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Coherent configurations

Definition

Coherent configurations (CCs) stable colorings under W-L
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Coherent configurations

Definition

CC X on set Ω is coloring c : Ω× Ω→ {colors}
(edge-colored complete digraph with loops) s.t.

(1)
c(x , x) 6= c(y , z)

(2)
x y x y

determinesc(x , y) c(y , x)

(3)

x y

z1 z2 z3 # = pijk
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Coherent configurations

Definition

CC is homogeneous if

(4) all vertices (loops) have same color

inhomogeneous homogeneous
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Coherent configurations

Definition

Homogeneous CC X is primitive (PCC) if

(5) each constituent digraph Xi = (Ω, c−1(i)) is connected

imprimitive primitive
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Johnson and Hamming schemes

J(m, k):

Johnson scheme on
([m]

k

)
c(A,B) = |A ∩ B|

H(m, d):
Hamming scheme on [m]d

c(w1,w2) = Hamming distance
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Schurian CCs

Group action G y Ω gives CC X(G ) on Ω:

c(u, v) = c(x , y) iff (∃g ∈ G )(ug , vg ) = (x , y)

J(m, k) = X(S
(k)
m )

H(m, d) = X(Sm o Sd)
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The asymptotic perspective

Interested in behavior of infinite families
as number of vertices n→∞

E.g.,

|Aut(J(m, 2))| = exp(Õ(n1/2))

|Aut(H(m, 2))| = exp(Õ(n1/2))
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Symmetry vs. regularity

Symmetry - properties of automorphism group
Regularity - expressed in numerical parameters

All PCCs quite regular. . .

. . . but few PCCs are (very) highly symmetric!
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Babai’s conjecture

Conjecture (Babai)

(∀ε > 0)(∃n0)
every PCC with n ≥ n0 verts. and ≥ exp(nε) automorphisms
has primitive automorphism group
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Cameron schemes

Theorem (Cameron 1981 via CFSG)

Every primitive permutation group Γ has form

(A
(k)
m )d ≤ Γ ≤ S

(k)
m o Sd

or has order nO(log n) where n is degree

Corollary (Under Babai’s conjecture)

Every PCC with exp(nε) automorphisms is Schurian X(Γ)
with Γ as above
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PCCs with very many automorphisms

Theorem (Babai, 1981)

PCCs other than trivial (Kn) have ≤ exp(Õ(n1/2)) automorphisms

Theorem (Sun–W 2015)

PCCs other than trivial, J(m, 2), and H(m, 2) have
≤ exp(Õ(n1/3)) automorphisms
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Classification of primitive permutation groups

Corollary (Sun–W 2015)

Primitive permutation groups of degree n
except Cameron groups
have order ≤ exp(Õ(n1/3))

(CSFG-free proof of Cameron’s theorem down to exp(Õ(n1/3)))
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Individualization/refinement: finding a combinatorial base

Set S is base if Aut(X)(S) = 1.

=⇒ |Aut(X)| ≤ exp(Õ(|S |))
Want |S | ≤ Õ(n1/3)

Combinatorial relaxation:

Fix vertices: assign unique colors (individualize)

Estimate orbits: canonically refine coloring,
examine color classes

individualize 2 vertices propogate coloring

Goal: discrete coloring (all vertices end with unique colors)
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Main result, restated

Theorem (Sun–W 2015)

Nontrivial PCCs other than J(m, 2) or H(m, 2)
get discrete coloring from 1-WL after Õ(n1/3) individualizations
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Babai’s exp(Õ(n1/3)) Algorithm for General GI

Group-theoretic
divide-and-conquer

(Luks 1980, Babai-Luks 1983)

PCC

Local Certificates,
Aggregation, Design Lemma,

. . . (Babai 2015)

“Split-or-Johnson”
(Babai 2015)

recurse for
overall
quasipolynomial
time

Our analysis

overall exp(Õ(n1/3))-time
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Our analysis

J(m, 2) or H(m, 2), or
Õ(n1/3) indiv. gives:

discrete coloring

Babai’s “Split-or-Johnson” Lemma

Õ(1) indiv. gives:

no dominant color, or:

equipartition of dominant color, or:

J(m, k) on dominant color
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Structure of primitive coherent configurations

Theorem (Sun-W)

Let X be a PCC. One of these holds:

1 every edge-color has valency ≤ n − n2/3 (no dominant color)

2 for some color i , we have λi = o(
√
n)

3 complement of dominant color has “clique geometry”
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Structure of primitive coherent configurations

Theorem (Sun-W)

Let X be a PCC. One of these holds:

1 every edge-color has valency ≤ n − n2/3 (no dominant color)

2 for some color i , we have λi = o(
√
n)

3 complement of dominant color has “clique geometry”

λi bound entails vertex expansion

λi

u

v
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Structure of primitive coherent configurations

Theorem (Sun-W)

Let X be a PCC. One of these holds:

1 every edge-color has valency ≤ n − n2/3 (no dominant color)

2 for some color i , we have λi = o(
√
n)

3 complement of dominant color has “clique geometry”

Definition

A clique geometry on graph G is set C of maximal cliques in G
s.t. every edge lies in unique clique
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Structure of primitive coherent configurations

Theorem (Sun-W)

Let X be a PCC. One of these holds:

1 every edge-color has valency ≤ n − n2/3 (no dominant color)

2 for some color i , we have λi = o(
√
n)

3 complement of dominant color has “clique geometry”

Definition

A clique geometry on graph G is set C of maximal cliques in G
s.t. every edge lies in unique clique

a

b

c

· · ·
x

y

z

`

a
b
c

x
y
z

· · ·

`
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Structure of primitive coherent configurations

Theorem (Sun-W)

Let X be a PCC. One of these holds:

1 every edge-color has valency ≤ n − n2/3 (no dominant color)

2 for some color i , we have λi = o(
√
n)

3 complement of dominant color has “clique geometry”

Definition

A clique geometry on graph G is set C of maximal cliques in G
s.t. every edge lies in unique clique

Note: J(m, 2) and H(m, 2) have clique geometries
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Proof sketch

PCC

no dominant color

λi bound

clique geometry

individualization/refinement

J(m, 2) or H(m, 2)

growth of spheres

vertex expansion

claw structure

classification
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When no color is overwhelmingly dominant

ρ = co-valency of highest-valency color
Assume ρ ≥ n2/3

d = maxi ,j disti (j) ( = distance in i between color-j pair)

u vj

i

disti (j) = 3

Lemma (Babai 1981)

O(nd log n/ρ) individualizations suffice for discrete coloring
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When no color is overwhelmingly dominant

Lemma (Babai 1981)

O(nd log n/ρ) individualizations suffice for discrete coloring

We estimate growth of spheres
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When no color is overwhelmingly dominant

ni = color i valency

disti (j) = distance in ith constituent between color-j pair

S
(α)
i = number of vertices in α-sphere of ith constituent

Lemma (Sun-W)

Let i , j off-diagonal colors and δ = disti (j). Then ∀1 ≤ α ≤ δ − 2

S
(α+1)
i S

(δ−α)
i ≥ ninj
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When no color is overwhelmingly dominant

ni = color i valency

disti (j) = distance in ith constituent between color-j pair

S
(α)
i = number of vertices in α-sphere of ith constituent

Lemma (Sun-W)

Let i , j off-diagonal colors and δ = disti (j). Then ∀1 ≤ α ≤ δ − 2

S
(α+1)
i S

(δ−α)
i ≥ ninj

Enough when max ni = Ω(n)
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When no color is overwhelmingly dominant

What if all ni < εn? Analyze distinguishing number

D(u, v) = #{w : c(w , u) 6= c(w , v)}

x y

z1 z2 z3

Enough: all D(u, v) large
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When no color is overwhelmingly dominant

What if all ni < εn? Analyze distinguishing number

D(u, v) = #{w : c(w , u) 6= c(w , v)}

x y

z1 z2 z3

Enough: all D(u, v) large

What if some D(u, v) = D(c(u, v)) small?
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When no color is overwhelmingly dominant

What if some D(u, v) = D(c(u, v)) small?

Key tool

D(i) small =⇒ “properties vary smoothly” along i-paths

In particular, valency and distinguishing number “vary smoothly”
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Proof sketch

PCC

no dominant color

λi bound

clique geometry

individualization/refinement

J(m, 2) or H(m, 2)

growth of spheres

vertex expansion

claw structure

classification
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Clique geometries in PCCs

Definition

A clique geometry on graph G is set C of maximal cliques in G
s.t. every edge lies in unique clique
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Clique geometries in PCCs

Notation:

X = PCC

ρ = co-valency of highest-valency constituent

G = complement graph of highest-valency constituent

λi = |Xi (u) ∩ G (v)| where c(u, v) = i

λi

u

v
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Clique geometries in PCCs

Theorem (Sun-W)

(∀c > 0)(∃ε > 0) s.t. if λi > cn1/2 and ρ < εn2/3,
then G has unique clique geometry.
Further, “asymptotically uniform”:
if c(u, v) = i in clique C then |G (u) ∩ C | = λi + O(ρµ/λi )
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Finding clique geometries

Step 1: Find “local clique partitions” in each color

Definition

X has I -local clique partitions for set I of colors if
∀u ∈ Ω ∃P partition of XI (u) into maximal cliques
of induced G -subgraph on XI (u)

Using assumptions on ρ and λi , X has {i}-local clique partitions ∀i
non-dominant by (Metsch 1991)
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Finding clique geometries

Step 2: Gradually strengthen clique partitions.

2a. Ensure cliques in XI (u) maximal in G (not just induced
subgraph)

2b. Ensure cliques agree at different vertices

u

v w
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Finding clique geometries

Let µ = |G (u) ∩ G (v) for u 6∼ v
in G

Observation

If cliques C1,C2 in G have
|C1 ∩ C2| > µ then C1 = C2

> µ
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Finding clique geometries

Step 3: Put it together

Theorem (Sun-W)

(∀c > 0)(∃ε > 0) s.t. if λi > cn1/2 and ρ < εn2/3,
then G has unique clique geometry.
Further, “asymptotically uniform”:
if c(u, v) = i in clique C then |G (u) ∩ C | = λi + O(ρµ/λi )
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Proof sketch

PCC

no dominant color

λi bound

clique geometry

individualization/refinement

J(m, 2) or H(m, 2)

growth of spheres

vertex expansion

claw structure

classification
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Analysis of clique geometries

Case 1: ≥ 3 cliques at each vertex

Ubiquitous 3-claws in G give gadgets:
x

y

u v

Individualizing x , y and refining distinguishes u and v
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Analysis of clique geometries

Case 2: ≤ 2 cliques at each vertex

Theorem (Sun-W)

Suppose ρ < εn2/3 and ∃ asymptotically uniform clique geometry
with ≤ 2 cliques at a vertex. Then X is one of these:

1 trivial

2 Johnson J(m, 2)

3 Hamming H(m, 2)

4 rank 4 with a nonsymmetric color; symmetrization is H(m, 2);
≤ nO(log n) automorphisms
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Summary: Primitive Coherent Configurations

Main result: PCCs except trivial, Johnson, and Hamming have
≤ exp(Õ(n1/3)) automorphisms

Previous best: exp(Õ(n1/2)).

Proof sketch:

PCC

no dominant color

λi bound

clique geometry

individualization/refinement

J(m, 2) or H(m, 2)

growth of spheres

vertex expansion

claw structure

classification
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Open Problems

Conjecture (Babai)

Nontrivial PCCs other than Cameron schemes
have ≤ exp(no(1)) automorphisms

Easier cases?

all valencies ≤ εn
exists non-symmetric color

(Definitely annoying cases)

Construct infinite family of PCCs with non-uniform clique
geometries?
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