈ Sn, bi ∈ R (i = 1, . . . ,m).

Sn . . . space of symmetric n × n matrices

X � 0 . . . positive semidefinite iff zTXz ≥ 0, ∀z ∈ Rn

iff all eigenvalues of X are ≥ 0

N.B. SDP reduces to LP when all matrices are diagonal.
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Historical events related to SDP

Lyapunov (1890)

stability of dynamic systems

Bellman and Fan (1963)

first SDP formulated

Lovász (1979)

upper bound Shannon capacity of a graph

Lovász and Schrijver (1991)

SDP can provide tighter relaxations of 0-1 problems than LP

Goemans, Williamson (1995)

SDP-based approximation for max-cut
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On solving SDP . . .

Polynomial time algorithms:

Ellipsoid method

Grötschel, Lovász and Schrijver (1988)
first to solve SDP in polynomial time
not practical

Interior-point methods (IPM)

Nesterov and Nemirovski (1994), Alizadeh (1995)

practical, suitable for medium size

available software:

CSDP
DSDP
SDPA
SDPT3
SeDuMi
Mosek

V since 1995 the interest in SDP has grown tremendously
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Max-cut

Given:

G = (V ,E ), . . . an undirected graph with |V | = n

wij = wji ≥ 0 . . . the weight of edge (i , j) ∈ E

MC problem. Find partition of V into S and V \ S s.t. the total weight of the
edges joining S and V \ S is maximized.

xj :=

{
1 for j ∈ S
−1 for j ∈ V \ S

(MC)
max 1

4

n∑
i,j=1

wij(1− xixj)

s.t. xj ∈ {−1, 1}, j = 1, . . . , n.

NP-hard problem
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Goemans-Williamson

Let Y = xxT

(MC)

max 1
4

∑n
i,j=1 wij(1− Yij)

s.t. xj ∈ {−1, 1}, j = 1, . . . , n

Y = xxT

(MC)

max 1
4

∑n
i,j=1 wij(1− Yij)

s.t. Yjj = 1, j = 1, . . . , n

Y � 0, rank(Y ) = 1

V relax the rank one constraint

(SDPMC)

max 1
4

∑n
i,j=1 wij(1− Yij)

s.t. Yjj = 1, j = 1, . . . , n

Y � 0

V Goemans, Williamson (1995): this relaxation has an error ≤ 13.82%
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Max-cut remarks

strengthened SDPMC by adding 4
(
n
3

)
triangle constraints:

MET

yij + yik + yjk ≥ −1
yij − yik − yjk ≥ −1
−yij + yik − yjk ≥ −1
−yij − yik + yjk ≥ −1, ∀i < j < k

the resulting SDP is difficult to solve with IPM when n > 150

The bundle method computes nearly optimal solution for n ≤ 2000:
Fischer, Gruber, Rendl, and Sotirov. Computational Experience with a Bundle Approach

for Semidefinite Cutting Plane Relaxations of Max-Cut and Equipartition, Math. Program

B, 105(2-3):451-469, 2006.

Branch and bound, SDP based solver for Max-cut:
Rinaldi, Rendl and Wiegele. Biq Mac Solver - Binary quadratic and Max cut Solver,

http://biqmac.uni-klu.ac.at/
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GPP

the graph partition problem . . .
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The Graph Partition Problem

G = (V ,E ) . . . an undirected graph

V . . . vertex set, |V | = n
E . . . edge set

The k-partition problem:
Find a partition of V into k subsets S1, . . . ,Sk of given sizes m1 ≥ . . . ≥ mk , s.t.
the total weight of edges joining different Si is minimized.

when mi = |V |
k , ∀i  the graph equipartition problem

when k = 2  the bisection problem

GPP is NP-hard (Garey and Johnson, 1976)

applications: VLSI design, parallel computing, floor planning,
telecommunications, etc.
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The k-partition problem

A . . . the adjacency matrix of G , m := (m1, . . . ,mk)T, un all-ones vector

let X = (xij) ∈ R|V |×k

xij :=

{
1, if node i ∈ Sj

0, if node i /∈ Sj

Pk :=
{
X ∈ Rn×k : Xuk = un, X

Tun = m, xij ∈ {0, 1}
}

For X ∈ Pk :
1
2 tr(XTAX ) =

∑
j weight of edges within Sj :

w(Ecut) =
1

2
tr(XTDiag(Aun)X − XTAX ) =

1

2
tr(XTLX ),

where L := Diag(Aun)− A is the Laplacian matrix of G
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The Graph Partition Problem

The trace formulation:

(GPP)

min 1
2 trace(XTLX )

s.t. Xuk = un

XTun = m

xij ∈ {0, 1}

Edwin van Dam (Tilburg) SDP, symmetry, algebra, GPP Summer 2018 13 / 53



SDP for GPP

linearize the objective (matrix lifting): trace(LXXT)  trace(LY)

Y ∈ conv{Ỹ : ∃X ∈ Pk s.t. Ỹ = XXT} ⇒ kY − Jn � 0.

(GPPRS)

min 1
2 tr(LY )

s.t. diag(Y ) = un

tr(JY ) =
k∑

i=1

m2
i

kY − Jn � 0, Y ≥ 0

Sotirov, An efficient SDP relaxation for the GPP, INFORMS J. Comput. (2014)
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Improvements?

? How to improve GPPRS?

impose the linear inequalities:

∆ constraints
yij + yik ≤ 1 + yjk , ∀(i , j , k)

independent set type of constraints∑
i<j,i,j∈I

yij ≥ 1, ∀ I s.t. |I| = k + 1

⇒ there are 3
(
n
3

)
∆, and

(
n

k+1

)
independent set constraints
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Some facts . . .

for graphs with 100 vertices:

the best known vector lifting relaxation is hopeless

GPPRS + ∆ + independent set constraints computes bounds in about 3
hours

GPPRS computes bounds in about 14 minutes

? Can we compute GPPRS more efficiently ?

yes
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Symmetry and algebra

matrix *-algebra: subspace of Rn×n that is closed under matrix multiplication
and transposition

Assumption: The data matrices of an SDP problem and I belong to a
matrix *-algebra of dimension r , where r � n2

Then, if the SDP relaxation has an optimal solution
⇒ then it has an optimal solution in the matrix *-algebra.

Schrijver, Goemans, Rendl, Parrilo, De Klerk, Pasechnik, Sotirov, . . .

Coherent algebra with basis of 01-matrices (centralizer ring, for example):

(i) Ai ∈ {0, 1}n×n, AT
i ∈ {A1, . . . ,Ar}, (i = 1, . . . , r)

(ii)
∑r

i=1 Ai = J,
∑

i∈I Ai = I , I ⊂ {1, . . . , r}

(iii) For i , j ∈ {1, . . . , r}, ∃ph
ij such that AiAj =

∑r
h=1 p

h
ijAh.
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Simplification – ‘highly symmetric’ graphs . . .

⇒ Y =
r∑

i=1

ziAi ,

(GPPm)

min 1
2 tr(AJn)− 1

2

r∑
i=1

zi tr(AAi )

s.t.
∑
i∈I

zi diag(Ai ) = un

r∑
i=1

zi tr(JAi ) =
k∑

i=1

m2
i

k
r∑

j=1

ziAi − Jn � 0, zi ≥ 0, i = 1, . . . , r .

LMI may be (block-)diagonalized

exploit properties of Ai to aggregate ∆ and independent set constraints

⇒ extend the approach from:
M.X. Goemans, F. Rendl. Semidefinite Programs and Association Schemes. Computing,

63(4):331–340, 1999.
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On aggregating constraints . . .

for a given (a, b, c) consider the ∆ constraint

yab + yac ≤ 1 + ybc

if (Ai )ab = 1, (Ah)ac = 1, (Aj)bc = 1 ← type (i , j , h) constraint

summing all constraints of type (i , j , h) → aggregated ∆ constraint:

pihj′ trAiY + phij trAhY ≤ pihj′ trAiJ + pji ′h trAjY ,

] of aggregated ∆ constraints is bounded by r3

similar approach applies to independent set constraints when k = 2
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Strongly regular graphs

Example. Strongly regular graph

n vertices, κ the valency of the graph

A has exactly two eigenvalues r ≥ 0 and s < 0
associated with eigenvectors ⊥ un

A belongs to the *-algebra spanned by {I ,A, J − A− I}

⇒ Y = I + z1A + z2(J − A− I )

(GPPm)

min 1
2κn(1− z1)

s.t. κz1 + (n − κ− 1)z2 = 1
n

k∑
i=1

m2
i − 1

1 + rz1 − (r + 1)z2 ≥ 0

1 + sz1 − (s + 1)z2 ≥ 0

z1, z2 ≥ 0
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Strongly regular graphs ....

Theorem.
Let G = (V ,E ) be a SRG with eigenvalues κ, r , s.

Let mi ∈ N, i = 1, . . . , k s.t.
∑k

j=1 mj = n.

Then the SDP (lower) bound for the minimum k-partition is

max
{
κ−r
n

∑
i<j mimj ,

1
2

(
n(κ+ 1)−

∑
i m

2
i

)}
Similarly, the SDP (upper) bound for the maximum k-partition is

min
{
κ−s
n

∑
i<j mimj ,

1
2κn

}
.

this is an extension of the result for the equipartition:

De Klerk, Pasechnik, Sotirov, Dobre: On SDP relaxations of maximum k-section,

Math. Program. Ser. B, 136(2):253-278, 2012.
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Adding constraints

after aggregating ∆ constraints:

z1 ≤ 1
z2 ≤ 1

2z1 − z2 ≤ 1
−z1 + 2z2 ≤ 1

For SRG with n > 5 the ∆ constraints are redundant in GPPm.

However, the independent set constraints improve GPPm.
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The Laplacian algebra

closed form expression for the GPP for ’any’ graph

L = Diag(Aun)− A, the Laplacian matrix of G

L := span{F0, . . . ,Fd}, the Laplacian algebra of G

Fi = UiU
T
i (eigenspace decomposition, LUi = λiUi )

FiFj = δijFi for i 6= j∑d
i=0 Fi = I

Fi = FT
i , ∀i

tr(Fi ) = fi . . . the multiplicity of i-th eigenvalue of L
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Simplification – any graph . . .

relax diag(Y ) = un  tr(Y ) = n

remove nonnegativity constraint

(GPPeig)

min 1
2 tr LY

s.t. tr(Y ) = n

tr(JY ) =
k∑

i=1

m2
i

kY − Jn � 0

Y =
d∑

i=0

yiFi , yi ∈ R (i = 0, . . . , d)

tr(LY ) = tr(
d∑

j=0

λjFj(
d∑

i=0

yiFi )) =
d∑

i=0

λi fiyi

where 0 = λ0 ≤ . . . ≤ λd distinct eigenvalues of L, ....
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Eigenvalue bounds

Theorem
Let G = (V ,E ) be a graph, mi , i = 1, . . . , k s.t.

∑k
j=1 mj = n. Then the GPPeig

bound for the minimum k-partition of G equals

λ1

n

∑
i<j

mimj ,

and the bound GPPeig for the maximum k-partition of G equals

λd

n

∑
i<j

mimj .

Other known closed form expression only for the minimum k-partition when
k = 2, 3:
J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph partitioning.

Math. Program., 66:211–239, 1994.
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Computational times for presented bounds

exploit symmetry if available

G n m time, no symmetry raut time
grid graph 100 (50,25,25) 799.2 1275 3.4

Table: Computational time (s.) to solve GPPRS

computational time to solve GPPRS + ∆ constraints, with n = 100:

without symmetry, about 2 hours

aggregating constraints, if possible, a few seconds
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Quality of the presented bounds

G n k GPPeig GPPRS rcomb time raut time

Chang3 28 7 96 126 3 – 14 0.23
SRG(64, 18)30 64 8 448 448 3 – 90 0.61

Doob 64 8 112 160 4 0.34 8 0.41
SRG(64, 18)e 64 4 384 384 3 – – 14.33

(45, 12, 3)-design 90 9 360 360 4 0.40 2074 4.56

G n k GPPeig GPPRS GPPRS +∆

Desargues 20 2 5 5 6

Foster 90 5 20 23 31

Biggs-Smith 102 3 15 15 23

Table: Lower bounds for the min k-partition.

each computation in the last two columns of the last table < 1 s.
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The max-k-cut

G = (V ,E ) . . . an undirected graph

V . . . vertex set, |V | = n
E . . . edge set

The max-k-cut problem

Find a partition of V into into at most k subsets such that
the total weight of edges joining different sets is maximized.

the max-k-cut . . .

is NP-hard

k = 2  the max-cut
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An SDP relaxation

A . . . the adjacency matrix of G

L := Diag(Aun)− A is the Laplacian matrix of G

(k −MC)

max 1
2 tr(LY )

s.t. diag(Y ) = un

kY − Jn � 0, Y ≥ 0

where Jn (resp. un) is all-ones matrix (resp. vector)

restriction on sizes of the parts → GPP

∆ and independent set constraints can be added

(k −MC) is equivalent to the relaxation from:
Frieze, Jerrum. Improved approximation algorithms for max-k-cut and max bisection.

Algorithmica 18:67-81, 1997.
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Eigenvalue bounds: the max-k-cut

relax diag(Y ) = un  tr(Y ) = n

remove nonnegativity constraint

Theorem

Let G = (V ,E ) be a graph on n vertices and k an integer k ≥ 2.
The eigenvalue (upper) bound for the max-k-cut problem is:

n(k−1)
2k λmax(L).

for k = 2 this result coincides with:

Mohar and Poljak. Eigenvalues and the max-cut problem.

Czechoslovak Mathematical Journal, 40:343-352, 1990.

there are few other eigenvalue bounds for the max-k-cut when k > 2
(Nikiforov)
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Eigenvalue bounds: the max-k-cut

How to improve the eigenvalue bound n(k−1)
2k λmax(L) ?

Delorme and Poljak (1993)

Perturbations of L by a diagonal matrix with zero trace do not change the optimal
value of the max-cut problem, but have an impact on λmax(L).

V similarly for the max-k-cut

(♣) min
dTun=0

n(k − 1)

2k
λmax(L + Diag(d))

where d is known as the correcting vector

(♣) is equivalent to:

max{1

2
tr(LY ) : diag(Y ) = un, kY − Jn � 0} no closed form!

perturbations of objectives and SDP were studied by Alizadeh 1995
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The chromatic number

The chromatic number of a graph

A coloring of a graph is an assignment of colors to the vertices of G
s.t. no two adjacent vertices have the same color.

The smallest number of colors needed to color G is called its chromatic
number χ(G ).

Figure: Petersen graph, χ(G) = 3

V A coloring with k colors is the same as a partition V into k independent sets.

For a given graph G = (V ,E ) and integer k,

if max-k-cut < |E | then χ(G ) ≥ k + 1.

V The eigenvalue bound for the max-k-cut  a bound on χ(G )
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Eigenvalue bound for the chromatic number

Theorem

Let G = (V ,E ) be a graph with Laplacian matrix L. Then

χ(G ) ≥ 1 +
2|E |

nλmax(L)− 2|E |

Hoffman bound, 1970: χ(G ) ≥ 1− θmax(A)
θmin(A) , where θmax(A) and θmin(A) are

largest and smallest eigenvalue of adjacency matrix A.

For regular graphs, these two bounds coincide. Otherwise, they are
incomparable.

For the complete graph on 100 vertices minus an edge, our bound is 99
(= χ(G )) while the Hoffman bound is 51.
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Walk-regular graphs

Walk-regular graphs

A graph with adjacency matrix A is called walk-regular if A` has constant diagonal
for every nonnegative integer `.

The class of walk-regular graphs contains:

vertex-transitive graphs

distance-regular graphs (including strongly regular graphs)

graphs in an association scheme

Walk-regular graphs:

are regular graphs

all matrices in L of a walk-regular graph have constant diagonal

Edwin van Dam (Tilburg) SDP, symmetry, algebra, GPP Summer 2018 34 / 53



Max-k-cut for walk-regular graphs

V the optimum correcting vector d in

(♣) min
dTun=0

n(k − 1)

2k
λmax(L + Diag(d))

equals the zero vector.

Theorem

Let G be a walk-regular graph on n vertices and let k be an integer k ≥ 2.

Then the eigenvalue bound for the max-k-cut equals the bound (♣).

For k = 2 the eigenvalue bound equals the optimal value of the SDP rel. (k–MC).

Goemans and Rendl (1999) proved the latter result for the max-cut problem
for graphs in an association scheme.
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Strongly regular graph

Theorem

Let G = (V ,E ) be a SRG with eigenvalues κ, r , s.
Then the SDP bound (k-MC) for the max-k-cut of G is given by

min
{

n(k−1)
2k (κ− s), 1

2κn
}
.

For SRG with n > 5 the (aggregated) ∆ constraints are redundant in
(k −MC ).

the independent set constraints improve (k −MC )
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Hamming Graphs

Hamming graph H(d , q, j) (j = 0, . . . , d)

Vertex set Sd , where S is a set of size q

Vertices are adjacent if they differ in j coordinates

Conjecture

Let j ≥ d − d−1
q , with j even if q = 2. Then Kj(0)− Kj(1) (Kravchuk) is the

largest Laplacian eigenvalue of H(d , q, j).

Theorem

Let k ≤ q, j ≥ d − d−1
q , with j even if q = 2, and consider H(d , q, j).

If the conjecture is true, then:

for the max-k-cut problem, the eigenvalue and (k −MC ) bound are equal.

the optimal value of the max-q-cut equals the eigenvalue bound.

The conjecture was recently proven by Brouwer, Cioabă, Ihringer, and McGinnis
(JCTB, 201?)
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(JCTB, 201?)

Edwin van Dam (Tilburg) SDP, symmetry, algebra, GPP Summer 2018 37 / 53



Hamming Graphs

Hamming graph H(d , q, j) (j = 0, . . . , d)

Vertex set Sd , where S is a set of size q

Vertices are adjacent if they differ in j coordinates

Conjecture

Let j ≥ d − d−1
q , with j even if q = 2. Then Kj(0)− Kj(1) (Kravchuk) is the

largest Laplacian eigenvalue of H(d , q, j).

Theorem

Let k ≤ q, j ≥ d − d−1
q , with j even if q = 2, and consider H(d , q, j).

If the conjecture is true, then:

for the max-k-cut problem, the eigenvalue and (k −MC ) bound are equal.

the optimal value of the max-q-cut equals the eigenvalue bound.

The conjecture was recently proven by Brouwer, Cioabă, Ihringer, and McGinnis
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The bandwidth issue
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The Bandwidth Problem for graphs

σ(G ) := min

{
max

(i,j)∈E
|φ(i)− φ(j)|; φ : V → {1, . . . , n}

}
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find a permutation P such that in PAPT all nonzero entries are as close as
possible to the main diagonal



0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 1
0 1 0 1 0 0 1 0
0 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0





0 0 1 1 1 0 0 0
0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 1 0 1 1 0 0
0 0 0 1 1 1 0 0
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Applications . . .

The bandwidth problem . . .

originated in the 1950s from sparse matrix computations

NP-hard (Papadimitriou (1976))

engineering applications

efficient storage and processing

minimizing distortion in the multi-channel transmission
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A quadratic assignment formulation of the bandwidth

V “natural” problem formulation

Fix k . . .

define B = (bij):

bij :=

{
1 for |i − j | > k

0 otherwise

the bandwidth related to the QAP:

µ∗ = min
P∈Πn

tr(APBPT),

where Πn is the set of permutation matrices

if µ∗ > 0 ⇒ σ(G ) > k
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The QAP based bound

αQAP := min tr(B ⊗ A)Y

s.t. tr(I ⊗ Ejj)Y = 1, tr(Ejj ⊗ I )Y = 1 ∀j
tr(I ⊗ (J − I )) + (J − I )⊗ I )Y = 0

tr(JY ) = n2

Y ≥ 0, Y � 0


(♦)

Ejj = eje
T
j

I is the identity matrix

J is all-ones matrix

QAP SDP formulation by Povh and Rendl (2009); Zhao, Karisch, Rendl, and
Wolkowicz (1998)

since aut(B) = {P ∈ Πn : PBPT = B} has order only 2

 look for other approaches
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The min-cut problem

S1,S2,S3 ⊆ V

|Si | = mi for i = 1, 2, 3,
∑

i mi = n

The min-cut problem is:

(MC)

OPTMC := min
∑

i∈S1,j∈S2

aij

s.t. (S1,S2,S3) partitions V

where A = (aij) is the adjacency matrix.

? relation to the bandwidth problem ?
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The min-cut and bandwidth problem

The cube, m = (m1,m2,m3) = (2, 3, 3)

m1 m3 m2

0 0 1 1 1 0 0 0
0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 1 0 1 1 0 0
0 0 0 1 1 1 0 0



if OPTMC > 0 ⇒ σ(G ) ≥ m3 + 1

generalized bound (Povh-Rendl (2007), EvD-Sotirov):

If for some m = (m1,m2,m3) it holds that OPTMC ≥ α > 0, then

σ(G ) ≥ m3 +
⌈
− 1

2 +
√

2α + 1
4

⌉
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Eigenvalue based bound for the min-cut

Helmberg, Rendl, Mohar, Poljak (1995), derive the mc bound:

αL = −1

2
(µ2λ2 + µ1λn),

where

λ2 (λn) . . . the second smallest (largest resp.)
Laplacian eigenvalue of G

µ1 and µ2 are constants depending on m = (m1,m2,m3)

αL is the closed form solution of a minimization problem over

{X ∈ Rn×3 : XTX = Diag(m),Xu3 = un,X
Tun = m}
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The QAP based bound for the min-cut

the min-cut can be formulated as the QAP

min
X∈Πn

tr(AXBXT),

where A is the adjacency matrix of G and

B :=

 0m1×m1 0m1×m3 Jm1×m2

0m3×m1 0m3×m3 0m3×m2

Jm2×m1 0m2×m3 0m2×m2



B generates a coherent algebra of rank 12.
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On solving (♦) relaxation

min 1
2 trA(X3 + X5)

s.t. X1 + X6 + X11 = In−2

12∑
i=1

Xi = Jn−2,

tr(JXi ) = pi , Xi ≥ 0, i = 1, . . . , 12,

12∑
i=1

p−1
i Bi ⊗ Xi � 0

X3 = XT
5 ,X4 = XT

9 ,X8 = XT
11,

X1,X2,X6,X7,X11,X12 ∈ Sn−2,

where

pi (i = 1, . . . , 12) are given constants related m = (m1,m2,m3)

this reduction was introduced by De Klerk and Sotirov (2010), see also:
E. de Klerk, F.M. de Oliveira Filho, and D.V. Pasechnik. Relaxations of combinatorial

problems via association schemes, in Handbook of Semidefinite, Cone and Polynomial

Optimization, Miguel Anjos and Jean Lasserre (eds.), pp. 171–200, Springer, 2012.

Edwin van Dam (Tilburg) SDP, symmetry, algebra, GPP Summer 2018 47 / 53



The QAP based bound for the min-cut

Theorem. Let G be an undirected graph with n vertices and adjacency matrix A,
and m = (m1,m2,m3),

∑
i m1 = n. Then,

αQAP ≥ αL.

? How can we further improve the lower bound for the min-cut ?
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Bounds for the min-cut
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New bound for the min-cut

assume: GA is edge transitive

the graph with adjacency matrix B is edge transitive

V one can fix arbitrary edge in B and compute a lower bound for the original
QAP from the SDP relaxation of the “reduced” QAP

Theorem. Let GA be an undirected graph with adjacency matrix A.
Suppose for simplicity that aut(GA) is transitive on both edges and non-edges.

Then for any fixed edge (s1, s2) in GB , and any fixed edge (r1, r2) and non-edge
(q1, q2) in the graph GA one has

min
X∈Πn

tr(AXBXT) = min{min
Z∈Πn

tr(AZBZT), min
Y∈Πn

tr(AYBY T)}

where Zr1,s1 = 1, Zr2,s2 = 1 and Yq1,s1 = 1, Yq2,s2 = 1.

this can be extended to graphs that are edge-transitive and have several
classes of non-edges
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Bandwidth of Johnson graphs . . .

Let Ω be a set of size v

{vertices of the Johnson graph J(v , d)} =
(

Ω
d

)
and

two subsets are adjacent if their intersections has size d − 1

v ] nodes bwL bwQAP time(s) bwnew time(s) u.b.

6 20 11 13 0 13 - 13

7 35 17 22 1 22 - 22

8 56 26 29 2 31 194 34

9 84 38 40 6 43 558 49

10 120 52 53 15 57 865 68

Table: Bounds on the bandwidth of J(v , 3)

lower bounds: m3 +
⌈
− 1

2 +
√

2α + 1
4

⌉
upper bounds obtained by improving Cuthill-McKee heuristic
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Bandwidth of Hamming graphs . . .

Hamming graph H(d , q)

q ] nodes bwL bwQAP time(s) bwnew time(s) u.b.

3 27 10 10 0 12 44 13

4 64 22 22 3 25 176 33

5 125 43 43 15 47 536 84

Table: Bounds on the bandwidth of H(3, q)

lower bounds: m3 +
⌈
− 1

2 +
√

2α + 1
4

⌉
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The end
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