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Color refinement algorithm, a.k.a. WLJ[1]

The initial coloring C° is monochromatic.



Color refinement algorithm, a.k.a. WL[1]

A color refinement step: C*+1(v v) | { C¥(u

@®-01{0,0}
O=01{0,0,0y

Note that C*(v) = degv

}} ueN (v)



Color refinement algorithm, a.k.a. WL[1]

The next color refinement: C2(v v) | { CHu )}}ueN(U)
0-0{06;

. = . | {O, O} The color partition is refined in each step.
. = . | {., O} Once it stabilizes, we can terminate.
0-01{0,0,0}
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The Weisfeiler-Leman algorithm, a.k.a. WL[2]

Input graphs: Ci5 and 2 Cg



The Weisfeiler-Leman algorithm, a.k.a. WL|[2]

The initial coloring C° of V2: “edges” for (u,v) s.t. u ~ v,
“non-edges” for (u,v) s.t. u # v, "vertices” for (u,v) s.t. u = v.



The Weisfeiler-Leman algorithm, a.k.a. WL|[2]

A color refinement step:

| {{ Ci(uvw) ‘ Ci(w,'l)) }}we\/

v) = C(u,v)

i

Ci+1 (u



The Weisfeiler-Leman algorithm, a.k.a. WL|[2]

The next color refinement step:
02(u7 U) = Cl (ua U) ‘ {{ Cl(“? w) | Cl (’LU, U) }}wEV

The non-isomorphism recognized.



The Weisfeiler-Leman algorithm, a.k.a. WL|[2]

The next color refinement step:
Cs(ua U) = CQ(UH U) | {{ CQ(“? ZU) | CQ(wa U) }}wGV

The color partition stabilized.
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The k-dimensional Weisfeiler-Leman algorithm WL[]

The 4 x 4 rook’s graph and the Shrikhande graph
(3D printing by Jonathan Gerhard)
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The k-dimensional Weisfeiler-Leman algorithm WL[]

The 4 x 4 rook’s graph and the Shrikhande graph
(3D printing by Jonathan Gerhard)

(fl

WLJ3] distinguishes between these two SRGs(16,6,2,2).

The initial coloring C? of V3: according to the equality type of
(x1,x2,x3) and the isomorphism type of G|x1, x2, x3].

Color refinement step: C'*(xq, 20, 73) = C¥(x1, 22, 73) |

{{ Cl(w, o, 23) | CH(z1,w,23) | CH (21, 22, W) }}wEV
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The Weisfeiler-Leman dimension of a graph

Definition
dimw(G) is equal to the minimum & such that WL[k]
distinguishes G from every non-isomorphic graph H.

A basic observation

If dimy(G) = O(1) for all G in a class of graphs C, then the
isomorphism problem for C is solvable in polynomial time.

Examples:

o dimwy(G) =1if Gis a tree [Edmonds 65]

o dimwy(G) < 3 if G planar
[Kiefer, Ponomarenko, Schweitzer 2017]

e dimwyy(G) <2 if G is an interval graph
[Evdokimov, Ponomarenko, Tinhofer 2000]

o dimy(G) <k+1iftw(G) <k [Grohe, Marifio 1999]
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The Weisfeiler-Leman dimension of a graph

Theorem (Arvind, Kobler, Rattan, V. 2015; Kiefer, Schweitzer,
Selman 2015)

Given a graph G, one can efficiently recognize whether or not
dimw(G) = 1.

Remark: If the same would be possible for dimension 2, then for a
given strongly regular graph we could efficiently decide whether or
not it is uniquely determined by its parameters.
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The speed of color stabilization

WLJ1] WLI2] (only the diagonal
of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
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The speed of color stabilization

WLJ1] WLI[2] (only the diagonal
of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0

O-O-O-0-O0-0-0-0-0-0-00-00e O-O-O-0-0-0C-0-0-0-0-0-000e
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The speed of color stabilization

WLJ1] WLI[2] (only the diagonal

of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
0-0-0-0-0-0-0-0-0-0-0-0-0-0-@ 0-0-0-0-0-0-0-0-0-0-0-0-0-0-@
0-0-O-O-0-O-0-0-0-0-0-0-Cee - 0-O-O-0-O-0-0-0-0-0-0-0e0
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The speed of color stabilization

WLJ1] WLI[2] (only the diagonal
of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0

O-O-O-0-O0-0-0-0-0-0-00-00e O-O-O-0-0-0C-0-0-0-0-0-000e
0-0-O-O-0-O-0-0-0-0-0-0-Cee - 0-O-O-0-O-0-0-0-0-0-0-0e0
[ & & 20L0L0L0L0,0,0,0,0, o o ] [ & o SOL0L0L0L0, 000,00, & o
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The speed of color stabilization

WLJ1] WLI[2] (only the diagonal
of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0

O-O-O-0-O0-0-0-0-0-0-00-00e O-O-O-0-0-0C-0-0-0-0-0-000e
0-0-O-O-0-O-0-0-0-0-0-0-Cee - 0-O-O-0-O-0-0-0-0-0-0-0e0
[ & & 20L0L0L0L0,0,0,0,0, o o ] [ & o SOL0L0L0L0, 000,00, & o
0-0-0-O-O-O-0-0-0-0-0-0-0e-0 -0-0-0-0-0-0-0-0-0 00000
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The speed of color stabilization

WLJ1] WLI[2] (only the diagonal

of V2 is shown)
(OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 (OL 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
0-0-0-0-0-0-0-0-0-0-0-0-0-0-@ ©-0-0-0-0-0-0-0-0-0-0-0-0-0-@
0-0-O-O-0-O-0-0-0-0-0-0-Cee - 0-O-O-0-O-0-0-0-0-0-0-0e0
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
-0-0-0-0-O-0-O-0-0-0-0C-e000 -0-0-0-0-0-0-0-0-0 00000
Definition

Let Staby(G) denote the number of refinement rounds that WL[k]
performs on input G until stabilization.

Example:
e Stabi(P,) = |(n —1)/2] while Staba(FP,) < [logyn].
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Importance of fast stabilization |

Theorem (Babai, Erdés, Selkow 1980)

Staby (G) < 2 for almost all G and, moreover, the stable partition
consists of singletons.

Corollary

The average case of Graph Isomorphism is solvable in linear time.

v

Theorem (Bollobas 1982)
Staba(G) = O(loglogn) for almost all regular G of a fixed degree.

Here and below n denotes the number of vertices in G.
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Importance of fast stabilization |l

An observation

Suppose that
dimw(G) < k

for all G in a class of graphs C and, moreover,
Staby(G) = O(logn).

Then the isomorphism problem for C is solvable in polylogarithmic
time using polynomially many parallel processors.

QP QP - quasi-polynomial time
.GI
P P — polynomial time
NC NC — parallel polylogarithmic time
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Logic behind WL[K]

Suppose we are given two non-isomorphic graphs.

We want to succinctly express the reasons why these graphs are
non-isomorphic.
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Logic behind WL[K]

Vocabulary:

= equality of vertices

~ adjacency of vertices
Syntax:

A, V, - etc. Boolean connectives
3,V quantification over vertices

(no quantification over sets).
Moreover:

32™m 3=™ etc. counting quantifiers
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Logic behind WL[K]

Example: True for both graphs

T2z (z = 2) AVe T2y (y ~ ).

24/53



Logic behind WL[K]

True for Ci9 but false for 2C:
VaVy dist<s(z,y),

where dist<,(x,y) is an expression for

“z and y are at distance at most n from each other”
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Succinctness of logical expressions

1st version: n + 1 variables, quantifier depth n — 1
dist<1(z,y) Lr~yva=y
dist<y,(z,y) el P Jzn_1 (distgl(a:, z1) Adist<y(z1,22) A ...

RAN distsl(zn_g, Zn—l) VAN distgl(zn_l, y))

@ Vz(Vy(3z(...))) —depth 3; (Vz..)A (Vy...)A(Fz...) —depth 1
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Succinctness of logical expressions

1st version: n + 1 variables, quantifier depth n — 1
dist<1(z,y) Lr~yva=y
dist<y,(z,y) el P Jzn_1 (distgl(a:, z1) Adist<y(z1,22) A ...

RAN distgl(zn_g, Zn—l) VAN distgl(zn_l, y))

@ Vz(Vy(3z(...))) —depth 3; (Vz..)A (Vy...)A(Fz...) —depth 1

2nd version: 3 variables, quantifier depth [logy 1|

dist<p (z,y) £ 32 (dist<|n/2) (x, 2) A dist<p,21(2,9)) -
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A logical characterization of WL[K]

Theorem (Cai, Fiirer, Immerman 1992)

@ WL[k] distinguishes G and H iff G and H are distinguishable
by a (k + 1)-variable sentence with counting quantifiers.

@ Moreover,
G and H are distinguishable by a sentence
with k + 1 variables of quantifier depth r + 1

4
WL[k] distinguishes G and H after r rounds

4

G and H are distinguishable by a sentence
with k + 1 variables of quantifier depth r + k
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Three reasons why the logical characterization is useful

@ A sentence defines a graph G if it is true on GG and false on
any non-isomorphic graph. If we prove that each graph G in a
class C is definable by a sentence with k& + 1 variables, we
know that the isomorphism problem for G is solvable by
WL[k]. A prominent example:

e any class of graphs excluding a fixed minor [Grohe 2012]
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Three reasons why the logical characterization is useful

@ A sentence defines a graph G if it is true on GG and false on
any non-isomorphic graph. If we prove that each graph G in a
class C is definable by a sentence with k& + 1 variables, we
know that the isomorphism problem for G is solvable by
WL[k]. A prominent example:

e any class of graphs excluding a fixed minor [Grohe 2012]
@ If we show that, moreover, each G € C is definable with
quantifier depth O(logn), then the isomorphism problem for
G is solved even in NC.

30/53



Three reasons why the logical characterization is useful

@ A sentence defines a graph G if it is true on GG and false on
any non-isomorphic graph. If we prove that each graph G in a
class C is definable by a sentence with k& + 1 variables, we
know that the isomorphism problem for G is solvable by
WL[k]. A prominent example:

e any class of graphs excluding a fixed minor [Grohe 2012]

@ If we show that, moreover, each G € C is definable with
quantifier depth O(logn), then the isomorphism problem for
G is solved even in NC.

© Logic gives us a useful working tool — the Ehrenfeucht game.
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Ehrenfeucht game

Two players: Spoiler and Duplicator
000 [ X X}

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
[ X [ X X}

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
[ X ( X

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
(] ( X

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
(] ()

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
()

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
(]

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator

Duplicator’s objective: to keep a partial isomorphism



Ehrenfeucht game

Two players: Spoiler and Duplicator
()
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Ehrenfeucht game

Two players: Spoiler and Duplicator
(]

Conclusion: If G is connected and H is disconnected, then Spoiler wins with 3
pebbles in O(logn) moves =—> G and H are distinguishable with 3 variables
and quantifier depth O(logn) = WLJ[2] distinguishes G and H making
O(logn) refinement rounds
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A lower bound

Comments:

© We have just seen a simplified version of the game, which
corresponds to logic without counting.

@ The game is useful in proving both positive and negative
results.

Theorem (Cai, Fiirer, Immerman 1992)

There are infinitely many regular graphs G of degree 3 with
dimWL(G) > 0.004n.
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A positive example

Recall that every tree T' has dim (7)) = 1 or, equivalently, is
definable using 2 variables. For some trees we need linear quantifier
depth. This can be improved:

@ one extra variable = logarithmic depth !

Theorem

Every n-vertex tree T is definable with 3 variables and quantifier
depth < 3 logn.
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A positive example

Recall that every tree T' has dim (7)) = 1 or, equivalently, is
definable using 2 variables. For some trees we need linear quantifier
depth. This can be improved:

@ one extra variable = logarithmic depth !

Theorem

Every n-vertex tree T is definable with 3 variables and quantifier
depth < 3 logn.

Proof idea:

e Consider non-isomorphic trees 7" and T".

@ We can suppose that the diameters of 7" and T are equal for
else Spoiler wins with 3 pebbles in logarithmically many moves.

@ For simplicity, assume that the diameter is even, hence both T
and 7" have a unique central vertex.

@ If Spoiler pebbles the central vertex in one of the trees,
Duplicator is forced to respond with the central vertex in the

other tree (for else he loses in a log number of rounds). 15 /53



cont'd

In this way, Spoiler can play as if 7" and T” were directed trees
rooted at their central vertices.

Since T 2 T', T and T" differ by the number of branches of
some isomorphism type from the root.

Spoiler can force further play on non-isomorphic branches. He
repeats this, making the branches each time smaller.

To speed up, Spoiler marks a branch by pebbling its separator.
A vertex v is a separator of T if every connected component of

T — v has size at most n/2. The most non-obvious part of the
argument is that 3 pebbles are still enough.
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History of the tree isomorphism problem

Theorem

Every n-vertex tree T' is definable with 3 variables and quantifier
depth < 3 logn.

Testing isomorphism of trees is

@ in Lin-Time by CR [Edmonds 1965]
e in NCif A =0O(logn) [Ruzzo 1981]
e in NC [Miller-Reif 1991]
@ in Log-Space [Lindell 1992]

Miller and Reif [SIAM J. Comput. 1991]: “No polylogarithmic
parallel algorithm was previously known for isomorphism of
unbounded-degree trees.”

However, the 3log n-round WL[2] solves it in NC and is known
since 1968 |
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50 years of WL|[2
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Further results for particular graph classes

Every graph G of tree-width £ is definable with 4% + 4 variables
and quantifier depth O(klogn) [Grohe, V. 2006].

Every 3-connected planar graph G is definable with 15 variables
and quantifier depth O(logn) [V. 2007].

Every interval graph G is definable with 15 variables and quantifier
depth O(logn) cf. [Kobler, Kuhnert, Laubner, V.2011].

Open problem
Is it true that, for each F, if G excludes F' as a minor, then G is

definable not only with finitely many variables but also with
logarithmic quantifier depth?
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The speed of stabilization — a worst-case analysis

We have seen that Stab;(P,) > %n —1.

Theorem (Krebs, V. 2015)

There are n-vertex graphs G and H that are distinguishable with 2
variables but only with quantifier depth more than n — 8\/n.
Consequently, there are n-vertex graphs G with

Stab;(G) = (1 —o(1)) n.

This has some applications...
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Universal covers and distributed computing

Theorem (Leighton 82, Immerman and Lander 1990)
The following three conditions are equivalent:

e G and H are indistinguishable by any 2-variable sentence with
counting quantifiers;

e G and H are indistinguishable by Color Refinement.

o G and H have isomorphic universal covers.

@ Our result provides n-vertex G and H with non-isomorphic
universal covers that are isomorphic when truncated at depth
(2 —o(1))n.

@ This solves Norris's problem (1995) and implies that the
standard upper bound of 2n for the communication round
complexity of a certain class of distributed algorithms is
essentially tight.
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The speed of stabilization — a worst-case analysis

Theorem (Kiefer, Schweitzer 2016)

For all G,
Staby(G) = o(n?).

Specifically, Staby(G) = O(n?/logn).

Theorem (Fiirer 2001)
For each k > 1, there are G such that

Stabi(G) = Q(n).

Theorem (Berkholz, Nordstrdm 2016)

If k is sufficiently large, then there are k-ary relational structures S
such that

Staby,(S) = nf¥k/logk),
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Thank you for your attention!

53/53



