Coherent configurations with nonsolvable automorphism group

Andrey Vasil'ev

Sobolev Institute of Mathematics and Novosibirsk State University

«Symmetry vs Regularity» Conference in Algebraic Graph Theory

Pilsen, Czech Republic, 01.07.-07.07.2018

Setup

 Ω is a finite set of size *n*, *I* is a set of colors

 $\mathcal{X} = (\Omega, R)$ is a (colored) coherent configuration (a scheme) $R = \{r_i : i \in I\}$ is a partition of $\Omega \times \Omega$

Setup

 Ω is a finite set of size *n*, *I* is a set of colors

 $\mathcal{X} = (\Omega, R)$ is a (colored) coherent configuration (a scheme) $R = \{r_i : i \in I\}$ is a partition of $\Omega \times \Omega$

 $\mathcal{X}' = (\Omega, R')$ is another scheme with the same set of colors $lso(\mathcal{X}, \mathcal{X}') = \{\varphi \in Sym(\Omega) : r_i\varphi = r'_i, i \in I\}$

Setup

 Ω is a finite set of size *n*, *I* is a set of colors

 $\mathcal{X} = (\Omega, R)$ is a (colored) coherent configuration (a scheme) $R = \{r_i : i \in I\}$ is a partition of $\Omega \times \Omega$

 $\mathcal{X}' = (\Omega, R')$ is another scheme with the same set of colors lso $(\mathcal{X}, \mathcal{X}') = \{ \varphi \in \text{Sym}(\Omega) : r_i \varphi = r'_i, i \in I \}$

If $Iso(\mathcal{X}, \mathcal{X}')$ is non-empty, then it is a coset in $Sym(\Omega)$ of $Aut(\mathcal{X}) = \{\varphi \in Sym(\Omega) : r_i\varphi = r_i, i \in I\}$

Problems

 \mathcal{K} (resp. \mathcal{K}_n) is a class (closed w.r.t isomorphisms) of schemes (resp. of schemes of size n)

 $\mathsf{ISO}_{\mathcal{K}}: \mathsf{Given} \ \mathcal{X}, \mathcal{X}' \in \mathcal{K}, \mathsf{ find } \mathsf{Iso}(\mathcal{X}, \mathcal{X}')$

Problems

 \mathcal{K} (resp. \mathcal{K}_n) is a class (closed w.r.t isomorphisms) of schemes (resp. of schemes of size n)

 $\mathsf{ISO}_{\mathcal{K}}: \mathsf{Given} \ \mathcal{X}, \mathcal{X}' \in \mathcal{K}, \mathsf{ find } \mathsf{Iso}(\mathcal{X}, \mathcal{X}')$

 $\mathsf{AUT}_{\mathcal{K}}$: Given $\mathcal{X} \in \mathcal{K}$, find $\mathsf{Aut}(\mathcal{X})$

Problems

 \mathcal{K} (resp. \mathcal{K}_n) is a class (closed w.r.t isomorphisms) of schemes (resp. of schemes of size n)

 $\mathsf{ISO}_{\mathcal{K}}: \mathsf{Given} \ \mathcal{X}, \mathcal{X}' \in \mathcal{K}, \mathsf{ find } \mathsf{Iso}(\mathcal{X}, \mathcal{X}')$

 $\mathsf{AUT}_{\mathcal{K}}$: Given $\mathcal{X} \in \mathcal{K}$, find $\mathsf{Aut}(\mathcal{X})$

 $\ensuremath{\mathcal{C}}$ is the class of all schemes

 $\mathsf{RCG}_{\mathcal{K}}$: Given $\mathcal{X} \in \mathcal{C}$, determine whether $\mathcal{X} \in \mathcal{K}$ or not

Why does a solvability of $Aut(\mathcal{X})$ matter?

Why does a solvability of $Aut(\mathcal{X})$ matter?

The composition width cw(H) of a group H is a least positive integer d such that every nonabelian composition factor of a group H can be embedded in Sym(d)

Claim (Babai–Lucks, 1983)

Let $\mathcal{X} = (\Omega, R)$ be a scheme. Given $H \leq \text{Sym}(\Omega)$ with $cw(H) \leq d$, the group $\text{Aut}(\mathcal{X}) \cap H$ can be found in time $n^{f(d)}$

Schemes associated with groups: Cayley schemes

Let $\Omega = G$ for some group G $\mathcal{X} = (\Omega, R)$ is called a Cayley scheme over G if Aut (\mathcal{X}) includes a regular subgroup G_{right} isomorphic to G Schemes associated with groups: Cayley schemes

Let $\Omega = G$ for some group G $\mathcal{X} = (\Omega, R)$ is called a Cayley scheme over G if Aut (\mathcal{X}) includes a regular subgroup G_{right} isomorphic to G

A Cayley scheme over G is central if $Aut(\mathcal{X})$ includes $\langle G_{left}, G_{right} \rangle$

Schemes associated with groups: Cayley schemes

Let $\Omega = G$ for some group G $\mathcal{X} = (\Omega, R)$ is called a Cayley scheme over G if Aut (\mathcal{X}) includes a regular subgroup G_{right} isomorphic to G

A Cayley scheme over G is central if $Aut(\mathcal{X})$ includes $\langle G_{left}, G_{right} \rangle$

Remark. If $\Gamma = \text{Cay}(G, X)$ is an ordinary Cayley graph over G with a connection set X, then the Weisfeiler–Leman closure of the partition with three relations consisting of the diagonal, the edges, and the non-edges forms the corresponding Cayley scheme \mathcal{X} .

Cayley graph is central if its connection set is a normal subset of G.

Central Cayley schemes over almost simple groups

S is a nonabelian simple group (in particular, $S \simeq \text{Inn}(S)$) G is called an almost simple group, if $S \le G \le \text{Aut}(S)$ Central Cayley schemes over almost simple groups

S is a nonabelian simple group (in particular, $S \simeq \text{Inn}(S)$) G is called an almost simple group, if $S \le G \le \text{Aut}(S)$

 \mathcal{CCS} the class of central Cayley schemes over almost simple groups

Theorem 1 (Ponomarenko–V., 2017)

The problem ISO_{CCS_n} can be solved in time poly(n)

Central Cayley schemes over almost simple groups

S is a nonabelian simple group (in particular, $S \simeq \text{Inn}(S)$) G is called an almost simple group, if $S \le G \le \text{Aut}(S)$

 \mathcal{CCS} the class of central Cayley schemes over almost simple groups

Theorem 1 (Ponomarenko–V., 2017) The problem ISO_{CCS_n} can be solved in time poly(*n*)

Remark on simple groups

Grechkoseeva–PV., to appear:

Let G be a finite simple group, X a normal subset of G. Then the Cayley graph $\Gamma = \text{Cay}(G, X)$ has at most two nonequivalent Cayley representations. Moreover, Γ is Cl-graph if and only if $X = X^{-1}$

Proof of Theorem 1: Key ingredients

- In the analysis of possible structure of Aut(X) we apply the classification of primitive permutation groups with a regular almost simple subgroup (Liebeck–Praeger–Saxl, 2010), while in the imprimitive case the key is a concept of the generalized wreath product of groups (and schemes)
- In the algorithmic part we use the Weisfeiler-Leman algorithm and methods developed by Evdokimov and Ponomarenko for isomorphism testing of circulants.

Proof of Theorem 1: Key ingredients

- In the analysis of possible structure of Aut(X) we apply the classification of primitive permutation groups with a regular almost simple subgroup (Liebeck–Praeger–Saxl, 2010), while in the imprimitive case the key is a concept of the generalized wreath product of groups (and schemes)
- In the algorithmic part we use the Weisfeiler-Leman algorithm and methods developed by Evdokimov and Ponomarenko for isomorphism testing of circulants.
- In the proof of the CI-property for simple groups we (prove) and exploit the following fact:
 Each nonabelian finite simple group S contains an involution t such that Aut(S) = S · C_{Aut(S)}(t).

Schemes associated with groups: Schurian schemes

- $G \leq \mathsf{Sym}(\Omega)$ acts componentwisely on $\Omega imes \Omega$
- $S = Orb_2(G, \Omega)$ is the set of orbits of this action (2-orbits)

Schemes associated with groups: Schurian schemes

 $G \leq \text{Sym}(\Omega)$ acts componentwisely on $\Omega \times \Omega$ $S = \text{Orb}_2(G, \Omega)$ is the set of orbits of this action (2-orbits) $\text{Inv}(G) = \text{Inv}(G, \Omega) = (\Omega, S)$ is a schurian scheme

Claim

 \mathcal{X} is schurian if and only if $\mathcal{X} = \mathsf{Inv}(\mathsf{Aut}(\mathcal{X}))$

Schemes associated with groups: Schurian schemes

 $G \leq \text{Sym}(\Omega)$ acts componentwisely on $\Omega \times \Omega$ $S = \text{Orb}_2(G, \Omega)$ is the set of orbits of this action (2-orbits) $\text{Inv}(G) = \text{Inv}(G, \Omega) = (\Omega, S)$ is a schurian scheme

Claim

 \mathcal{X} is schurian if and only if $\mathcal{X} = \mathsf{Inv}(\mathsf{Aut}(\mathcal{X}))$

If G is a finite group and $H \leq G$, then G acts on the set $\Omega = G/H$ of right cosets by right multiplications

 $\mathcal{X} = Inv(G, H)$ is a (homogeneous) scheme w.r.t this action

Cartan schemes over simple groups of Lie type

G is a finite group with a (B, N)-pair $H = B \cap N$ is the Cartan subgroup of G $\mathcal{X} = Inv(G, H)$ is called a Cartan scheme Cartan schemes over simple groups of Lie type

G is a finite group with a (B, N)-pair $H = B \cap N$ is the Cartan subgroup of *G* $\mathcal{X} = \text{Inv}(G, H)$ is called a Cartan scheme

Claim

Every finite simple group of Lie type is a group with a (B, N)-pair

Cartan schemes over simple groups of Lie type

G is a finite group with a (B, N)-pair $H = B \cap N$ is the Cartan subgroup of *G* $\mathcal{X} = Inv(G, H)$ is called a Cartan scheme

Claim

Every finite simple group of Lie type is a group with a (B, N)-pair

L is a simple group of Lie type of rank *I* over the field of order *q* \mathcal{L} is the class of Cartan schemes for such groups *L* (with additional condition $l \ge 7$ and $q \ge 4l$ in the case of classical groups)

Theorem 2 (Ponomarenko–V.,2016) The problems $\text{RCG}_{\mathcal{L}_n}$ and $\text{ISO}_{\mathcal{L}_n}$ can be solved in time poly(n)

Proof of Theorem 2: Key ingredients

- Combinatorial part. A sufficient condition for any scheme to have the combinatorial base of size at most 2
- ② Group-theoretical part. Proving that the above condition holds for Cartan scheme over groups from *L*
- 3 Algorithmic part. The Weisfeiler-Leman algorithm and the fact that the combinatorial base of X is at most 2

AUT for Schurain schemes and 2-Closure problem

 \mathcal{SCH} is the class of all Schurian schemes

 $\mathcal{X} = (\Omega, R) \in \mathcal{SCH} \Leftrightarrow \text{there is } G \leq \text{Sym}(\Omega) \text{ s.t. } R = \text{Orb}(G, \Omega^2)$

AUT for Schurain schemes and 2-Closure problem

 \mathcal{SCH} is the class of all Schurian schemes

 $\mathcal{X} = (\Omega, R) \in \mathcal{SCH} \Leftrightarrow \text{there is } G \leq \text{Sym}(\Omega) \text{ s.t. } R = \text{Orb}(G, \Omega^2)$

It follows that $\mathsf{AUT}_{\mathcal{SCH}}$ is equivalent to the following

2-Closure Problem

Given a permutation group G, find $G^{(2)}$

Wielandt, 1969: $G^{(2)} = Aut(Inv(G))$ is the 2-closure of G

AUT for Schurain schemes and 2-Closure problem

 \mathcal{SCH} is the class of all Schurian schemes

 $\mathcal{X} = (\Omega, R) \in \mathcal{SCH} \Leftrightarrow \text{there is } G \leq \text{Sym}(\Omega) \text{ s.t. } R = \text{Orb}(G, \Omega^2)$

It follows that $\mathsf{AUT}_{\mathcal{SCH}}$ is equivalent to the following

2-Closure Problem

Given a permutation group G, find $G^{(2)}$

Wielandt, 1969: $G^{(2)} = Aut(Inv(G))$ is the 2-closure of G

Remark. One can consider the 2-closure problem as dual to

APART Problem

Given a partition P of Ω^2 , find Inv(Aut(P))

Known Results

Theory (Wielandt et al.)

- **1** G is abelian \Rightarrow G⁽²⁾ is abelian
- 2 *G* is a *p*-group \Rightarrow *G*⁽²⁾ is a *p*-group
- 3 G is nilpotent \Rightarrow G⁽²⁾ is nilpotent
- ④ G is of odd order \Rightarrow G⁽²⁾ is of odd order
- **5** G is imprimitive Frobenius \Rightarrow $G^{(2)} = G$
- (G × H)⁽²⁾ = $G^{(2)} \times H^{(2)}$ (in both cases)
- ${\it O}$ $({\it G}\wr {\it H})^{(2)}={\it G}^{(2)}\wr {\it H}^{(2)}$ (an imprimitive wreath product)

Known Results

Theory (Wielandt et al.)

- 1) G is abelian $\Rightarrow G^{(2)}$ is abelian
- 2 *G* is a *p*-group \Rightarrow *G*⁽²⁾ is a *p*-group
- 3 G is nilpotent \Rightarrow G⁽²⁾ is nilpotent
- ④ G is of odd order \Rightarrow $G^{(2)}$ is of odd order
- **5** *G* is imprimitive Frobenius \Rightarrow *G*⁽²⁾ = *G*

$$(G imes H)^{(2)} = G^{(2)} imes H^{(2)}$$
 (in both cases)

𝗿 $(G \wr H)^{(2)} = G^{(2)} \wr H^{(2)}$ (an imprimitive wreath product)

Algorithms

The 2-closure problem for a permutation group G of degree n can be solved in time poly(n) in the following cases

- G is nilpotent (Ponomarenko, 1994)
- 2 G is of odd order (Evdokimov-P., 2001)

Obstacles

1 G is solvable \Rightarrow G⁽²⁾ is solvable
If $G = C_p \rtimes C_{p-1}$ of degree p then $G^{(2)} = \text{Sym}(p)$

Obstacles

Obstacles

Some New Results (not published yet)

Theorem 3 (Ponomarenko-V.)

The 2-closure problem for a permutation group G of degree n can be solved in time poly(n), if

- G is supersolvable
- 2 G is metabelain

Some New Results (not published yet)

Theorem 3 (Ponomarenko-V.)

The 2-closure problem for a permutation group G of degree n can be solved in time poly(n), if

G is supersolvable

G is metabelain

A transitive permutation group is said to be $\frac{3}{2}$ -transitive, if nontrivial orbits of a point stabilizer are all of the same size.

Theorem 4 (Churikov–V.)

The 2-closure problem for a $\frac{3}{2}$ -transitive permutation group G of degree n can be solved in time poly(n)

Primitive case

Liebeck-Praeger-Saxl 1988, and PS 1992

If $G \leq \text{Sym}(\Omega)$ is primitive, then either $\text{Soc}(G) = \text{Soc}(G^{(2)})$, or one of the following holds:

- G is 2-transitive
- ② G and $G^{(2)}$ are known almost simple groups
- 3 G and $G^{(2)}$ preserve a product decomposition $\Omega = \Delta^m$, $m \ge 2$, and G^{Δ} and $(G^{(2)})^{\Delta}$ are groups from (1) and (2).

Primitive case

Liebeck-Praeger-Saxl 1988, and PS 1992

If $G \leq \text{Sym}(\Omega)$ is primitive, then either $\text{Soc}(G) = \text{Soc}(G^{(2)})$, or one of the following holds:

- G is 2-transitive
- ② G and $G^{(2)}$ are known almost simple groups
- 3 G and $G^{(2)}$ preserve a product decomposition $\Omega = \Delta^m$, $m \ge 2$, and G^{Δ} and $(G^{(2)})^{\Delta}$ are groups from (1) and (2).

We have (due to Savelii Skresanov and GAP) a bunch of examples, where G is a maximal subgroup in $A\Gamma L_1(p^d)$ and $G^{(2)}$ is a subgroup of $AGL_d(p)$ which contains a composition factor isomorphic to a simple group of Lie type (here $p \in \{2,3\}$ and $d \in \{6,8\}$).

Primitive case

Liebeck-Praeger-Saxl 1988, and PS 1992

If $G \leq \text{Sym}(\Omega)$ is primitive, then either $\text{Soc}(G) = \text{Soc}(G^{(2)})$, or one of the following holds:

- G is 2-transitive
- ② G and $G^{(2)}$ are known almost simple groups
- 3 G and $G^{(2)}$ preserve a product decomposition $\Omega = \Delta^m$, $m \ge 2$, and G^{Δ} and $(G^{(2)})^{\Delta}$ are groups from (1) and (2).

We have (due to Savelii Skresanov and GAP) a bunch of examples, where G is a maximal subgroup in $A\Gamma L_1(p^d)$ and $G^{(2)}$ is a subgroup of $AGL_d(p)$ which contains a composition factor isomorphic to a simple group of Lie type (here $p \in \{2,3\}$ and $d \in \{6,8\}$).

Remark. Most of these examples are groups of rank 3.

Find a polynomial-time algorithm that solves the 2-closure problem

Find a polynomial-time algorithm that solves the 2-closure problem, in particular, for

- solvable groups
- 2 groups of rank 3.

Find a polynomial-time algorithm that solves the 2-closure problem, in particular, for

- solvable groups
- 2 groups of rank 3.

Find a polynomial-time algorithm that solves the recognition problem for schurian schemes

Find a polynomial-time algorithm that solves the 2-closure problem, in particular, for

- solvable groups
- 2 groups of rank 3.

Find a polynomial-time algorithm that solves the recognition problem for schurian schemes, in particular, for

- schurian eqiuvalenced schemes
- Coxeter schemes.