

On multiset reconstruction index of 2-nilpotent graph groups

N. Vanetik

Software Engineering Department, Shamoon College of Engineering, Beer Sheva, Israel

Symmetry vs Regularity

July 2018, Pilsen, Czech Republic

Graphs and groups (history)

- Finite algebraic structures are reducible to graphs in polynomial time
- Inverse isomorphism-preserving reduction exists for some structures
 - Rings (N. Kayal, N. Saxena 2006)
 - Infinite-dimensional Lie algebras (K.H. Kim, L. Makar-Limanov, J. Neggers, F.W. Roush 1980)
 - Infinite groups (C. Droms 1987)
 - Finite p-groups (P. Beletskii 1985)

Graphs to 2-nilpotent finite p-groups

- Results of (Lipyanski, Vanetik 2015)
 - Graphs are reducible to class 2 nilpotent Lie algebras
 - Graphs are reducible to 2-nilpotent finite p-groups
 - In both cases, we have P-Borel reducibility (poly-time, isomorphism preserving functor)
- Good things
 - Isomorphism problem for graphs is wild (contains pair-of-matrices problem)
 - It is actually superwild (is not contained in the pair-of-matrices problem)
- Bad things
 - One cannot reduce graphs to a tame category, say Abelian groups

Graphs to 2-nilpotent finite p-groups

- Graph group $G(\Gamma) = M_n / J$ where
 - M_n is a free group generated by *T* is group variety determined by $x^p = 1, [[x, y], z] = 1$
 - J is a (normal) subgroup generated by

 $\{v_i \wedge v_j \mid \{v_i, v_j\} \in E\}$

- $G(\Gamma_1) \cong G(\Gamma_2) \Leftrightarrow \Gamma_1 \cong \Gamma_2$ (Lipyanski, Vanetik 2015)
- Proof uses Lazard correspondence (pls ask Ruvim!)

Reconstruction of groups

<u>Problem</u>: reconstruct action of group G on collection X from its action on size k sub-collections $X^{\{k\}}$ of X

<u>Reconstruction index</u> = minimal k for which action of G can be reconstructed for all X

Depending on group action and type of X, define:

- Orbit reconstruction
- Set reconstruction
- Multiset reconstruction

Set reconstruction number

Some results (a non-survey):

- Alon, Caro, Krasikov and Roditty (1989) showed that $r_{set}(Z_n) < \log_2 n$
- Radcliffes and Scott (1998) showed that $r_{set}(Z_n) < 9 \ln n$
- Pebody (2004) proved that $r_{set}(Z_n) \le 6$.
- Pebody (2007) proved that the 3-deck determines all nonnegative rational valued functions up to translation on Z_n iff n is a power of an odd prime or the product of two odd primes.

Multiset reconstruction number - survey

• (Radcliffe, Scott 2006): For a group action

 $G \to X$ $r_N(G \to X) \le r_N(G)$ $(r_N(G) \text{ stands for left - regular action})$

• (Radcliffe, Scott 2006): For $G \rightarrow X$ and $N \triangleleft G$

 $r_N(G \to X) \le r_N(N \to X) r_N(G/N)$

- (Radcliffe, Scott 2006): Let G and H be groups. Then $r_N(G \times H) \leq r_N(G) r_N(H)$
- (Pebody, 2004): $r_N(G) \le 6$

for Abelian groups of the form $\mathbf{Z}_p \oplus ... \oplus \mathbf{Z}_p$

Reconstructibility of 2-nilpotent graph pgroups

Theorem (V). $r_N(G_{\Gamma}) \le 36$ for any 2 - nilpotent graph p - group G_{Γ} .

Proof sketch:

$$I = \left\langle v_i \wedge v_j \mid (v_i, v_j) \notin E \right\rangle \triangleleft G_{\Gamma}$$

Both *I* and G_{Γ} / I are abelian of form Z_{p}^{n} for odd *p*.

In fact, $G_{\Gamma} / I \cong G_{K_n}$.

Thus $r_N(G_{\Gamma}) \le r_N(I)r_N(G_{\Gamma}/I)$ and $r_N(G_{\Gamma} \to X) \le r_N(I)r_N(G_{\Gamma}/I)$. Then $r_N(G_{\Gamma} \to X) \le r_N(G_{\Gamma}) \le 36$.

Corollaries

THESAURUS PLUS

synonyms for corollary: result, upshot, effect, conclusion, consequence, outcome, sequel, inference, product, deduction

- 1. As sets are a subclass of multisets, trivially
- 2. For Aut(G) let us define action $r_{set}(G_{\Gamma}) \leq r_N(G_{\Gamma}) \leq 36$.

 $G \rightarrow Aut(G): (G, Aut(G)) \rightarrow Aut(G)$

by $(g, \varphi): G \to G$ where $(g, \varphi)(x) = g\varphi(x)g^{-1}$

Then $r_N(G \rightarrow Aut(G)) \le 36$

3. Similarly, for *Out(G)* and this action we have $r_N(G \rightarrow Out(G)) \le 36$

But: all automorphisms of G that translate to graph automorphisms are outer, and it's the regular actions of Out(G) that can tell us something about graph reconstructibility...

Thank you!

Questions?