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Color refinement algorithm, a.k.a. WL[1]

The initial coloring C0 is monochromatic.

A color refinement step: Ci+1(v) = Ci(v) |
{{
Ci(u)

}}
u∈N(v)

= | { , }
= | { , , }

Note that C1(v) ≡ deg v

The next color refinement: C2(v) = C1(v) |
{{
C1(u)

}}
u∈N(v)

= | { , }
= | { , } The color partition is refined in each step.
= | { , } Once it stabilizes, we can terminate.
= | { , , }

2/53



Color refinement algorithm, a.k.a. WL[1]

The initial coloring C0 is monochromatic.

A color refinement step: Ci+1(v) = Ci(v) |
{{
Ci(u)

}}
u∈N(v)

= | { , }
= | { , , }

Note that C1(v) ≡ deg v

The next color refinement: C2(v) = C1(v) |
{{
C1(u)

}}
u∈N(v)

= | { , }
= | { , } The color partition is refined in each step.
= | { , } Once it stabilizes, we can terminate.
= | { , , }

3/53



Color refinement algorithm, a.k.a. WL[1]

The initial coloring C0 is monochromatic.A color refinement step: Ci+1(v) = Ci(v) |
{{
Ci(u)

}}
u∈N(v)

= | { , }
= | { , , }

Note that C1(v) ≡ deg v

The next color refinement: C2(v) = C1(v) |
{{
C1(u)

}}
u∈N(v)

= | { , }
= | { , } The color partition is refined in each step.
= | { , } Once it stabilizes, we can terminate.
= | { , , }

4/53



The Weisfeiler-Leman algorithm, a.k.a. WL[2]

Input graphs: C12 and 2C6

The initial coloring C0 of V 2: “edges” for (u, v) s.t. u ∼ v,
“non-edges” for (u, v) s.t. u 6∼ v, “vertices” for (u, v) s.t. u = v.
A color refinement step:
Ci+1(u, v) = Ci(u, v) |

{{
Ci(u,w) | Ci(w, v)

}}
w∈V

The next color refinement step:
C2(u, v) = C1(u, v) |

{{
C1(u,w) | C1(w, v)

}}
w∈V

The non-isomorphism recognized.

The next color refinement step:
C3(u, v) = C2(u, v) |

{{
C2(u,w) | C2(w, v)

}}
w∈V

The color partition stabilized.
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The k-dimensional Weisfeiler-Leman algorithm WL[k]

The 4× 4 rook’s graph and the Shrikhande graph
(3D printing by Jonathan Gerhard)

WL[3] distinguishes between these two SRGs(16,6,2,2).
The initial coloring C0 of V 3: according to the equality type of
(x1, x2, x3) and the isomorphism type of G[x1, x2, x3].
Color refinement step: Ci+1(x1, x2, x3) = Ci(x1, x2, x3) |{{
C1(w, x2, x3) | C1(x1, w, x3) | C1(x1, x2, w)

}}
w∈V
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The Weisfeiler-Leman dimension of a graph

Definition
dimWL(G) is equal to the minimum k such that WL[k]
distinguishes G from every non-isomorphic graph H.

A basic observation
If dimWL(G) = O(1) for all G in a class of graphs C, then the
isomorphism problem for C is solvable in polynomial time.

Examples:

dimWL(G) = 1 if G is a tree [Edmonds 65]
dimWL(G) ≤ 3 if G planar

[Kiefer, Ponomarenko, Schweitzer 2017]
dimWL(G) ≤ 2 if G is an interval graph

[Evdokimov, Ponomarenko, Tinhofer 2000]
dimWL(G) ≤ k + 1 if tw(G) ≤ k [Grohe, Mariño 1999]
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The Weisfeiler-Leman dimension of a graph

Theorem (Arvind, Köbler, Rattan, V. 2015; Kiefer, Schweitzer,
Selman 2015)

Given a graph G, one can efficiently recognize whether or not
dimWL(G) = 1.

Remark: If the same would be possible for dimension 2, then for a
given strongly regular graph we could efficiently decide whether or
not it is uniquely determined by its parameters.
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The speed of color stabilization

WL[1] WL[2] (only the diagonal
of V 2 is shown)

Definition
Let Stabk(G) denote the number of refinement rounds that WL[k]
performs on input G until stabilization.

Example:
Stab1(Pn) = b(n− 1)/2c while Stab2(Pn) ≤ dlog2 ne.
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Importance of fast stabilization I

Theorem (Babai, Erdős, Selkow 1980)

Stab1(G) ≤ 2 for almost all G and, moreover, the stable partition
consists of singletons.

Corollary
The average case of Graph Isomorphism is solvable in linear time.

Theorem (Bollobás 1982)

Stab2(G) = O(log log n) for almost all regular G of a fixed degree.

Here and below n denotes the number of vertices in G.
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Importance of fast stabilization II

An observation
Suppose that

dimWL(G) ≤ k

for all G in a class of graphs C and, moreover,

Stabk(G) = O(log n).

Then the isomorphism problem for C is solvable in polylogarithmic
time using polynomially many parallel processors.

GI
QP

P

NC

QP – quasi-polynomial time

P – polynomial time

NC – parallel polylogarithmic time
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Logic behind WL[k]

Suppose we are given two non-isomorphic graphs.

We want to succinctly express the reasons why these graphs are
non-isomorphic.
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Logic behind WL[k]

Vocabulary:

= equality of vertices
∼ adjacency of vertices

Syntax:

∧,∨,¬ etc. Boolean connectives
∃, ∀ quantification over vertices

(no quantification over sets).

Moreover:

∃≥m, ∃=m etc. counting quantifiers
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Logic behind WL[k]

Example: True for both graphs

∃=12x (x = x) ∧ ∀x ∃=2y (y ∼ x).
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Logic behind WL[k]

True for C12 but false for 2C6:

∀x ∀y dist≤6(x, y),

where dist≤n(x, y) is an expression for

“x and y are at distance at most n from each other”
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Succinctness of logical expressions

1st version: n + 1 variables, quantifier depth n− 1

dist≤1(x, y)
def
= x ∼ y ∨ x = y

dist≤n(x, y)
def
= ∃z1 . . . ∃zn−1

(
dist≤1(x, z1) ∧ dist≤1(z1, z2) ∧ . . .

. . . ∧ dist≤1(zn−2, zn−1) ∧ dist≤1(zn−1, y)
)

∀x(∀y(∃z(. . .))) – depth 3; (∀x . . .) ∧ (∀y . . .) ∧ (∃z . . .) – depth 1

2nd version: 3 variables, quantifier depth dlog2 ne

dist≤n(x, y)
def
= ∃z

(
dist≤bn/2c(x, z) ∧ dist≤dn/2e(z, y)

)
.
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A logical characterization of WL[k]

Theorem (Cai, Fürer, Immerman 1992)
1 WL[k] distinguishes G and H iff G and H are distinguishable

by a (k + 1)-variable sentence with counting quantifiers.
2 Moreover,

G and H are distinguishable by a sentence
with k + 1 variables of quantifier depth r + 1

⇓

WL[k] distinguishes G and H after r rounds

⇓

G and H are distinguishable by a sentence
with k + 1 variables of quantifier depth r + k
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Three reasons why the logical characterization is useful

1 A sentence defines a graph G if it is true on G and false on
any non-isomorphic graph. If we prove that each graph G in a
class C is definable by a sentence with k + 1 variables, we
know that the isomorphism problem for G is solvable by
WL[k]. A prominent example:

any class of graphs excluding a fixed minor [Grohe 2012]

2 If we show that, moreover, each G ∈ C is definable with
quantifier depth O(log n), then the isomorphism problem for
G is solved even in NC.

3 Logic gives us a useful working tool — the Ehrenfeucht game.
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Ehrenfeucht game

Two players: Spoiler and Duplicator

Duplicator’s objective: to keep a partial isomorphism
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Ehrenfeucht game

Two players: Spoiler and Duplicator

Conclusion: If G is connected and H is disconnected, then Spoiler wins with 3
pebbles in O(logn) moves =⇒ G and H are distinguishable with 3 variables
and quantifier depth O(logn) =⇒ WL[2] distinguishes G and H making
O(logn) refinement rounds
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A lower bound

Comments:
1 We have just seen a simplified version of the game, which

corresponds to logic without counting.
2 The game is useful in proving both positive and negative

results.

Theorem (Cai, Fürer, Immerman 1992)

There are infinitely many regular graphs G of degree 3 with
dimWL(G) > 0.004n.
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A positive example

Recall that every tree T has dimWL(T ) = 1 or, equivalently, is
definable using 2 variables. For some trees we need linear quantifier
depth. This can be improved:

one extra variable =⇒ logarithmic depth !

Theorem
Every n-vertex tree T is definable with 3 variables and quantifier
depth ≤ 3 log n.

Proof idea:
Consider non-isomorphic trees T and T ′.
We can suppose that the diameters of T and T ′ are equal for
else Spoiler wins with 3 pebbles in logarithmically many moves.
For simplicity, assume that the diameter is even, hence both T
and T ′ have a unique central vertex.
If Spoiler pebbles the central vertex in one of the trees,
Duplicator is forced to respond with the central vertex in the
other tree (for else he loses in a log number of rounds).
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cont’d

In this way, Spoiler can play as if T and T ′ were directed trees
rooted at their central vertices.
Since T 6∼= T ′, T and T ′ differ by the number of branches of
some isomorphism type from the root.
Spoiler can force further play on non-isomorphic branches. He
repeats this, making the branches each time smaller.
To speed up, Spoiler marks a branch by pebbling its separator.
A vertex v is a separator of T if every connected component of
T − v has size at most n/2. The most non-obvious part of the
argument is that 3 pebbles are still enough.
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History of the tree isomorphism problem

Theorem
Every n-vertex tree T is definable with 3 variables and quantifier
depth ≤ 3 log n.

Testing isomorphism of trees is
in Lin-Time by CR [Edmonds 1965]
in NC if ∆ = O(log n) [Ruzzo 1981]
in NC [Miller-Reif 1991]
in Log-Space [Lindell 1992]

Miller and Reif [SIAM J. Comput. 1991]: “No polylogarithmic
parallel algorithm was previously known for isomorphism of
unbounded-degree trees.”
However, the 3 log n-round WL[2] solves it in NC and is known
since 1968 !
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50 years of WL[2]
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Further results for particular graph classes

Every graph G of tree-width k is definable with 4k + 4 variables
and quantifier depth O(k log n) [Grohe, V. 2006].

Every 3-connected planar graph G is definable with 15 variables
and quantifier depth O(log n) [V. 2007].

Every interval graph G is definable with 15 variables and quantifier
depth O(log n) cf. [Köbler, Kuhnert, Laubner, V. 2011].

Open problem
Is it true that, for each F , if G excludes F as a minor, then G is
definable not only with finitely many variables but also with
logarithmic quantifier depth?
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The speed of stabilization — a worst-case analysis

We have seen that Stab1(Pn) ≥ 1
2 n− 1.

Theorem (Krebs, V. 2015)

There are n-vertex graphs G and H that are distinguishable with 2
variables but only with quantifier depth more than n− 8

√
n.

Consequently, there are n-vertex graphs G with
Stab1(G) = (1− o(1))n.

This has some applications...
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Universal covers and distributed computing

Theorem (Leighton 82, Immerman and Lander 1990)

The following three conditions are equivalent:
G and H are indistinguishable by any 2-variable sentence with
counting quantifiers;
G and H are indistinguishable by Color Refinement.
G and H have isomorphic universal covers.

Our result provides n-vertex G and H with non-isomorphic
universal covers that are isomorphic when truncated at depth
(2− o(1))n.
This solves Norris’s problem (1995) and implies that the
standard upper bound of 2n for the communication round
complexity of a certain class of distributed algorithms is
essentially tight.
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The speed of stabilization — a worst-case analysis

Theorem (Kiefer, Schweitzer 2016)

For all G,
Stab2(G) = o(n2).

Specifically, Stab2(G) = O(n2/ log n).

Theorem (Fürer 2001)

For each k ≥ 1, there are G such that

Stabk(G) = Ω(n).

Theorem (Berkholz, Nordström 2016)

If k is sufficiently large, then there are k-ary relational structures S
such that

Stabk(S) = nΩ(k/ log k).
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Thank you for your attention!
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