Primitive coherent configurations with very many automorphisms

John Wilmes

Department of Mathematics Brandeis University wilmes@brandeis.edu

WL2018

4 3 5 4

- Background and motivation
- Olassification of PCCs with very many automorphisms
- Structure theory for PCCs

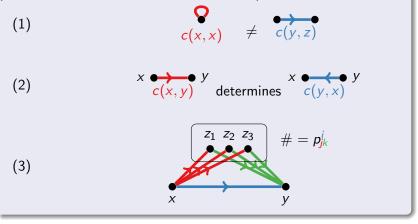
Definition

Coherent configurations (CCs) stable colorings under W-L

< ∃ →

Definition

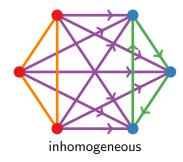
CC \mathfrak{X} on set Ω is coloring $c : \Omega \times \Omega \rightarrow {colors}$ (edge-colored complete digraph with loops) s.t.

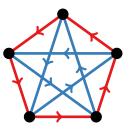


Definition

CC is homogeneous if

(4) all vertices (loops) have same color





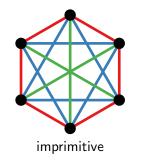
homogeneous

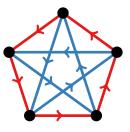
4 3 b

Definition

Homogeneous CC \mathfrak{X} is **primitive (PCC)** if

(5) each constituent digraph $\mathfrak{X}_i = (\Omega, c^{-1}(i))$ is connected

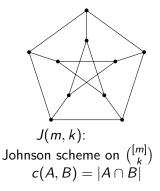


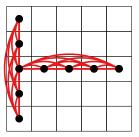


primitive

→ 3 → 4 3

Johnson and Hamming schemes





H(m, d): Hamming scheme on $[m]^d$ $c(w_1, w_2)$ = Hamming distance Group action $G \curvearrowright \Omega$ gives CC $\mathfrak{X}(G)$ on Ω :

$$c(u,v) = c(x,y)$$
 iff $(\exists g \in G)(u^g, v^g) = (x,y)$

→ 3 → < 3</p>

Interested in **behavior of infinite families** as number of vertices $n \to \infty$

E.g.,

•
$$|\operatorname{Aut}(J(m,2))| = \exp(\widetilde{O}(n^{1/2}))$$

•
$$|\operatorname{Aut}(H(m,2))| = \exp(\widetilde{O}(n^{1/2}))$$

Symmetry - properties of automorphism group **Regularity** - expressed in numerical parameters

All PCCs quite regular...

... but few PCCs are (very) highly symmetric!

Conjecture (Babai)

 $(\forall \varepsilon > 0)(\exists n_0)$ every PCC with $n \ge n_0$ verts. and $\ge \exp(n^{\varepsilon})$ automorphisms has primitive automorphism group

· < E > < E >

Theorem (Cameron 1981 via CFSG)

Every primitive permutation group Γ has form

$$(A_m^{(k)})^d \leq \Gamma \leq S_m^{(k)} \wr S_d$$

or has order $n^{O(\log n)}$ where n is degree

A B > A B >

Theorem (Cameron 1981 via CFSG)

Every primitive permutation group Γ has form

$$(A_m^{(k)})^d \leq \Gamma \leq S_m^{(k)} \wr S_d$$

or has order $n^{O(\log n)}$ where n is degree

Corollary (Under Babai's conjecture)

Every PCC with $\exp(n^{\varepsilon})$ automorphisms is Schurian $\mathfrak{X}(\Gamma)$ with Γ as above

同 ト イ ヨ ト イ ヨ ト

Theorem (Babai, 1981)

PCCs other than trivial (K_n) have $\leq \exp(\widetilde{O}(n^{1/2}))$ automorphisms

()

Theorem (Babai, 1981)

PCCs other than trivial (K_n) have $\leq \exp(\widetilde{O}(n^{1/2}))$ automorphisms

Theorem (Sun–W 2015)

PCCs other than trivial, J(m, 2), and H(m, 2) have $\leq \exp(\widetilde{O}(n^{1/3}))$ automorphisms

Corollary (Sun–W 2015)

Primitive permutation groups of degree n except Cameron groups have order $\leq \exp(\tilde{O}(n^{1/3}))$

(CSFG-free proof of Cameron's theorem down to $\exp(\widetilde{O}(n^{1/3}))$)

Individualization/refinement: finding a combinatorial base

Set *S* is **base** if
$$\operatorname{Aut}(\mathfrak{X})_{(S)} = 1$$
.
 $\implies |\operatorname{Aut}(\mathfrak{X})| \le \exp(\widetilde{O}(|S|))$

Want
$$|S| \leq \widetilde{O}(n^{1/3})$$

Combinatorial relaxation:

- Fix vertices: assign unique colors (individualize)
- Estimate orbits: canonically refine coloring, examine color classes

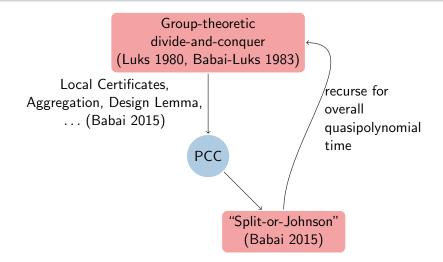
Goal: discrete coloring (all vertices end with unique colors)

Theorem (Sun–W 2015)

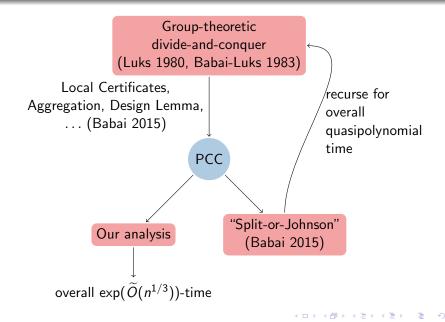
Nontrivial PCCs other than J(m, 2) or H(m, 2)get discrete coloring from 1-WL after $\tilde{O}(n^{1/3})$ individualizations

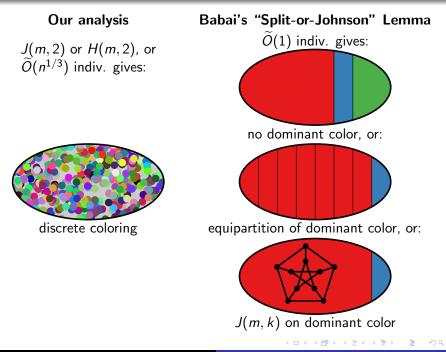
A B > A B >

Babai's $exp(\widetilde{O}(n^{1/3}))$ Algorithm for General GI



Babai's $exp(\widetilde{O}(n^{1/3}))$ Algorithm for General GI





Structure of primitive coherent configurations

Theorem (Sun-W)

Let \mathfrak{X} be a PCC. One of these holds:

- every edge-color has valency $\leq n n^{2/3}$ (no dominant color)
 - ② for some color i, we have $\lambda_i = o(\sqrt{n})$
 - Output of contract color has "clique geometry"

□ > < = > <

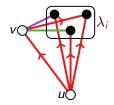
Structure of primitive coherent configurations

Theorem (Sun-W)

Let \mathfrak{X} be a PCC. One of these holds:

- every edge-color has valency $\leq n n^{2/3}$ (no dominant color)
- 2 for some color *i*, we have $\lambda_i = o(\sqrt{n})$
 - complement of dominant color has "clique geometry"

λ_i bound entails vertex expansion



Theorem (Sun-W)

Let \mathfrak{X} be a PCC. One of these holds:

- every edge-color has valency $\leq n n^{2/3}$ (no dominant color)
- 2 for some color *i*, we have $\lambda_i = o(\sqrt{n})$
- omplement of dominant color has "clique geometry"

Definition

A clique geometry on graph G is set C of maximal cliques in G s.t. every edge lies in unique clique

Structure of primitive coherent configurations

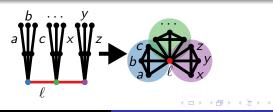
Theorem (Sun-W)

Let \mathfrak{X} be a PCC. One of these holds:

- every edge-color has valency $\leq n n^{2/3}$ (no dominant color)
- 2 for some color *i*, we have $\lambda_i = o(\sqrt{n})$
- omplement of dominant color has "clique geometry"

Definition

A clique geometry on graph G is set C of maximal cliques in G s.t. every edge lies in unique clique



Structure of primitive coherent configurations

Theorem (Sun-W)

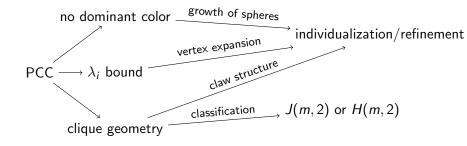
Let \mathfrak{X} be a PCC. One of these holds:

- every edge-color has valency $\leq n n^{2/3}$ (no dominant color)
- 2 for some color *i*, we have $\lambda_i = o(\sqrt{n})$
- omplement of dominant color has "clique geometry"

Definition

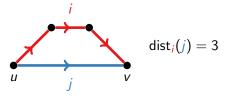
A clique geometry on graph G is set C of maximal cliques in G s.t. every edge lies in unique clique

Note: J(m, 2) and H(m, 2) have clique geometries



 $\rho = \text{co-valency of highest-valency color}$ Assume $\rho \ge n^{2/3}$

 $d = \max_{i,j} \text{dist}_i(j)$ (= distance in *i* between color-*j* pair)



Lemma (Babai 1981)

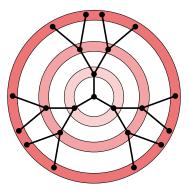
 $O(nd \log n/\rho)$ individualizations suffice for discrete coloring

通 と イ ヨ と イ ヨ と

Lemma (Babai 1981)

 $O(nd \log n/\rho)$ individualizations suffice for discrete coloring

We estimate growth of spheres



< ∃ >

- $n_i = \text{color } i \text{ valency}$
- dist_i(j) = distance in *i*th constituent between color-*j* pair
- $S_i^{(\alpha)}$ = number of vertices in α -sphere of *i*th constituent

Lemma (Sun-W)

Let *i*, *j* off-diagonal colors and $\delta = \text{dist}_i(j)$. Then $\forall 1 \leq \alpha \leq \delta - 2$

$$S_i^{(\alpha+1)}S_i^{(\delta-\alpha)} \geq n_i n_j$$

- $n_i = \text{color } i \text{ valency}$
- dist_i(j) = distance in *i*th constituent between color-*j* pair
- $S_i^{(\alpha)}$ = number of vertices in α -sphere of *i*th constituent

Lemma (Sun-W)

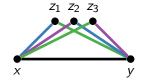
Let *i*, *j* off-diagonal colors and $\delta = \text{dist}_i(j)$. Then $\forall 1 \leq \alpha \leq \delta - 2$

$$S_i^{(\alpha+1)}S_i^{(\delta-\alpha)} \geq n_i n_j$$

Enough when $\max n_i = \Omega(n)$

What if all $n_i < \varepsilon n$? Analyze distinguishing number

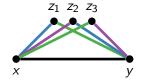
$$D(u,v) = \#\{w: c(w,u) \neq c(w,v)\}$$



Enough: all D(u, v) large

What if all $n_i < \varepsilon n$? Analyze distinguishing number

$$D(u,v) = \#\{w: c(w,u) \neq c(w,v)\}$$



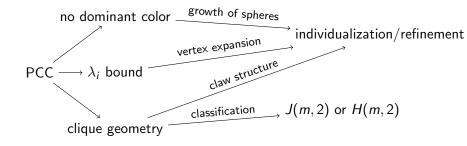
Enough: all D(u, v) large

What if some D(u, v) = D(c(u, v)) small?

What if some D(u, v) = D(c(u, v)) small?

Key tool $D(i) \text{ small } \implies$ "properties vary smoothly" along *i*-paths

In particular, valency and distinguishing number "vary smoothly"



Clique geometries in PCCs

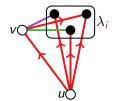
Definition

A clique geometry on graph G is set C of maximal cliques in G s.t. every edge lies in unique clique

Clique geometries in PCCs

Notation:

- $\mathfrak{X} = \mathsf{PCC}$
- $\rho = \text{co-valency of highest-valency constituent}$
- G = complement graph of highest-valency constituent
- $\lambda_i = |\mathfrak{X}_i(u) \cap G(v)|$ where c(u, v) = i



Theorem (Sun-W)

 $(\forall c > 0)(\exists \varepsilon > 0) \text{ s.t. if } \lambda_i > cn^{1/2} \text{ and } \rho < \varepsilon n^{2/3},$ then G has unique clique geometry. Further, "asymptotically uniform": if c(u, v) = i in clique C then $|G(u) \cap C| = \lambda_i + O(\rho \mu / \lambda_i)$

伺 ト く ヨ ト く ヨ ト

Step 1: Find "local clique partitions" in each color

Definition

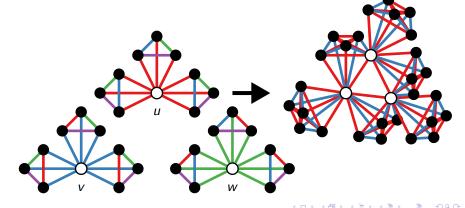
 \mathfrak{X} has *I*-local clique partitions for set *I* of colors if $\forall u \in \Omega \exists \mathcal{P}$ partition of $\mathfrak{X}_I(u)$ into maximal cliques of induced *G*-subgraph on $\mathfrak{X}_I(u)$

Using assumptions on ρ and λ_i , \mathfrak{X} has $\{i\}$ -local clique partitions $\forall i$ non-dominant by (Metsch 1991)

Finding clique geometries

Step 2: Gradually strengthen clique partitions.

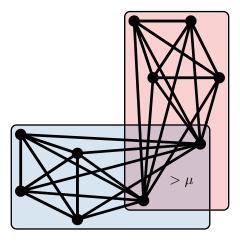
- 2a. Ensure cliques in $\mathfrak{X}_{I}(u)$ maximal in G (not just induced subgraph)
- 2b. Ensure cliques agree at different vertices



Let
$$\mu = |G(u) \cap G(v)$$
 for $u \not\sim v$
in G

Observation

If cliques C_1, C_2 in G have $|C_1 \cap C_2| > \mu$ then $C_1 = C_2$

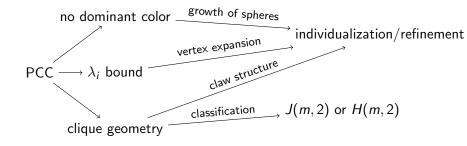


A B > A B >

Step 3: Put it together

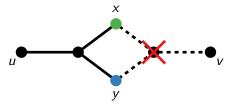
Theorem (Sun-W)

 $(\forall c > 0)(\exists \varepsilon > 0) \text{ s.t. if } \lambda_i > cn^{1/2} \text{ and } \rho < \varepsilon n^{2/3},$ then G has unique clique geometry. Further, "asymptotically uniform": if c(u, v) = i in clique C then $|G(u) \cap C| = \lambda_i + O(\rho\mu/\lambda_i)$



Case 1: \geq 3 cliques at each vertex

Ubiquitous 3-claws in G give gadgets:



Individualizing x, y and refining distinguishes u and v

Case 2: \leq 2 cliques at each vertex

Theorem (Sun-W)

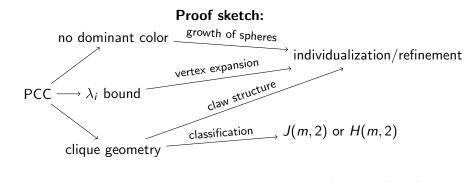
Suppose $\rho < \varepsilon n^{2/3}$ and \exists asymptotically uniform clique geometry with ≤ 2 cliques at a vertex. Then X is one of these:

- trivial
- 3 Johnson J(m, 2)
- 3 Hamming H(m, 2)
- rank 4 with a nonsymmetric color; symmetrization is H(m, 2); $\leq n^{O}(\log n)$ automorphisms

Summary: Primitive Coherent Configurations

Main result: PCCs except trivial, Johnson, and Hamming have $\leq \exp(\widetilde{O}(n^{1/3}))$ automorphisms

Previous best: $\exp(\widetilde{O}(n^{1/2}))$.



Conjecture (Babai)

Nontrivial PCCs other than Cameron schemes have $\leq \exp(n^{o(1)})$ automorphisms

Easier cases?

- all valencies $\leq \varepsilon n$
- exists non-symmetric color

(Definitely annoying cases)

Construct infinite family of PCCs with <u>non-uniform</u> clique geometries?

4 E 6 4 E 6