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Setup

Ω is a finite set of size n, I is a set of colors

X = (Ω,R) is a (colored) coherent configuration (a scheme)
R = {ri : i ∈ I} is a partition of Ω× Ω

X ′ = (Ω,R ′) is another scheme with the same set of colors
Iso(X ,X ′) = {ϕ ∈ Sym(Ω) : riϕ = r ′i , i ∈ I}

If Iso(X ,X ′) is non-empty, then it is a coset in Sym(Ω) of
Aut(X ) = {ϕ ∈ Sym(Ω) : riϕ = ri , i ∈ I}
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Problems

K (resp. Kn) is a class (closed w.r.t isomorphisms) of schemes
(resp. of schemes of size n)

ISOK: Given X ,X ′ ∈ K, find Iso(X ,X ′)

AUTK: Given X ∈ K, find Aut(X )

C is the class of all schemes

RCGK: Given X ∈ C, determine whether X ∈ K or not
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Why does a solvability of Aut(X ) matter?

The composition width cw(H) of a group H is a least positive
integer d such that every nonabelian composition factor of a
group H can be embedded in Sym(d)

Claim (Babai–Lucks, 1983)
Let X = (Ω,R) be a scheme. Given H ≤ Sym(Ω) with cw(H) ≤ d ,
the group Aut(X ) ∩ H can be found in time nf (d)
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Schemes associated with groups: Cayley schemes

Let Ω = G for some group G
X = (Ω,R) is called a Cayley scheme over G if Aut(X ) includes a
regular subgroup Gright isomorphic to G

A Cayley scheme over G is central if Aut(X ) includes 〈Gleft ,Gright〉

Remark. If Γ = Cay(G ,X ) is an ordinary Cayley graph over G with
a connection set X , then the Weisfeiler–Leman closure of the
partition with three relations consisting of the diagonal, the edges,
and the non-edges forms the corresponding Cayley scheme X .

Cayley graph is central if its connection set is a normal subset of G .
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Central Cayley schemes over almost simple groups

S is a nonabelian simple group (in particular, S ' Inn(S))
G is called an almost simple group, if S ≤ G ≤ Aut(S)

CCS the class of central Cayley schemes over almost simple groups

Theorem 1 (Ponomarenko–V., 2017)
The problem ISOCCSn can be solved in time poly(n)

Remark on simple groups

Grechkoseeva–PV., to appear:
Let G be a finite simple group, X a normal subset of G . Then the
Cayley graph Γ = Cay(G ,X ) has at most two nonequivalent Cayley
representations. Moreover, Γ is CI-graph if and only if X = X−1
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Proof of Theorem 1: Key ingredients

1 In the analysis of possible structure of Aut(X ) we apply the
classification of primitive permutation groups with a regular
almost simple subgroup (Liebeck–Praeger–Saxl, 2010), while
in the imprimitive case the key is a concept of the generalized
wreath product of groups (and schemes)

2 In the algorithmic part we use the Weisfeiler–Leman algorithm
and methods developed by Evdokimov and Ponomarenko for
isomorphism testing of circulants.

3 In the proof of the CI-property for simple groups we (prove)
and exploit the following fact:
Each nonabelian finite simple group S contains an involution t
such that Aut(S) = S · CAut(S)(t).
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Schemes associated with groups: Schurian schemes

G ≤ Sym(Ω) acts componentwisely on Ω× Ω

S = Orb2(G ,Ω) is the set of orbits of this action (2-orbits)

Inv(G ) = Inv(G ,Ω) = (Ω, S) is a schurian scheme

Claim
X is schurian if and only if X = Inv(Aut(X ))

If G is a finite group and H ≤ G , then G acts on the set Ω = G/H
of right cosets by right multiplications

X = Inv(G ,H) is a (homogeneous) scheme w.r.t this action
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Cartan schemes over simple groups of Lie type

G is a finite group with a (B,N)-pair
H = B ∩ N is the Cartan subgroup of G
X = Inv(G ,H) is called a Cartan scheme

Claim
Every finite simple group of Lie type is a group with a (B,N)-pair

L is a simple group of Lie type of rank l over the field of order q

L is the class of Cartan schemes for such groups L (with additional
condition l ≥ 7 and q ≥ 4l in the case of classical groups)

Theorem 2 (Ponomarenko–V.,2016)
The problems RCGLn and ISOLn can be solved in time poly(n)
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Proof of Theorem 2: Key ingredients

1 Combinatorial part. A sufficient condition for any scheme to
have the combinatorial base of size at most 2

2 Group-theoretical part. Proving that the above condition holds
for Cartan scheme over groups from L

3 Algorithmic part. The Weisfeiler–Leman algorithm and the fact
that the combinatorial base of X is at most 2
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AUT for Schurain schemes and 2-Closure problem

SCH is the class of all Schurian schemes

X = (Ω,R) ∈ SCH ⇔ there is G ≤ Sym(Ω) s.t. R = Orb(G ,Ω2)

It follows that AUTSCH is equivalent to the following

2-Closure Problem
Given a permutation group G , find G (2)

Wielandt, 1969: G (2) = Aut(Inv(G )) is the 2-closure of G

Remark. One can consider the 2-closure problem as dual to

APART Problem
Given a partition P of Ω2, find Inv(Aut(P))
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Known Results
Theory (Wielandt et al.)

1 G is abelian ⇒ G (2) is abelian
2 G is a p-group ⇒ G (2) is a p-group
3 G is nilpotent ⇒ G (2) is nilpotent
4 G is of odd order ⇒ G (2) is of odd order
5 G is imprimitive Frobenius ⇒ G (2) = G

6 (G × H)(2) = G (2) × H(2) (in both cases)
7 (G o H)(2) = G (2) o H(2) (an imprimitive wreath product)

Algorithms
The 2-closure problem for a permutation group G of degree n can
be solved in time poly(n) in the following cases

1 G is nilpotent (Ponomarenko, 1994)
2 G is of odd order (Evdokimov–P., 2001)
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Obstacles

1 G is solvable 6⇒ G (2) is solvable

If G = Cp o Cp−1 of degree p then G (2) = Sym(p)

2 Primitive case 6⇒ general case

Let G = Cp2 o Cp−1 and H = Cp2 o Cp(p−1) of degree p2.

Let D be the imprimitivity system consisting of p blocks of
size p each, and let ∆ is one of this blocks. Then

G∆ = H∆ = Cp o Cp−1, so (G∆)(2) = (H∆)(2) = Sym(p)

GD = HD = Cp o Cp−1, so (GD)(2) = (GD)(2) = Sym(p).

It can be easily verified that H(2) = Sym(p) o Sym(p),

but G is imprimitive Frobenius, so G (2) = G .
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Some New Results (not published yet)

Theorem 3 (Ponomarenko–V.)
The 2-closure problem for a permutation group G of degree n can
be solved in time poly(n), if

1 G is supersolvable
2 G is metabelain

A transitive permutation group is said to be 3
2 -transitive, if

nontrivial orbits of a point stabilizer are all of the same size.

Theorem 4 (Churikov–V.)

The 2-closure problem for a 3
2 -transitive permutation group G of

degree n can be solved in time poly(n)
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Primitive case

Liebeck–Praeger–Saxl 1988, and PS 1992

If G ≤ Sym(Ω) is primitive, then either Soc(G ) = Soc(G (2)),
or one of the following holds:

1 G is 2-transitive
2 G and G (2) are known almost simple groups
3 G and G (2) preserve a product decomposition Ω = ∆m,

m ≥ 2, and G∆ and (G (2))∆ are groups from (1) and (2).

We have (due to Savelii Skresanov and GAP) a bunch of examples,
where G is a maximal subgroup in AΓL1(pd) and G (2) is a subgroup
of AGLd(p) which contains a composition factor isomorphic to a
simple group of Lie type (here p ∈ {2, 3} and d ∈ {6, 8}).

Remark. Most of these examples are groups of rank 3.
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Open Problems

Find a polynomial-time algorithm that solves the 2-closure problem

,
in particular, for

1 solvable groups
2 groups of rank 3.

Find a polynomial-time algorithm that solves the recognition
problem for schurian schemes, in particular, for

1 schurian eqiuvalenced schemes
2 Coxeter schemes.
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