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Abstract. We consider an algorithm for the reduction of a given finite multigraph Γ to
canonical form. Therein the new invariant of a graph appears — the algebra A(Γ). The
study of properties of the algebra A(Γ) turns out to be helpful in solving a number of
graph-theoretic problems. We pose and discuss some conjectures on the relation between
properties of the algebra A(Γ) and the automorphism group Aut(Γ) of a graph Γ. We give
an example of undirected graph Γ whose algebra A(Γ) coincides with the group algebra of
some noncommutative group.

English abstract from the original article. An algorithm is considered, reducing
the specified finite multigraph Γ to canonical form. In the course of this reduction, a new
invariant of the graph is generated — algebra A(Γ). Study of the properties of the algebra
A(Γ) proves helpful in solving a number of graph-theoretic problems. Some propositions
concerning the relationships between the properties of the algebra A(Γ) and the graph’s
automorphism group Aut(Γ) are discussed. An example of non-oriented graph Γ is con-
structed whose algebra A(Γ) coincides with the group algebra of a non-commutative group.

English title from the original article. A reduction of a graph to canonical form
and an algebra arising during this reduction.

1. Consider a finite graph Γ and its adjacency matrix A(Γ) = {aij}, where aij is the
number of edges from ith vertex to jth one; i, j = 1, 2, . . . , n. If Γ is an undirected graph
then set aij = aji. A canonical form of a graph is defined to be its adjacency matrix with
respect to a canonical labeling of its vertices, that is a partial ordering of the vertex set such
that if vertices a and b are incomparable then there is an automorphism of a graph moving
a to b and preserving the adjacency relation.

In Sections 6 and 7, we describe the reduction of a graph to canonical form which consists
of a step-by-step reordering of rows and columns of the matrix A(Γ) and, roughly speaking,
adds up to the following.

Consider for simplicity an undirected graph without multiple edges. Associate with every
vertex of the graph the characteristic vector which has one component equal to the number
of neighbors of this vertex. Then divide vertices into classes such that vertices with equal
characteristic vectors belong to the same class and order classes according to the natural
order on the set of characteristic vectors. Further, associate with every vertex the charac-
teristic vector vi = (l, vi1, vi2, . . .), where vik is the number of neighbors of vertex i from
class k and l is the number of the class which contains vertex i. Now again divide vertices
into classes according to new characteristic vectors ordered lexicographically, etc. Note that
if vertices a and b belong to different classes and the condition a < b holds at some step
then this condition also holds at the next steps. This implies that the described process
stops after at most n steps and after the stop either all vertices belong to different classes
(i.e. a canonical labeling was constructed) or further division does not proceed.
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If Γ is a directed multigraph then take the ordered ith row of A(Γ) as a characteristic
vector vi assuming that the diagonal element precedes other elements. Instead of different
elements aij introduce different independent variables x1, x2, . . . ordered according to the
order on aij. Denote the matrix obtained in such way by X(Γ). As before, divide vertices
into classes assuming that a class consists of vertices with the same characteristic vector.
Note that the kth component of vector vi is equal to the sum of all elements of the ith row
of X(Γ) corresponding to vertices of the kth class from the previous step. The matrix X(Γ)
is divided into blocks in every of which we can introduce new independent variables, etc.
(for exact definitions of these operations see Section 6, operations α1, β1).

Note that the above procedure is similar to methods from [1, 2].
For further division of the set of vertices into classes consider an element uij of the matrix

U = XX
′
, where X

′
is the matrix obtained from X by replacing variables x1, x2, . . . by

variables x
′
1, x

′
2, . . .. All variables x1, x2, . . . , x

′
1, x

′
2, . . . are independent. The element uij is

a quadratic polynomial of x1, x2, . . . , x
′
1, x

′
2, . . .. Now if we denote different polynomials by

new different independent variables then we can apply all above operations to the obtained
matrix and so on until this process stops (see Section 6, operations α2, β2, β3).

2. An introduction of independent variables and the matrix U = XX
′

from the above
procedure has the following geometrical sense. On the first step of our procedure edges of
Γ and edges of its complement Γ will be associated with different variables, i.e. edges of Γ
and edges of Γ will be colored in different colors. Further each introduction of new variables
defines a new coloring of edges and: (1) edges which have different colors on some step will
have different colors on next steps; (2) vertices are divided into classes according to the
number of outgoing edges of each color.

It is known that an element aij ∈ A2, where A = A(Γ) and Γ is an undirected graph
without multiple edges, is equal to the number of paths of length 2 from vertex i to vertex j.
Similarly, a coefficient at xkx

′

l in polynomial uij ∈ U = XX
′
is equal to the number of paths

from vertex i to vertex j the first and the second parts of which consist of edges of colors k
and l respectively.

3. The next part of the reduction of a graph to canonical form uses an application of the
above operations to the matrix obtained from X(Γ) by deleting of some row and column.
If we define the reduction to canonical form for matricies of order k ≤ n − 1 then it is
possible to divide vertices into classes in the following way: a vertex is assumed to be senior
if after deleting of this vertex we obtain the lexicographically largest canonical form of the
remaining graph (see operations α3, α4, β4, Ы, Section 7) . Clearly, such process will stop
at some step. We prove that if two vertices a and b belong to the same class at the last step
then a and b are equivalent, i.e. there exists an automorphism of Γ which maps a to b and
preserves the adjacency relation.

Again, consider the matrix X = X(Γ) such that there are equal polynomials in the matrix
U = XX

′
in the positions of equal variables in the matrix X. The matrix X(Γ) is a common

point of some matrix algebra A(Γ), i.e. given a ring K (for example, the ring of integers
Z or the ring of rationals Q) matrices obtained from X by the replacing of its variables by
elements of K form the algebra AK(Γ) = A(Γ)⊗K. Clearly, the algebra A(Γ) is an invariant
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of a graph. We discuss on the relationships between the algebra A(Γ) and properties of Γ
in Sections 8-10.

4. Notation. The automorphism group of a graph Γ is denoted by Aut(Γ).
The matrix consisting of independent variables is denoted by X = (xij).
Independent variables from the main diagonal of X are denoted by y1, y2, . . .; other inde-

pendent variables from X are denoted by x1, x2, . . ..
ith row and ith column of a given matrix A are denoted by f Ii (A) and f IIi (A) respectively.
The matrix obtained from X by replacing of variables xi, yi by variables x

′
i, y

′
i is denoted

by X
′
= (x

′
ij); here variables xi, yi, x

′
i, y

′
i are independent.

The matrix obtained from X by deleting of ith row and ith column is denoted by Xi.
Given an ordered set V and a vector v ∈ V n the vector obtained from v by ordering of

its components is denoted by v.

5. Consider a finite directed multigraph Γ. We can associate Γ in a natural way with the
matrix A(Γ). Further construct the matrix X(Γ) whose elements are independent variables
x1, x2, . . . , y1, y2, . . . and

xk(ij) = xk(i′j′ ) ⇔ aij = ai′j′ , i 6= j, i
′ 6= j

′
,

yq(i) = yq(j) ⇔ aii = ajj.

Define an ordering on the set of variables in the following way:

yi > xk;

yq(i) > yq(j) ⇔ aii > ajj;

xk(ij) > xk(i′j′ ) ⇔ aij > ai′j′ .

Enumerate variables according to this ordering. Define also an ordering on the set of bilinear
forms of xi, x

′
i, yi, y

′
i in the following way:

xix
′

j > xkx
′

l ⇔ (ij) > (kl) etc.

6. Basic operations. The operation α0(X) is a permutation of rows and columns of a
matrix X such that i ≤ j ⇔ yk(i) ≤ yk(j) for all diagonal elements of α0(X). The operation
α1(X) is an introduction of new variables. Put in the positions (ii) and (jj) in the matrix
α1(X) the elements yl(i) and xl(ij) respectively so that

l(i) < l(j)⇔ (f̃ Ii (X), f̃ IIi (X)) < (f̃ Ij (X), f̃ IIj (X)),

l(i, j) < l(i
′
, j
′
)⇔ F (i, j) < F (i

′
, j
′
),

where
F (i, j) = (xij,ji, f̃

I
i (X), f̃ IIi (X), f̃ IIj (X)),

α2(X) = α1(XX
′
),

β1(X) = αs1(X),

where
αs−11 (X) 6= αs1(X) = αs+1

1 (X),
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β2(X) = (α2β1)
s(X),

where

(α2β1)
s−1(X) 6= (α2β1)

s(X) = (α2β1)
s+1(X),

β3(X) = α0β2(X).

7. Reduction to canonical form. Suppose that the operation Ы(X) is defined for
matrices X of order k ≤ n− 1 and Ы(X) possess the following properties: (1) Ы(X) is
a composition of reordering of rows and columns and introduction of new variables; (2) all
diagonal elements of the matrix X

′
= Ы(X) are pairwise distinct. Suppose also that for

every permutation σ the equality

Ы(σXσ−1) = Ы(X)X
′

holds. If k = 1 then put Ы(X) = X .
Denote by β(X) the matrix obtained from X

′
= Ы(X) by the replacing of its variables

by variables of the matrix X from which they (variables of X
′
) arise. Clearly,

β(X) = β(Y )⇔ there exists σ : X = σY σ−1. (1)

Define the lexicographical ordering on the set of matrices of the same order assuming as
before that

xi < xj ⇔ i < j, yi < yj ⇔ i < j.

The operation α3(X) is an introduction of new variables. Put in the positions (ii) and (ij)
in the matrix α3(X) the elements yl(i) and xl(i,j) respectively so that

l(i) < l(j)⇔ (xii, β(Xi)) < (xjj, β(Xj)),

l(ij) < l(i
′
j
′
)⇔ (xij, β(Xi), β(Xj)) < (xi′j′ , β(Xi′ ), β(Xj′ )),

β4(X) = (α3β3)
s(X),

where

(α3β3)
s−1(X) 6= (α3β3)

s(X) = (α3β3)
s+1(X). (2)

Lemma. If bij = bji for some elements of the matrix B = β4(X) then there exists a
permutation σ such that σ(i) = j and σBσ−1 = B, i. e. σ ∈ Aut(B).

Proof. 1◦. Since bij = bji, the equality β(Bi) = β(Bj) holds by (2) and due to (1) there
exists an isomorphism σ

′
: Bi → Bj, i.e. a map σ

′
: (1, 2, . . . , i, . . . , n)→ (1, 2, . . . , j, . . . , n)

such that σ
′
Biσ

′−1
= Bj.

2◦. Put σ(i) = j, σ(k) = σ
′
(k), k 6= i. The matrix obtained from X by replacing of

variables of ith row and ith column by zeros is denoted by X̃i. Clearly, σB̃iσ
−1 = B̃j. Prove

that σBσ−1 = B.
Let ∑

i

bij =
∑
s

mjsxs + yq(j),

B̃i = (ckl),
∑
k

ckl =
∑
s

nlsxs + yq(l),
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B̃j = (dkl),
∑
k

dkl =
∑
s

n
′

lsxs + yq(l).

The image of bij ∈ B under the map σ is bjσ(l) ∈ B. Obviously,

bil =
∑
s

(mls − nls)xs + δilyq(i),

bjσ(l) =
∑
s

(mσ(l)s − n
′

σ(l)s)xs + δjσ(l)yq(j).

The condition of the lemma implies that yq(i) = yq(j) and δil = δjσ(l). Since σB̃iσ
−1 = B̃j, we

conclude that yq(l) = yq(σ(l)). So mls = mσ(l)s for all s because otherwise an application of α1

to B yields a change of B that contradicts to the definition of β4(X). Finally, nls = n
′

σ(l)s

for all s because σB̃iσ
−1 = B̃j. Thus, bil = bjσ(l) for every l and the lemma is proved. �

Let spX =
∑
i

niyi and ni = l, where i ≤ l ≤ n. If l = n put Ы(X) = X. If l < n

and nl+1 ≥ 2 then define the operation α4(X) which is a deleting of a row and a column.
Namely, put

xii = yi, i ≤ l + 1,

xii = yq(i)+1, i > l + 1.

Due to Lemma, the operation α4(X) is invariant, i.e. if σ is a permutation then σXσ−1 = X
implies that σα4(X)σ−1 = α4(X).

Finally, put Ы(X) = (α4β4)
n−l(X) . Since operations αi, βi are invariant, the operation

Ы(X) is also invariant.

Definition. Canonical form of a graph Γ is defined to be the matrix obtained from β(X(Γ))
by substitution in it the elements of A(Γ) from which the corresponding variables of X(Γ)
arise.

Remark. Clearly, canonical form of a graph Γ depends on a way of ordering used in the
process of the reduction.

8. Algebra generated by a graph Γ. Let Γ be a graph. Then Y = β3(X(Γ)) is a
common point (in the sense of the algebraic geometry) of some associative matrix algebra
A(Γ). The algebra A(Γ) consists of matrices obtained by replacing of variables in Y by
arbitrary numbers. From the definition of the operation α1 it follows that the algebra A(Γ)
is invariant under transpose, i.e. it is semisimple. The algebra A(Γ) is invariant of Γ and it
can be used for studying of Γ. For example, the group Aut(Γ) coincides with the group of
permutation matrices σ such that

σY σ−1 = Y. (3)

This fact can be used for solving of the following problem: given a graph Γ find the group
Aut(Γ). Also it can be used for solving of the inverse problem. For graphs with the number
of verticies n ≤ 6 these problems were solved by Kagno [3]. It seems that these problems
(at least the direct one) can be solved for graphs with greater number of vertices by using
the suggested algebraic approach.
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9. Conjectures. (1). If spY = ny0 then there exists a group G such that A(Γ) ⊂ ZR(G),
where ZR(G) is the matrix algebra spanned by operators Rg of the right multiplication by
elements g ∈ G in the standard basis of the group ring, and the elements ei of the standard
basis of A(Γ) (xj = δij) are equal to sums of some elements of the standard basis Rgi .

If this conjecture is true then G ⊂ Aut(Γ) and G acts transitively on the set of vertices
of Γ.

(2). The orbits of Aut(Γ) coincide with the sets of vertices for which diagonal elements
in Y = β3(X) are the same. If spY = ny0 then this statement follows from Conjecture (1).

If Conjecture (2) is true then the process of the reduction of a graph to canonical form
becomes much easier. Indeed, in this case we can apply the operation α4 to the matrix
β3(X) and put Ы(X) = (α4β3)

n(X) .
An indirect confirmation of the above conjectures is the next proposition

Proposition. If a group G ⊂ Aut(Γ) acts regularly on the set of vertices of a graph Γ then
A(Γ) ⊂ ZR(G) and the above conjectures hold.

Proof. Since G acts regularly, it is possible to identify elements of G with vertices of Γ and
the action of G with left multiplication respectively. In view of (3) and G ⊂ Aut(Γ), the
algebra A(Γ) lies inside the centralizer B of the algebra spanned by operators of the left
multiplication. Note that B ⊃ ZR(G) because operators of the left multiplication commute
with operators of the right multiplication. Prove that B = ZR(G). Let B ∈ B. Subtract
from B a linear combination of elements of ZR(G) such that the first row of the obtained
matrix B

′
consists of zeros. Since B

′
commutes with G, every row of B

′
consists of zeros. So

B
′
= 0 and hence B ∈ ZR(G). Similarly, there exist elements g1, g2, . . . , gs such that the first

row of the matrix ei−
∑
j

Rgj consists of zeros. As before, this implies that ei =
∑
j

Rgj. �

10. Finally, we give an example of an undirected graph Γ without multiple edges whose
algebra A(Γ) coincides with the group algebra of some non-abelian group. Let X be a
vector space of the group algebra of the symmetric group S4 of four variables. The matrix
of multiplication by ω ∈ Z[S4] with respect to the standard basis of X is denoted by Aω.
Note that if ω =

∑
aiσi then Aω =

∑
aiAσi and Atω =

∑
aiAσ−1

i
.

Let σ = (1234), τ = (123), ρ = (14), ω = σ + σ−1 + τ + τ−1 + ρ and Γ be a graph with
the matrix A(Γ) = Aω. Clearly, A(Γ) is symmetric and its elememts are equal to 0 or 1. So
Γ is undirected graph without multiple edges.
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Put ω̃ = x1ω + x2ω̂ + y · 1, where ω̂ = I − ω and I =
∑
ϕ∈S4

ϕ. Direct computation shows

that

ω̃ω̃
′
= x1x

′

1ω
2 + x2x

′

2(14I + ω2) + yy
′ · 1 + (x1y

′
+ x

′

1y)ω +

+(x2y
′
+ x

′

2y)(I − ω) + (x1x
′

2 + x
′

1x2)(5I + ω2) =

= I(14x2x
′

2 + x2y
′
+ x

′

2y + 5x1x
′

2 + 5x
′

1x2) + α(2x1x
′

1 +

+2x2x
′

2 + x1y
′
+ x

′

1y − x2y
′ − x′2y + 2x1x

′

2 + 2x
′

1x2) +

β(x1x
′

1 + x2x
′

2 + x1y
′
+ x

′

1y − x2y
′ − x′2y + x1x

′

2 + x
′

1x2) +

+η(x1x
′

1 + x2x
′

2 + x1x
′

2 + x
′

1x2) +

1(yy
′
+ 5x2x

′

2 + 5x1x
′

1 + 5x1x
′

2 + 5x
′

1x2),

where

α = τ + τ
′
+ ρ,

β = ω − α = σ + σ−1,

η = (1342) + (1243) + (234) + (243).

Negative coefficients appear because we collect all summands with I into a separate one.
Further,

ϕ = α2(ω̃) = x1I + x2α + x3β + x4(ε+ γ + θ) + x5η + y · 1,
where

γ = σ2, ε = (1423) + (1342), θ = (34).

Applying the operation α2 again we obtain

ψ = α2(ϕ) = x1I + y · 1 + x2ρ+ x3θ + x4γ + . . .

At last, prove that ρ, θ, and γ generate the group S4. This will imply that A(Γ) = Z[S4].

ρ = (14), γρ = (13)(24)(14) = (1342) = λ,

λ2 = (14)(23),

λ2ρ = (23).

It is well-known fact that permutations (14), (23), and (34) generate S4.

11. Let us study in more details the structure of the algebra A(Γ) in case when spY =
ny0. We will use only the following apriori description of considered algebras.

Definition. (1) A cell is defined to be a matrix algebra A invariant under transpose and
such that its common point X = (xij) satisfies the conditions:∑

i

xij =
∑
i

xji =
∑
k

nkxk, (k)

where xk are distinct independent variables (A fixing of a matrix representation means a
fixing of a basis ξ1, ξ2, . . . , ξn of the corresponding vector space).

(2) A subcell is defined to be a subalgebra of the cell A that is a cell in the same matrix
representation.
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(3) A normal subcell is defined to be is a subcell R preserving a subspace spanned by some
proper subset ξi1 , ξi2 , . . . , ξis of vectors of a fixed basis (this means that some permutation of
basis vectors reduce matrices from R to the block form).

(4) A cell is said to be imprimitive if it has a proper non-trivial normal subcell, and it is
said to be primitive otherwise.

12. Basic properties of a cell with identity. The matrix from A obtained from X
by replacing of xj by δij is denoted by ei. Set eiej =

∑
k

akijek, ê =
∑
i

ei, and ei′ = e
′
i (the

last definition is correct because A is invariant under transpose). We assume that x0 is a
variable from the diagonal and hence e0 is the identity matrix. Matrices ei form a basis of
A that we call the standard basis.

P1. akij is a non-negative integer because A is an algebra and (k) holds.

P2.
∑
s

asija
k
sl =

∑
s

akisa
s
jl because A is associative.

P3. (
∑
biei)ê = ê(

∑
biei) = (

∑
bini)ê.

P4.
∑
i

ajki =
∑
i

ajik = nk,
∑
k

nk = n because êek = ekê = nkê.

P5.
∑
s

asijns = ninj because (eie)j ê = (
∑
s

asijns)ê = ninj ê.

P6. a0ij = δi′jni because P4 holds and e0 = id, a0
ii′

= ni by the definition of ei′ ; a
s
0i = δis.

P7. asij = as
′

j′ i′
because

∑
asije

′
s = (eiej)

′
= e

′
je
′
i = ej′ei′ =

∑
as
′

j′ i′
es′ .

P8. nia
i
′

jk = nja
j
′

ki = nka
k
′

ij . This property follows from P2 for k = 0 and P6:
∑
s

asija
0
sl =∑

s

asijδsl′nl = nla
l
′

ij =
∑
s

a0isa
s
jl =

∑
s

niδi′sa
s
jl = nia

i
′

jl.

P9. ai
′

kj is divisible by M = [
nj

(ni,nj)
, nk

(ni,nk)
], where (a, b) and [a, b] are the greatest common

divisor and the least common multiple of a and b respectively; M ≤ nk andM ≤ nj whenever

ai
′

kj 6= 0.

Indeed, ni

nj
ai
′

kj = aj
′

ik by P8. If aj
′

ik = 0 then P9 is obvious; otherwise aj
′

ik is a positive

integer and hence ai
′

kj is divisible by
nj

(ni,nj)
. Similarly, ai

′

kj is divisible by nk

(ni,nk)
. Therefore

the first statement of P9 holds. The second statement of P9 follows from the first one and
P4 because M ≤ ai

′

kj ≤ min {nk, nj}.

Proposition P10. The algebra A is decomposable over Q into the direct sum of the algebras

{λ̂e} and A0 = {
∑
aiei :

∑
niai = 0}.

Proof. The algebra {λê} is an ideal by P3. Let ϕ : A → Q such that ϕ(
∑
aiei) =

∑
niai.

Then ϕ is a homomorphism. So A0 is an ideal. Since A0 and {λê} are subalgebras in A0,

we obtain that A = A0 + {λ̂e}. �

Definition. A directed graph Γ is called weakly (respectively, strongly) connected if for every
two vertices a and b there exists a directed path either from a to b or from b to a (respectively,
both paths).
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Sometimes we will identify ei or
∑
i∈I
ei with a graph having the corresponding adjacency

matrix. Given verticies a and b of a graph Γ we write a→ b if there exists a directed path
from a to b in Γ and a9 b otherwise.

Proposition P11. If a graph Γ =
∑
i∈I
ei is weakly connected then it is strongly connected.

Proof. Let a be a vertex of Γ. Put Aa = {b : b 6= a, b→ a9 b}, Ba = {b : b 6= a, b→ a→
b}, and Ca = {b : b 6= a, a→ b9 a}. Obviously, the sets Aa, Ba, Ca are pairwise disjoint.

Assume that Aa 6= ∅ and b ∈ Aa. There are paths from a only to vertices from Ba ∪ Ca;
there are paths from b to vertices from Ba ∪Ca ∪ {a} and, possibly, to some other vertices.
Therefore the sets {c : c 6= a, a → c} and {c : c 6= b, b → c} have different cardinalities
which contradicts P2 and P4. Therefore Aa = ∅. By the same argument Ca = ∅. Thus Γ
is strongly connected and the proposition is proved. �

13. Imprimitive cells and quotient cells. Let A be a cell with identity, B a normal

subcell of A, f1, f2, . . . , fk the standard basis of B, and e =
k∑
i=1

fi. By the definition of a

subcell, e =
∑
i∈I
ei. Clearly, i ∈ I ⇔ eie = eei = nie. This yields that the set {ei : i ∈ I}

generates a normal subcell.
From the normality of B it follows that the graph e is non-connected. We may assume

that e is reduced to a block form according to connected components and there are no zeros
in diagonal blocks.

P12. Degrees of diagonal blocks of a normal subcell are equal because these degrees are
equal to m =

∑
i

eij =
∑
i∈I
ni, where (eij) = e.

The reduction of e to a block form defines a partition of the matrix X (common point
of A) into m × m blocks Xij. Blocks Xij and Xkl are said to be similar if for every
a ∈ [m(i− 1) + 1,mi] there exists b ∈ [m(k − 1) + 1,mk] such that

mj∑
s=m(j−1)+1

xas =
mi∑

s=m(i−1)+1

xbs (S)

and the same conditions hold for columns. IfXij andXkl are similar then we writeXij ∼ Xkl.
P13. Xll ∼ Xkk for all l, k because B is a cell and Xij � Xkk whenever i 6= j because

blocks are defined by connected components and variables from diagonal blocks do not
appear outside these blocks.

P14. If Xij � Xkk then every variable from Xij does not appear in Xls and conversely,
if there are ones in the block Xij of the matrix eq then there are only zeros in the block Xls

of this matrix.
Let us prove P14. Consider a row S1 of Xij and an arbitrary row S2 of Xls. Since

Xij � Xls, there exists r such that the variable xr appears p1 6= 0 times in S1 and p2 6= p1
times in S2. All elements of the rows S1 and S2 of ere are equal to p1 and p2 respectively.
From the definition of a cell it follows that in this case S1 and S2 do not have common
variables and we are done.
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P15. If sets of variables of two rows of the same block Xij do not coincide then these
sets are disjoint. The proof of P15 is similar to the proof of P14.

Definition. Let n = mk. The quotient cell A/B is defined to be the set of k × k-matrices
with a common point Z defined by the following condition:

zij = zls ⇔ Xij ∼ Xls.

Theorem P16. The quotient cell A/B is a cell.

Proof. Consider the algebra AC with the common point XC obtained from X by the follow-
ing replacement: two elements of X are replaced by the same variable if and only if they are
from similar blocks. It follows that XC = Z ⊗M , where M is an m×m-matrix consisting
of ones. Due to P14, XCX

′
C ∈ AC . This implies that Z is a common point of a matrix

algebra. Obviously, this algebra is a cell. �

Theorem P17. A cell A is imprimitive if and only if it contains an ideal L which is a
subcell. If B is a normal subcell of A and L = A/B then A contains an ideal isomorphic to
L as an algebra.

Proof. Let A be imprimitive cell with identity, B its normal subcell, and AC the algebra
defined in the proof of Theorem P16. In view of P14, the algebra AC is an ideal of A.
Conversely, let L be an ideal of A that is a subcell. Let fi =

∑
j∈Gi

ej be the standard basis

of L. Prove that there exists i with 0 ∈ Ji. Indeed, if s ∈ Jk then there exists an m such
that ems fk has a non-trivial projection onto e0 because every connected component of es
contains a directed cycle (see P11). Since L is an ideal, ems fk =

∑
difi, i.e. e0 is contained

in some fi. Moreover, e0 is contained in exactly one fi because L is a subcell. Denote this fi
by f0. Consider f

′
0f0. If q =

∑
i∈J0

ni then f
′
0f0 = qf0 +g. Since L is a subcell and the number

of elements equal to 1 in rows of matrices f0 and f
′
0 is equal to q, we obtain that g = 0,

i.e. the graph f0 is non-connected and its connected components define a desired normal
subcell. Thus P17 is proved. �

14. Primitive cells. Let A be a primitive cell with identity. Then the graphs ei
and hence their sums are strongly connected (see P11 and Section 13). Put eJ =

∑
i∈J

ei,

nJ =
∑
i∈J

ni, and let nJ < n− 1.

P18. Rows of eI are pairwise distinct.
Indeed, we may assume that the first q rows in eI are pairwise equal and different from

other rows. All elements of the upper left minor M of order q in f = eJe
′
J are equal to nJ

whereas all elements of the first q rows outside M are less than nJ . In view of the definition
of a cell, this implies that if ei has elements equal to 1 inside M then all elements outside M
which belong to the first q rows of ei are equal to 0, i.e. ei is non-connected.

P19. If akij = nj then ni > nj.

Indeed, nj = akij ≤ ni by P4. Let u(f) be the first row of f . We may assume that
u(ek) = (0111 . . . 100 . . . 0), u(ei) = (00 . . . 01 . . . 1). Then u(eiej) = (∗njnj . . . nj ∗ ∗ . . . ∗)
(nj appears nk times). If ni = nj then the 2nd, 3rd,...,(nk + 1)th columns of ej are pairwise
equal which contradicts P18.
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Let q1 < q2 < . . . < qm, Jk = {i : ni = qk}, i ∈
⋃
k

Jk for every i.

P20. For every i and j there exists s 6= j such that ajis 6= 0.
P21. For every l and every i /∈ Jl there exists j /∈ Jl such that akij 6= 0 for every k ∈ Jl.
Indeed, since ei is connected, eni has a projection onto es for every s, in particular, onto ej.

So there exists s such that ajis 6= 0. Let r = min{t : eti has a projection onto
⋃
s∈Gl

es}. Since

er−1i =
∑
i/∈Jl

biei, there exists j /∈ Jl such that akij 6= 0 for every k ∈ Jl and P21 is proved.

P22. For every i the following inequality holds: (qi, qm) ≥ qm
qm−1

> 1.

In view of P21, for every i there exist j and k such that nj ≤ qm−1, nk = qm, and akij 6= 0.
Due to P9, we have nj ≥ qm

(ni,qm)
and hence P22 holds.

P23. If qm = pk, where p is a prime, then pk−[logp qm−1] divides qi for every i.
P24. If qm is a prime then m = 1, i.e. all ni are equal.
P23 and P24 are easy corollaries of P22.
P25. qk+1 ≤ qkq1; qm ≤ qdimA−2

1 .
Indeed, let etg1 =

∑
i

bitei and q(t) = max{ni : bis 6= 0, s ≤ t}. Obviously, q(t+ 1) ≤ q(t)q1

and q(t0) = qm, where t0 = dimA− |J1 ∪ 0|. This yields P25.
P26. If q1 = 1 then A = Z[Zp], where p is a prime.
Indeed, if ni = 1 then ei is a permutation matrix. The set {

∑
i∈J

aiei} forms a normal

subcell and it is isomorphic to the group algebra of the group G = {ei : i ∈ J1}. This cell
is primitive only if G = Zp.

P27. If q1 = 2 then A = Z[σ + σ−1], where σp = 1 for some prime p.
Indeed, if ni = 2 then by Hall’s theorem there exist permutation matrices σ and τ such

that ei = σ+ τ . Further, e
′
i = σ−1 + τ−1 and eie

′
i = 2 +στ−1 + τσ−1 = 2 +ϕ+ϕ−1 = 2 + ek.

So ek = e
′

k and nk = 2, i.e. ek is an undirected cycle. Now the argument similar to the
argument from P26 yields P27.

15. Constructing of examples. Let G be a finite group, H ≤ Aut(G), Z[G] the
group algebra of G with the standard basis consisting of elements of G. Let A = {a ∈
Z[G] : h(a) = a for every h ∈ H}. Then A is a cell with the standard basis

∑
h∈H

h(g), g ∈ G.

The cell A is primitive, for example, in the following cases: G is a simple group and H is the
group of its inner automorphisms; G = (Zp)n and H is an irreducible subgroup of GL(n,Zp).

The authors would like to thank G. E. Vleduts for a formulation of the problem and
fruitful discussions and G.M. Adel’son-Velskii for a permanent attention to their work.
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